Magellan Linux

Contents of /alx-src/tags/kernel26-2.6.12-alx-r9/kernel/cpuset.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 630 - (show annotations) (download)
Wed Mar 4 11:03:09 2009 UTC (15 years, 3 months ago) by niro
File MIME type: text/plain
File size: 41060 byte(s)
Tag kernel26-2.6.12-alx-r9
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004 Silicon Graphics, Inc.
8 *
9 * Portions derived from Patrick Mochel's sysfs code.
10 * sysfs is Copyright (c) 2001-3 Patrick Mochel
11 * Portions Copyright (c) 2004 Silicon Graphics, Inc.
12 *
13 * 2003-10-10 Written by Simon Derr <simon.derr@bull.net>
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson <pj@sgi.com>
16 *
17 * This file is subject to the terms and conditions of the GNU General Public
18 * License. See the file COPYING in the main directory of the Linux
19 * distribution for more details.
20 */
21
22 #include <linux/config.h>
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
29 #include <linux/fs.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/mount.h>
38 #include <linux/namei.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/sched.h>
42 #include <linux/seq_file.h>
43 #include <linux/slab.h>
44 #include <linux/smp_lock.h>
45 #include <linux/spinlock.h>
46 #include <linux/stat.h>
47 #include <linux/string.h>
48 #include <linux/time.h>
49 #include <linux/backing-dev.h>
50 #include <linux/sort.h>
51
52 #include <asm/uaccess.h>
53 #include <asm/atomic.h>
54 #include <asm/semaphore.h>
55
56 #define CPUSET_SUPER_MAGIC 0x27e0eb
57
58 struct cpuset {
59 unsigned long flags; /* "unsigned long" so bitops work */
60 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
61 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
62
63 atomic_t count; /* count tasks using this cpuset */
64
65 /*
66 * We link our 'sibling' struct into our parents 'children'.
67 * Our children link their 'sibling' into our 'children'.
68 */
69 struct list_head sibling; /* my parents children */
70 struct list_head children; /* my children */
71
72 struct cpuset *parent; /* my parent */
73 struct dentry *dentry; /* cpuset fs entry */
74
75 /*
76 * Copy of global cpuset_mems_generation as of the most
77 * recent time this cpuset changed its mems_allowed.
78 */
79 int mems_generation;
80 };
81
82 /* bits in struct cpuset flags field */
83 typedef enum {
84 CS_CPU_EXCLUSIVE,
85 CS_MEM_EXCLUSIVE,
86 CS_REMOVED,
87 CS_NOTIFY_ON_RELEASE
88 } cpuset_flagbits_t;
89
90 /* convenient tests for these bits */
91 static inline int is_cpu_exclusive(const struct cpuset *cs)
92 {
93 return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
94 }
95
96 static inline int is_mem_exclusive(const struct cpuset *cs)
97 {
98 return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
99 }
100
101 static inline int is_removed(const struct cpuset *cs)
102 {
103 return !!test_bit(CS_REMOVED, &cs->flags);
104 }
105
106 static inline int notify_on_release(const struct cpuset *cs)
107 {
108 return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
109 }
110
111 /*
112 * Increment this atomic integer everytime any cpuset changes its
113 * mems_allowed value. Users of cpusets can track this generation
114 * number, and avoid having to lock and reload mems_allowed unless
115 * the cpuset they're using changes generation.
116 *
117 * A single, global generation is needed because attach_task() could
118 * reattach a task to a different cpuset, which must not have its
119 * generation numbers aliased with those of that tasks previous cpuset.
120 *
121 * Generations are needed for mems_allowed because one task cannot
122 * modify anothers memory placement. So we must enable every task,
123 * on every visit to __alloc_pages(), to efficiently check whether
124 * its current->cpuset->mems_allowed has changed, requiring an update
125 * of its current->mems_allowed.
126 */
127 static atomic_t cpuset_mems_generation = ATOMIC_INIT(1);
128
129 static struct cpuset top_cpuset = {
130 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
131 .cpus_allowed = CPU_MASK_ALL,
132 .mems_allowed = NODE_MASK_ALL,
133 .count = ATOMIC_INIT(0),
134 .sibling = LIST_HEAD_INIT(top_cpuset.sibling),
135 .children = LIST_HEAD_INIT(top_cpuset.children),
136 .parent = NULL,
137 .dentry = NULL,
138 .mems_generation = 0,
139 };
140
141 static struct vfsmount *cpuset_mount;
142 static struct super_block *cpuset_sb = NULL;
143
144 /*
145 * cpuset_sem should be held by anyone who is depending on the children
146 * or sibling lists of any cpuset, or performing non-atomic operations
147 * on the flags or *_allowed values of a cpuset, such as raising the
148 * CS_REMOVED flag bit iff it is not already raised, or reading and
149 * conditionally modifying the *_allowed values. One kernel global
150 * cpuset semaphore should be sufficient - these things don't change
151 * that much.
152 *
153 * The code that modifies cpusets holds cpuset_sem across the entire
154 * operation, from cpuset_common_file_write() down, single threading
155 * all cpuset modifications (except for counter manipulations from
156 * fork and exit) across the system. This presumes that cpuset
157 * modifications are rare - better kept simple and safe, even if slow.
158 *
159 * The code that reads cpusets, such as in cpuset_common_file_read()
160 * and below, only holds cpuset_sem across small pieces of code, such
161 * as when reading out possibly multi-word cpumasks and nodemasks, as
162 * the risks are less, and the desire for performance a little greater.
163 * The proc_cpuset_show() routine needs to hold cpuset_sem to insure
164 * that no cs