Magellan Linux

Contents of /alx-src/tags/kernel26-2.6.12-alx-r9/fs/exec.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 630 - (show annotations) (download)
Wed Mar 4 11:03:09 2009 UTC (15 years, 3 months ago) by niro
File MIME type: text/plain
File size: 34528 byte(s)
Tag kernel26-2.6.12-alx-r9
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/config.h>
26 #include <linux/slab.h>
27 #include <linux/file.h>
28 #include <linux/mman.h>
29 #include <linux/a.out.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/smp_lock.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/highmem.h>
36 #include <linux/spinlock.h>
37 #include <linux/key.h>
38 #include <linux/personality.h>
39 #include <linux/binfmts.h>
40 #include <linux/swap.h>
41 #include <linux/utsname.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/acct.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54
55 #ifdef CONFIG_KMOD
56 #include <linux/kmod.h>
57 #endif
58
59 int core_uses_pid;
60 char core_pattern[65] = "core";
61 /* The maximal length of core_pattern is also specified in sysctl.c */
62
63 static struct linux_binfmt *formats;
64 static DEFINE_RWLOCK(binfmt_lock);
65
66 int register_binfmt(struct linux_binfmt * fmt)
67 {
68 struct linux_binfmt ** tmp = &formats;
69
70 if (!fmt)
71 return -EINVAL;
72 if (fmt->next)
73 return -EBUSY;
74 write_lock(&binfmt_lock);
75 while (*tmp) {
76 if (fmt == *tmp) {
77 write_unlock(&binfmt_lock);
78 return -EBUSY;
79 }
80 tmp = &(*tmp)->next;
81 }
82 fmt->next = formats;
83 formats = fmt;
84 write_unlock(&binfmt_lock);
85 return 0;
86 }
87
88 EXPORT_SYMBOL(register_binfmt);
89
90 int unregister_binfmt(struct linux_binfmt * fmt)
91 {
92 struct linux_binfmt ** tmp = &formats;
93
94 write_lock(&binfmt_lock);
95 while (*tmp) {
96 if (fmt == *tmp) {
97 *tmp = fmt->next;
98 write_unlock(&binfmt_lock);
99 return 0;
100 }
101 tmp = &(*tmp)->next;
102 }
103 write_unlock(&binfmt_lock);
104 return -EINVAL;
105 }
106
107 EXPORT_SYMBOL(unregister_binfmt);
108
109 static inline void put_binfmt(struct linux_binfmt * fmt)
110 {
111 module_put(fmt->module);
112 }
113
114 /*
115 * Note that a shared library must be both readable and executable due to
116 * security reasons.
117 *
118 * Also note that we take the address to load from from the file itself.
119 */
120 asmlinkage long sys_uselib(const char __user * library)
121 {
122 struct file * file;
123 struct nameidata nd;
124 int error;
125
126 nd.intent.open.flags = FMODE_READ;
127 error = __user_walk(library, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
128 if (error)
129 goto out;
130
131 error = -EINVAL;
132 if (!S_ISREG(nd.dentry->d_inode->i_mode))
133 goto exit;
134
135 error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC, &nd);
136 if (error)
137 goto exit;
138
139 file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
140 error = PTR_ERR(file);
141 if (IS_ERR(file))
142 goto out;
143
144 error = -ENOEXEC;
145 if(file->f_op) {
146 struct linux_binfmt * fmt;
147
148 read_lock(&binfmt_lock);
149 for (fmt = formats ; fmt ; fmt = fmt->next) {
150 if (!fmt->load_shlib)
151 continue;
152 if (!try_module_get(fmt->module))
153 continue;
154 read_unlock(&binfmt_lock);
155 error = fmt->load_shlib(file);
156 read_lock(&binfmt_lock);
157 put_binfmt(fmt);
158 if (error != -ENOEXEC)
159 break;
160 }
161 read_unlock(&binfmt_lock);
162 }
163 fput(file);
164 out:
165 return error;
166 exit:
167 path_release(&nd);
168 goto out;
169 }
170
171 /*
172 * count() counts the number of strings in array ARGV.
173 */
174 static int count(char __user * __user * argv, int max)
175 {
176 int i = 0;
177
178 if (argv != NULL) {
179 for (;;) {
180 char __user * p;
181
182 if (get_user(p, argv))
183 return -EFAULT;
184 if (!p)
185 break;
186 argv++;
187 if(++i > max)
188 return -E2BIG;
189 cond_resched();
190 }
191 }
192 return i;
193 }
194
195 /*
196 * 'copy_strings()' copies argument/environment strings from user
197 * memory to free pages in kernel mem. These are in a format ready
198 * to be put directly into the top of new user memory.
199 */
200 static int copy_strings(int argc, char __user * __user * argv,
201 struct linux_binprm *bprm)
202 {
203 struct page *kmapped_page = NULL;
204 char *kaddr = NULL;
205 int ret;
206
207 while (argc-- > 0) {
208 char __user *str;
209 int len;
210 unsigned long pos;
211
212 if (get_user(str, argv+argc) ||
213 !(len = strnlen_user(str, bprm->p))) {
214 ret = -EFAULT;
215 goto out;
216 }
217
218 if (bprm->p < len) {
219 ret = -E2BIG;
220 goto out;
221 }
222
223 bprm->p -= len;
224 /* XXX: add architecture specific overflow check here. */
225 pos = bprm->p;
226
227 while (len > 0) {
228 int i, new, err;
229 int offset, bytes_to_copy;
230 struct page *page;
231
232 offset = pos % PAGE_SIZE;
233 i = pos/PAGE_SIZE;
234 page = bprm->page[i];
235 new = 0;
236 if (!page) {
237 page = alloc_page(GFP_HIGHUSER);
238 bprm->page[i] = page;
239 if (!page) {
240 ret = -ENOMEM;
241 goto out;
242 }
243 new = 1;
244 }
245
246 if (page != kmapped_page) {
247 if (kmapped_page)
248 kunmap(kmapped_page);
249 kmapped_page = page;
250 kaddr = kmap(kmapped_page);
251 }
252 if (new && offset)
253 memset(kaddr, 0, offset);
254 bytes_to_copy = PAGE_SIZE - offset;
255 if (bytes_to_copy > len) {
256 bytes_to_copy = len;
257 if (new)
258 memset(kaddr+offset+len, 0,
259 PAGE_SIZE-offset-len);
260 }
261 err = copy_from_user(kaddr+offset, str, bytes_to_copy);
262 if (err) {
263 ret = -EFAULT;
264 goto out;
265 }
266
267 pos += bytes_to_copy;
268 str += bytes_to_copy;
269 len -= bytes_to_copy;
270 }
271 }
272 ret = 0;
273 out:
274 if (kmapped_page)
275 kunmap(kmapped_page);
276 return ret;
277 }
278
279 /*
280 * Like copy_strings, but get argv and its values from kernel memory.
281 */
282 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
283 {
284 int r;
285 mm_segment_t oldfs = get_fs();
286 set_fs(KERNEL_DS);
287 r = copy_strings(argc, (char __user * __user *)argv, bprm);
288 set_fs(oldfs);
289 return r;
290 }
291
292 EXPORT_SYMBOL(copy_strings_kernel);
293
294 #ifdef CONFIG_MMU
295 /*
296 * This routine is used to map in a page into an address space: needed by
297 * execve() for the initial stack and environment pages.
298 *
299 * vma->vm_mm->mmap_sem is held for writing.
300 */
301 void install_arg_page(struct vm_area_struct *vma,
302 struct page *page, unsigned long address)
303 {
304 struct mm_struct *mm = vma->vm_mm;
305 pgd_t * pgd;
306 pud_t * pud;
307 pmd_t * pmd;
308 pte_t * pte;
309
310 if (unlikely(anon_vma_prepare(vma)))
311 goto out_sig;
312
313 flush_dcache_page(page);
314 pgd = pgd_offset(mm, address);
315
316 spin_lock(&mm->page_table_lock);
317 pud = pud_alloc(mm, pgd, address);
318 if (!pud)
319 goto out;
320 pmd = pmd_alloc(mm, pud, address);
321 if (!pmd)
322 goto out;
323 pte = pte_alloc_map(mm, pmd, address);
324 if (!pte)
325 goto out;
326 if (!pte_none(*pte)) {
327 pte_unmap(pte);
328 goto out;
329 }
330 inc_mm_counter(mm, rss);
331 lru_cache_add_active(page);
332 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
333 page, vma->vm_page_prot))));
334 page_add_anon_rmap(page, vma, address);
335 pte_unmap(pte);
336 spin_unlock(&mm->page_table_lock);
337
338 /* no need for flush_tlb */
339 return;
340 out:
341 spin_unlock(&mm->page_table_lock);
342 out_sig:
343 __free_page(page);
344 force_sig(SIGKILL, current);
345 }
346
347 #define EXTRA_STACK_VM_PAGES 20 /* random */
348
349 int setup_arg_pages(struct linux_binprm *bprm,
350 unsigned long stack_top,
351 int executable_stack)
352 {
353 unsigned long stack_base;
354 struct vm_area_struct *mpnt;
355 struct mm_struct *mm = current->mm;
356 int i, ret;
357 long arg_size;
358
359 #ifdef CONFIG_STACK_GROWSUP
360 /* Move the argument and environment strings to the bottom of the
361 * stack space.
362 */
363 int offset, j;
364 char *to, *from;
365
366 /* Start by shifting all the pages down */
367 i = 0;
368 for (j = 0; j < MAX_ARG_PAGES; j++) {
369 struct page *page = bprm->page[j];
370 if (!page)
371 continue;
372 bprm->page[i++] = page;
373 }
374
375 /* Now move them within their pages */
376 offset = bprm->p % PAGE_SIZE;
377 to = kmap(bprm->page[0]);
378 for (j = 1; j < i; j++) {
379 memmove(to, to + offset, PAGE_SIZE - offset);
380 from = kmap(bprm->page[j]);
381 memcpy(to + PAGE_SIZE - offset, from, offset);
382 kunmap(bprm->page[j - 1]);
383 to = from;
384 }
385 memmove(to, to + offset, PAGE_SIZE - offset);
386 kunmap(bprm->page[j - 1]);
387
388 /* Limit stack size to 1GB */
389 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
390 if (stack_base > (1 << 30))
391 stack_base = 1 << 30;
392 stack_base = PAGE_ALIGN(stack_top - stack_base);
393
394 /* Adjust bprm->p to point to the end of the strings. */
395 bprm->p = stack_base + PAGE_SIZE * i - offset;
396
397 mm->arg_start = stack_base;
398 arg_size = i << PAGE_SHIFT;
399
400 /* zero pages that were copied above */
401 while (i < MAX_ARG_PAGES)
402 bprm->page[i++] = NULL;
403 #else
404 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
405 stack_base = PAGE_ALIGN(stack_base);
406 bprm->p += stack_base;
407 mm->arg_start = bprm->p;
408 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
409 #endif
410
411 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
412
413 if (bprm->loader)
414 bprm->loader += stack_base;
415 bprm->exec += stack_base;
416
417 mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
418 if (!mpnt)
419 return -ENOMEM;
420
421 if (security_vm_enough_memory(arg_size >> PAGE_SHIFT)) {
422 kmem_cache_free(vm_area_cachep, mpnt);
423 return -ENOMEM;
424 }
425
426 memset(mpnt, 0, sizeof(*mpnt));
427
428 down_write(&mm->mmap_sem);
429 {
430 mpnt->vm_mm = mm;
431 #ifdef CONFIG_STACK_GROWSUP
432 mpnt->vm_start = stack_base;
433 mpnt->vm_end = stack_base + arg_size;
434 #else
435 mpnt->vm_end = stack_top;
436 mpnt->vm_start = mpnt->vm_end - arg_size;
437 #endif
438 /* Adjust stack execute permissions; explicitly enable
439 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
440 * and leave alone (arch default) otherwise. */
441 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
442 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC;
443 else if (executable_stack == EXSTACK_DISABLE_X)
444 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
445 else
446 mpnt->vm_flags = VM_STACK_FLAGS;
447 mpnt->vm_flags |= mm->def_flags;
448 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
449 if ((ret = insert_vm_struct(mm, mpnt))) {
450 up_write(&mm->mmap_sem);
451 kmem_cache_free(vm_area_cachep, mpnt);
452 return ret;
453 }
454 mm->stack_vm = mm->total_vm = vma_pages(mpnt);
455 }
456
457 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
458 struct page *page = bprm->page[i];
459 if (page) {
460 bprm->page[i] = NULL;
461 install_arg_page(mpnt, page, stack_base);
462 }
463 stack_base += PAGE_SIZE;
464 }
465 up_write(&mm->mmap_sem);
466
467 return 0;
468 }
469
470 EXPORT_SYMBOL(setup_arg_pages);
471
472 #define free_arg_pages(bprm) do { } while (0)
473
474 #else
475
476 static inline void free_arg_pages(struct linux_binprm *bprm)
477 {
478 int i;
479
480 for (i = 0; i < MAX_ARG_PAGES; i++) {
481 if (bprm->page[i])
482 __free_page(bprm->page[i]);
483 bprm->page[i] = NULL;
484 }
485 }
486
487 #endif /* CONFIG_MMU */
488
489 struct file *open_exec(const char *name)
490 {
491 struct nameidata nd;
492 int err;
493 struct file *file;
494
495 nd.intent.open.flags = FMODE_READ;
496 err = path_lookup(name, LOOKUP_FOLLOW|LOOKUP_OPEN, &nd);
497 file = ERR_PTR(err);
498
499 if (!err) {
500 struct inode *inode = nd.dentry->d_inode;
501 file = ERR_PTR(-EACCES);
502 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
503 S_ISREG(inode->i_mode)) {
504 int err = permission(inode, MAY_EXEC, &nd);
505 if (!err && !(inode->i_mode & 0111))
506 err = -EACCES;
507 file = ERR_PTR(err);
508 if (!err) {
509 file = dentry_open(nd.dentry, nd.mnt, O_RDONLY);
510 if (!IS_ERR(file)) {
511 err = deny_write_access(file);
512 if (err) {
513 fput(file);
514 file = ERR_PTR(err);
515 }
516 }
517 out:
518 return file;
519 }
520 }
521 path_release(&nd);
522 }
523 goto out;
524 }
525
526 EXPORT_SYMBOL(open_exec);
527
528 int kernel_read(struct file *file, unsigned long offset,
529 char *addr, unsigned long count)
530 {
531 mm_segment_t old_fs;
532 loff_t pos = offset;
533 int result;
534
535 old_fs = get_fs();
536 set_fs(get_ds());
537 /* The cast to a user pointer is valid due to the set_fs() */
538 result = vfs_read(file, (void __user *)addr, count, &pos);
539 set_fs(old_fs);
540 return result;
541 }
542
543 EXPORT_SYMBOL(kernel_read);
544
545 static int exec_mmap(struct mm_struct *mm)
546 {
547 struct task_struct *tsk;
548 struct mm_struct * old_mm, *active_mm;
549
550 /* Notify parent that we're no longer interested in the old VM */
551 tsk = current;
552 old_mm = current->mm;
553 mm_release(tsk, old_mm);
554
555 if (old_mm) {
556 /*
557 * Make sure that if there is a core dump in progress
558 * for the old mm, we get out and die instead of going
559 * through with the exec. We must hold mmap_sem around
560 * checking core_waiters and changing tsk->mm. The
561 * core-inducing thread will increment core_waiters for
562 * each thread whose ->mm == old_mm.
563 */
564 down_read(&old_mm->mmap_sem);
565 if (unlikely(old_mm->core_waiters)) {
566 up_read(&old_mm->mmap_sem);
567 return -EINTR;
568 }
569 }
570 task_lock(tsk);
571 active_mm = tsk->active_mm;
572 tsk->mm = mm;
573 tsk->active_mm = mm;
574 activate_mm(active_mm, mm);
575 task_unlock(tsk);
576 arch_pick_mmap_layout(mm);
577 if (old_mm) {
578 up_read(&old_mm->mmap_sem);
579 if (active_mm != old_mm) BUG();
580 mmput(old_mm);
581 return 0;
582 }
583 mmdrop(active_mm);
584 return 0;
585 }
586
587 /*
588 * This function makes sure the current process has its own signal table,
589 * so that flush_signal_handlers can later reset the handlers without
590 * disturbing other processes. (Other processes might share the signal
591 * table via the CLONE_SIGHAND option to clone().)
592 */
593 static inline int de_thread(struct task_struct *tsk)
594 {
595 struct signal_struct *sig = tsk->signal;
596 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
597 spinlock_t *lock = &oldsighand->siglock;
598 int count;
599
600 /*
601 * If we don't share sighandlers, then we aren't sharing anything
602 * and we can just re-use it all.
603 */
604 if (atomic_read(&oldsighand->count) <= 1) {
605 BUG_ON(atomic_read(&sig->count) != 1);
606 exit_itimers(sig);
607 return 0;
608 }
609
610 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
611 if (!newsighand)
612 return -ENOMEM;
613
614 if (thread_group_empty(current))
615 goto no_thread_group;
616
617 /*
618 * Kill all other threads in the thread group.
619 * We must hold tasklist_lock to call zap_other_threads.
620 */
621 read_lock(&tasklist_lock);
622 spin_lock_irq(lock);
623 if (sig->flags & SIGNAL_GROUP_EXIT) {
624 /*
625 * Another group action in progress, just
626 * return so that the signal is processed.
627 */
628 spin_unlock_irq(lock);
629 read_unlock(&tasklist_lock);
630 kmem_cache_free(sighand_cachep, newsighand);
631 return -EAGAIN;
632 }
633 zap_other_threads(current);
634 read_unlock(&tasklist_lock);
635
636 /*
637 * Account for the thread group leader hanging around:
638 */
639 count = 2;
640 if (thread_group_leader(current))
641 count = 1;
642 while (atomic_read(&sig->count) > count) {
643 sig->group_exit_task = current;
644 sig->notify_count = count;
645 __set_current_state(TASK_UNINTERRUPTIBLE);
646 spin_unlock_irq(lock);
647 schedule();
648 spin_lock_irq(lock);
649 }
650 sig->group_exit_task = NULL;
651 sig->notify_count = 0;
652 sig->real_timer.data = (unsigned long)current;
653 spin_unlock_irq(lock);
654
655 /*
656 * At this point all other threads have exited, all we have to
657 * do is to wait for the thread group leader to become inactive,
658 * and to assume its PID:
659 */
660 if (!thread_group_leader(current)) {
661 struct task_struct *leader = current->group_leader, *parent;
662 struct dentry *proc_dentry1, *proc_dentry2;
663 unsigned long exit_state, ptrace;
664
665 /*
666 * Wait for the thread group leader to be a zombie.
667 * It should already be zombie at this point, most
668 * of the time.
669 */
670 while (leader->exit_state != EXIT_ZOMBIE)
671 yield();
672
673 spin_lock(&leader->proc_lock);
674 spin_lock(&current->proc_lock);
675 proc_dentry1 = proc_pid_unhash(current);
676 proc_dentry2 = proc_pid_unhash(leader);
677 write_lock_irq(&tasklist_lock);
678
679 if (leader->tgid != current->tgid)
680 BUG();
681 if (current->pid == current->tgid)
682 BUG();
683 /*
684 * An exec() starts a new thread group with the
685 * TGID of the previous thread group. Rehash the
686 * two threads with a switched PID, and release
687 * the former thread group leader:
688 */
689 ptrace = leader->ptrace;
690 parent = leader->parent;
691 if (unlikely(ptrace) && unlikely(parent == current)) {
692 /*
693 * Joker was ptracing his own group leader,
694 * and now he wants to be his own parent!
695 * We can't have that.
696 */
697 ptrace = 0;
698 }
699
700 ptrace_unlink(current);
701 ptrace_unlink(leader);
702 remove_parent(current);
703 remove_parent(leader);
704
705 switch_exec_pids(leader, current);
706
707 current->parent = current->real_parent = leader->real_parent;
708 leader->parent = leader->real_parent = child_reaper;
709 current->group_leader = current;
710 leader->group_leader = leader;
711
712 add_parent(current, current->parent);
713 add_parent(leader, leader->parent);
714 if (ptrace) {
715 current->ptrace = ptrace;
716 __ptrace_link(current, parent);
717 }
718
719 list_del(&current->tasks);
720 list_add_tail(&current->tasks, &init_task.tasks);
721 current->exit_signal = SIGCHLD;
722 exit_state = leader->exit_state;
723
724 write_unlock_irq(&tasklist_lock);
725 spin_unlock(&leader->proc_lock);
726 spin_unlock(&current->proc_lock);
727 proc_pid_flush(proc_dentry1);
728 proc_pid_flush(proc_dentry2);
729
730 if (exit_state != EXIT_ZOMBIE)
731 BUG();
732 release_task(leader);
733 }
734
735 /*
736 * Now there are really no other threads at all,
737 * so it's safe to stop telling them to kill themselves.
738 */
739 sig->flags = 0;
740
741 no_thread_group:
742 BUG_ON(atomic_read(&sig->count) != 1);
743 exit_itimers(sig);
744
745 if (atomic_read(&oldsighand->count) == 1) {
746 /*
747 * Now that we nuked the rest of the thread group,
748 * it turns out we are not sharing sighand any more either.
749 * So we can just keep it.
750 */
751 kmem_cache_free(sighand_cachep, newsighand);
752 } else {
753 /*
754 * Move our state over to newsighand and switch it in.
755 */
756 spin_lock_init(&newsighand->siglock);
757 atomic_set(&newsighand->count, 1);
758 memcpy(newsighand->action, oldsighand->action,
759 sizeof(newsighand->action));
760
761 write_lock_irq(&tasklist_lock);
762 spin_lock(&oldsighand->siglock);
763 spin_lock(&newsighand->siglock);
764
765 current->sighand = newsighand;
766 recalc_sigpending();
767
768 spin_unlock(&newsighand->siglock);
769 spin_unlock(&oldsighand->siglock);
770 write_unlock_irq(&tasklist_lock);
771
772 if (atomic_dec_and_test(&oldsighand->count))
773 kmem_cache_free(sighand_cachep, oldsighand);
774 }
775
776 if (!thread_group_empty(current))
777 BUG();
778 if (!thread_group_leader(current))
779 BUG();
780 return 0;
781 }
782
783 /*
784 * These functions flushes out all traces of the currently running executable
785 * so that a new one can be started
786 */
787
788 static inline void flush_old_files(struct files_struct * files)
789 {
790 long j = -1;
791
792 spin_lock(&files->file_lock);
793 for (;;) {
794 unsigned long set, i;
795
796 j++;
797 i = j * __NFDBITS;
798 if (i >= files->max_fds || i >= files->max_fdset)
799 break;
800 set = files->close_on_exec->fds_bits[j];
801 if (!set)
802 continue;
803 files->close_on_exec->fds_bits[j] = 0;
804 spin_unlock(&files->file_lock);
805 for ( ; set ; i++,set >>= 1) {
806 if (set & 1) {
807 sys_close(i);
808 }
809 }
810 spin_lock(&files->file_lock);
811
812 }
813 spin_unlock(&files->file_lock);
814 }
815
816 void get_task_comm(char *buf, struct task_struct *tsk)
817 {
818 /* buf must be at least sizeof(tsk->comm) in size */
819 task_lock(tsk);
820 strncpy(buf, tsk->comm, sizeof(tsk->comm));
821 task_unlock(tsk);
822 }
823
824 void set_task_comm(struct task_struct *tsk, char *buf)
825 {
826 task_lock(tsk);
827 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
828 task_unlock(tsk);
829 }
830
831 int flush_old_exec(struct linux_binprm * bprm)
832 {
833 char * name;
834 int i, ch, retval;
835 struct files_struct *files;
836 char tcomm[sizeof(current->comm)];
837
838 /*
839 * Make sure we have a private signal table and that
840 * we are unassociated from the previous thread group.
841 */
842 retval = de_thread(current);
843 if (retval)
844 goto out;
845
846 /*
847 * Make sure we have private file handles. Ask the
848 * fork helper to do the work for us and the exit
849 * helper to do the cleanup of the old one.
850 */
851 files = current->files; /* refcounted so safe to hold */
852 retval = unshare_files();
853 if (retval)
854 goto out;
855 /*
856 * Release all of the old mmap stuff
857 */
858 retval = exec_mmap(bprm->mm);
859 if (retval)
860 goto mmap_failed;
861
862 bprm->mm = NULL; /* We're using it now */
863
864 /* This is the point of no return */
865 steal_locks(files);
866 put_files_struct(files);
867
868 current->sas_ss_sp = current->sas_ss_size = 0;
869
870 if (current->euid == current->uid && current->egid == current->gid)
871 current->mm->dumpable = 1;
872 name = bprm->filename;
873
874 /* Copies the binary name from after last slash */
875 for (i=0; (ch = *(name++)) != '\0';) {
876 if (ch == '/')
877 i = 0; /* overwrite what we wrote */
878 else
879 if (i < (sizeof(tcomm) - 1))
880 tcomm[i++] = ch;
881 }
882 tcomm[i] = '\0';
883 set_task_comm(current, tcomm);
884
885 current->flags &= ~PF_RANDOMIZE;
886 flush_thread();
887
888 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
889 permission(bprm->file->f_dentry->d_inode,MAY_READ, NULL) ||
890 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
891 suid_keys(current);
892 current->mm->dumpable = 0;
893 }
894
895 /* An exec changes our domain. We are no longer part of the thread
896 group */
897
898 current->self_exec_id++;
899
900 flush_signal_handlers(current, 0);
901 flush_old_files(current->files);
902
903 return 0;
904
905 mmap_failed:
906 put_files_struct(current->files);
907 current->files = files;
908 out:
909 return retval;
910 }
911
912 EXPORT_SYMBOL(flush_old_exec);
913
914 /*
915 * Fill the binprm structure from the inode.
916 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
917 */
918 int prepare_binprm(struct linux_binprm *bprm)
919 {
920 int mode;
921 struct inode * inode = bprm->file->f_dentry->d_inode;
922 int retval;
923
924 mode = inode->i_mode;
925 /*
926 * Check execute perms again - if the caller has CAP_DAC_OVERRIDE,
927 * generic_permission lets a non-executable through
928 */
929 if (!(mode & 0111)) /* with at least _one_ execute bit set */
930 return -EACCES;
931 if (bprm->file->f_op == NULL)
932 return -EACCES;
933
934 bprm->e_uid = current->euid;
935 bprm->e_gid = current->egid;
936
937 if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) {
938 /* Set-uid? */
939 if (mode & S_ISUID) {
940 current->personality &= ~PER_CLEAR_ON_SETID;
941 bprm->e_uid = inode->i_uid;
942 }
943
944 /* Set-gid? */
945 /*
946 * If setgid is set but no group execute bit then this
947 * is a candidate for mandatory locking, not a setgid
948 * executable.
949 */
950 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
951 current->personality &= ~PER_CLEAR_ON_SETID;
952 bprm->e_gid = inode->i_gid;
953 }
954 }
955
956 /* fill in binprm security blob */
957 retval = security_bprm_set(bprm);
958 if (retval)
959 return retval;
960
961 memset(bprm->buf,0,BINPRM_BUF_SIZE);
962 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
963 }
964
965 EXPORT_SYMBOL(prepare_binprm);
966
967 static inline int unsafe_exec(struct task_struct *p)
968 {
969 int unsafe = 0;
970 if (p->ptrace & PT_PTRACED) {
971 if (p->ptrace & PT_PTRACE_CAP)
972 unsafe |= LSM_UNSAFE_PTRACE_CAP;
973 else
974 unsafe |= LSM_UNSAFE_PTRACE;
975 }
976 if (atomic_read(&p->fs->count) > 1 ||
977 atomic_read(&p->files->count) > 1 ||
978 atomic_read(&p->sighand->count) > 1)
979 unsafe |= LSM_UNSAFE_SHARE;
980
981 return unsafe;
982 }
983
984 void compute_creds(struct linux_binprm *bprm)
985 {
986 int unsafe;
987
988 if (bprm->e_uid != current->uid)
989 suid_keys(current);
990 exec_keys(current);
991
992 task_lock(current);
993 unsafe = unsafe_exec(current);
994 security_bprm_apply_creds(bprm, unsafe);
995 task_unlock(current);
996 security_bprm_post_apply_creds(bprm);
997 }
998
999 EXPORT_SYMBOL(compute_creds);
1000
1001 void remove_arg_zero(struct linux_binprm *bprm)
1002 {
1003 if (bprm->argc) {
1004 unsigned long offset;
1005 char * kaddr;
1006 struct page *page;
1007
1008 offset = bprm->p % PAGE_SIZE;
1009 goto inside;
1010
1011 while (bprm->p++, *(kaddr+offset++)) {
1012 if (offset != PAGE_SIZE)
1013 continue;
1014 offset = 0;
1015 kunmap_atomic(kaddr, KM_USER0);
1016 inside:
1017 page = bprm->page[bprm->p/PAGE_SIZE];
1018 kaddr = kmap_atomic(page, KM_USER0);
1019 }
1020 kunmap_atomic(kaddr, KM_USER0);
1021 bprm->argc--;
1022 }
1023 }
1024
1025 EXPORT_SYMBOL(remove_arg_zero);
1026
1027 /*
1028 * cycle the list of binary formats handler, until one recognizes the image
1029 */
1030 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1031 {
1032 int try,retval;
1033 struct linux_binfmt *fmt;
1034 #ifdef __alpha__
1035 /* handle /sbin/loader.. */
1036 {
1037 struct exec * eh = (struct exec *) bprm->buf;
1038
1039 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1040 (eh->fh.f_flags & 0x3000) == 0x3000)
1041 {
1042 struct file * file;
1043 unsigned long loader;
1044
1045 allow_write_access(bprm->file);
1046 fput(bprm->file);
1047 bprm->file = NULL;
1048
1049 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1050
1051 file = open_exec("/sbin/loader");
1052 retval = PTR_ERR(file);
1053 if (IS_ERR(file))
1054 return retval;
1055
1056 /* Remember if the application is TASO. */
1057 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1058
1059 bprm->file = file;
1060 bprm->loader = loader;
1061 retval = prepare_binprm(bprm);
1062 if (retval<0)
1063 return retval;
1064 /* should call search_binary_handler recursively here,
1065 but it does not matter */
1066 }
1067 }
1068 #endif
1069 retval = security_bprm_check(bprm);
1070 if (retval)
1071 return retval;
1072
1073 /* kernel module loader fixup */
1074 /* so we don't try to load run modprobe in kernel space. */
1075 set_fs(USER_DS);
1076 retval = -ENOENT;
1077 for (try=0; try<2; try++) {
1078 read_lock(&binfmt_lock);
1079 for (fmt = formats ; fmt ; fmt = fmt->next) {
1080 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1081 if (!fn)
1082 continue;
1083 if (!try_module_get(fmt->module))
1084 continue;
1085 read_unlock(&binfmt_lock);
1086 retval = fn(bprm, regs);
1087 if (retval >= 0) {
1088 put_binfmt(fmt);
1089 allow_write_access(bprm->file);
1090 if (bprm->file)
1091 fput(bprm->file);
1092 bprm->file = NULL;
1093 current->did_exec = 1;
1094 return retval;
1095 }
1096 read_lock(&binfmt_lock);
1097 put_binfmt(fmt);
1098 if (retval != -ENOEXEC || bprm->mm == NULL)
1099 break;
1100 if (!bprm->file) {
1101 read_unlock(&binfmt_lock);
1102 return retval;
1103 }
1104 }
1105 read_unlock(&binfmt_lock);
1106 if (retval != -ENOEXEC || bprm->mm == NULL) {
1107 break;
1108 #ifdef CONFIG_KMOD
1109 }else{
1110 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1111 if (printable(bprm->buf[0]) &&
1112 printable(bprm->buf[1]) &&
1113 printable(bprm->buf[2]) &&
1114 printable(bprm->buf[3]))
1115 break; /* -ENOEXEC */
1116 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1117 #endif
1118 }
1119 }
1120 return retval;
1121 }
1122
1123 EXPORT_SYMBOL(search_binary_handler);
1124
1125 /*
1126 * sys_execve() executes a new program.
1127 */
1128 int do_execve(char * filename,
1129 char __user *__user *argv,
1130 char __user *__user *envp,
1131 struct pt_regs * regs)
1132 {
1133 struct linux_binprm *bprm;
1134 struct file *file;
1135 int retval;
1136 int i;
1137
1138 retval = -ENOMEM;
1139 bprm = kmalloc(sizeof(*bprm), GFP_KERNEL);
1140 if (!bprm)
1141 goto out_ret;
1142 memset(bprm, 0, sizeof(*bprm));
1143
1144 file = open_exec(filename);
1145 retval = PTR_ERR(file);
1146 if (IS_ERR(file))
1147 goto out_kfree;
1148
1149 sched_exec();
1150
1151 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1152
1153 bprm->file = file;
1154 bprm->filename = filename;
1155 bprm->interp = filename;
1156 bprm->mm = mm_alloc();
1157 retval = -ENOMEM;
1158 if (!bprm->mm)
1159 goto out_file;
1160
1161 retval = init_new_context(current, bprm->mm);
1162 if (retval < 0)
1163 goto out_mm;
1164
1165 bprm->argc = count(argv, bprm->p / sizeof(void *));
1166 if ((retval = bprm->argc) < 0)
1167 goto out_mm;
1168
1169 bprm->envc = count(envp, bprm->p / sizeof(void *));
1170 if ((retval = bprm->envc) < 0)
1171 goto out_mm;
1172
1173 retval = security_bprm_alloc(bprm);
1174 if (retval)
1175 goto out;
1176
1177 retval = prepare_binprm(bprm);
1178 if (retval < 0)
1179 goto out;
1180
1181 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1182 if (retval < 0)
1183 goto out;
1184
1185 bprm->exec = bprm->p;
1186 retval = copy_strings(bprm->envc, envp, bprm);
1187 if (retval < 0)
1188 goto out;
1189
1190 retval = copy_strings(bprm->argc, argv, bprm);
1191 if (retval < 0)
1192 goto out;
1193
1194 retval = search_binary_handler(bprm,regs);
1195 if (retval >= 0) {
1196 free_arg_pages(bprm);
1197
1198 /* execve success */
1199 security_bprm_free(bprm);
1200 acct_update_integrals(current);
1201 update_mem_hiwater(current);
1202 kfree(bprm);
1203 return retval;
1204 }
1205
1206 out:
1207 /* Something went wrong, return the inode and free the argument pages*/
1208 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1209 struct page * page = bprm->page[i];
1210 if (page)
1211 __free_page(page);
1212 }
1213
1214 if (bprm->security)
1215 security_bprm_free(bprm);
1216
1217 out_mm:
1218 if (bprm->mm)
1219 mmdrop(bprm->mm);
1220
1221 out_file:
1222 if (bprm->file) {
1223 allow_write_access(bprm->file);
1224 fput(bprm->file);
1225 }
1226
1227 out_kfree:
1228 kfree(bprm);
1229
1230 out_ret:
1231 return retval;
1232 }
1233
1234 int set_binfmt(struct linux_binfmt *new)
1235 {
1236 struct linux_binfmt *old = current->binfmt;
1237
1238 if (new) {
1239 if (!try_module_get(new->module))
1240 return -1;
1241 }
1242 current->binfmt = new;
1243 if (old)
1244 module_put(old->module);
1245 return 0;
1246 }
1247
1248 EXPORT_SYMBOL(set_binfmt);
1249
1250 #define CORENAME_MAX_SIZE 64
1251
1252 /* format_corename will inspect the pattern parameter, and output a
1253 * name into corename, which must have space for at least
1254 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1255 */
1256 static void format_corename(char *corename, const char *pattern, long signr)
1257 {
1258 const char *pat_ptr = pattern;
1259 char *out_ptr = corename;
1260 char *const out_end = corename + CORENAME_MAX_SIZE;
1261 int rc;
1262 int pid_in_pattern = 0;
1263
1264 /* Repeat as long as we have more pattern to process and more output
1265 space */
1266 while (*pat_ptr) {
1267 if (*pat_ptr != '%') {
1268 if (out_ptr == out_end)
1269 goto out;
1270 *out_ptr++ = *pat_ptr++;
1271 } else {
1272 switch (*++pat_ptr) {
1273 case 0:
1274 goto out;
1275 /* Double percent, output one percent */
1276 case '%':
1277 if (out_ptr == out_end)
1278 goto out;
1279 *out_ptr++ = '%';
1280 break;
1281 /* pid */
1282 case 'p':
1283 pid_in_pattern = 1;
1284 rc = snprintf(out_ptr, out_end - out_ptr,
1285 "%d", current->tgid);
1286 if (rc > out_end - out_ptr)
1287 goto out;
1288 out_ptr += rc;
1289 break;
1290 /* uid */
1291 case 'u':
1292 rc = snprintf(out_ptr, out_end - out_ptr,
1293 "%d", current->uid);
1294 if (rc > out_end - out_ptr)
1295 goto out;
1296 out_ptr += rc;
1297 break;
1298 /* gid */
1299 case 'g':
1300 rc = snprintf(out_ptr, out_end - out_ptr,
1301 "%d", current->gid);
1302 if (rc > out_end - out_ptr)
1303 goto out;
1304 out_ptr += rc;
1305 break;
1306 /* signal that caused the coredump */
1307 case 's':
1308 rc = snprintf(out_ptr, out_end - out_ptr,
1309 "%ld", signr);
1310 if (rc > out_end - out_ptr)
1311 goto out;
1312 out_ptr += rc;
1313 break;
1314 /* UNIX time of coredump */
1315 case 't': {
1316 struct timeval tv;
1317 do_gettimeofday(&tv);
1318 rc = snprintf(out_ptr, out_end - out_ptr,
1319 "%lu", tv.tv_sec);
1320 if (rc > out_end - out_ptr)
1321 goto out;
1322 out_ptr += rc;
1323 break;
1324 }
1325 /* hostname */
1326 case 'h':
1327 down_read(&uts_sem);
1328 rc = snprintf(out_ptr, out_end - out_ptr,
1329 "%s", system_utsname.nodename);
1330 up_read(&uts_sem);
1331 if (rc > out_end - out_ptr)
1332 goto out;
1333 out_ptr += rc;
1334 break;
1335 /* executable */
1336 case 'e':
1337 rc = snprintf(out_ptr, out_end - out_ptr,
1338 "%s", current->comm);
1339 if (rc > out_end - out_ptr)
1340 goto out;
1341 out_ptr += rc;
1342 break;
1343 default:
1344 break;
1345 }
1346 ++pat_ptr;
1347 }
1348 }
1349 /* Backward compatibility with core_uses_pid:
1350 *
1351 * If core_pattern does not include a %p (as is the default)
1352 * and core_uses_pid is set, then .%pid will be appended to
1353 * the filename */
1354 if (!pid_in_pattern
1355 && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
1356 rc = snprintf(out_ptr, out_end - out_ptr,
1357 ".%d", current->tgid);
1358 if (rc > out_end - out_ptr)
1359 goto out;
1360 out_ptr += rc;
1361 }
1362 out:
1363 *out_ptr = 0;
1364 }
1365
1366 static void zap_threads (struct mm_struct *mm)
1367 {
1368 struct task_struct *g, *p;
1369 struct task_struct *tsk = current;
1370 struct completion *vfork_done = tsk->vfork_done;
1371 int traced = 0;
1372
1373 /*
1374 * Make sure nobody is waiting for us to release the VM,
1375 * otherwise we can deadlock when we wait on each other
1376 */
1377 if (vfork_done) {
1378 tsk->vfork_done = NULL;
1379 complete(vfork_done);
1380 }
1381
1382 read_lock(&tasklist_lock);
1383 do_each_thread(g,p)
1384 if (mm == p->mm && p != tsk) {
1385 force_sig_specific(SIGKILL, p);
1386 mm->core_waiters++;
1387 if (unlikely(p->ptrace) &&
1388 unlikely(p->parent->mm == mm))
1389 traced = 1;
1390 }
1391 while_each_thread(g,p);
1392
1393 read_unlock(&tasklist_lock);
1394
1395 if (unlikely(traced)) {
1396 /*
1397 * We are zapping a thread and the thread it ptraces.
1398 * If the tracee went into a ptrace stop for exit tracing,
1399 * we could deadlock since the tracer is waiting for this
1400 * coredump to finish. Detach them so they can both die.
1401 */
1402 write_lock_irq(&tasklist_lock);
1403 do_each_thread(g,p) {
1404 if (mm == p->mm && p != tsk &&
1405 p->ptrace && p->parent->mm == mm) {
1406 __ptrace_unlink(p);
1407 }
1408 } while_each_thread(g,p);
1409 write_unlock_irq(&tasklist_lock);
1410 }
1411 }
1412
1413 static void coredump_wait(struct mm_struct *mm)
1414 {
1415 DECLARE_COMPLETION(startup_done);
1416
1417 mm->core_waiters++; /* let other threads block */
1418 mm->core_startup_done = &startup_done;
1419
1420 /* give other threads a chance to run: */
1421 yield();
1422
1423 zap_threads(mm);
1424 if (--mm->core_waiters) {
1425 up_write(&mm->mmap_sem);
1426 wait_for_completion(&startup_done);
1427 } else
1428 up_write(&mm->mmap_sem);
1429 BUG_ON(mm->core_waiters);
1430 }
1431
1432 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1433 {
1434 char corename[CORENAME_MAX_SIZE + 1];
1435 struct mm_struct *mm = current->mm;
1436 struct linux_binfmt * binfmt;
1437 struct inode * inode;
1438 struct file * file;
1439 int retval = 0;
1440
1441 binfmt = current->binfmt;
1442 if (!binfmt || !binfmt->core_dump)
1443 goto fail;
1444 down_write(&mm->mmap_sem);
1445 if (!mm->dumpable) {
1446 up_write(&mm->mmap_sem);
1447 goto fail;
1448 }
1449 mm->dumpable = 0;
1450 init_completion(&mm->core_done);
1451 spin_lock_irq(&current->sighand->siglock);
1452 current->signal->flags = SIGNAL_GROUP_EXIT;
1453 current->signal->group_exit_code = exit_code;
1454 spin_unlock_irq(&current->sighand->siglock);
1455 coredump_wait(mm);
1456
1457 /*
1458 * Clear any false indication of pending signals that might
1459 * be seen by the filesystem code called to write the core file.
1460 */
1461 current->signal->group_stop_count = 0;
1462 clear_thread_flag(TIF_SIGPENDING);
1463
1464 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1465 goto fail_unlock;
1466
1467 /*
1468 * lock_kernel() because format_corename() is controlled by sysctl, which
1469 * uses lock_kernel()
1470 */
1471 lock_kernel();
1472 format_corename(corename, core_pattern, signr);
1473 unlock_kernel();
1474 file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE, 0600);
1475 if (IS_ERR(file))
1476 goto fail_unlock;
1477 inode = file->f_dentry->d_inode;
1478 if (inode->i_nlink > 1)
1479 goto close_fail; /* multiple links - don't dump */
1480 if (d_unhashed(file->f_dentry))
1481 goto close_fail;
1482
1483 if (!S_ISREG(inode->i_mode))
1484 goto close_fail;
1485 if (!file->f_op)
1486 goto close_fail;
1487 if (!file->f_op->write)
1488 goto close_fail;
1489 if (do_truncate(file->f_dentry, 0) != 0)
1490 goto close_fail;
1491
1492 retval = binfmt->core_dump(signr, regs, file);
1493
1494 if (retval)
1495 current->signal->group_exit_code |= 0x80;
1496 close_fail:
1497 filp_close(file, NULL);
1498 fail_unlock:
1499 complete_all(&mm->core_done);
1500 fail:
1501 return retval;
1502 }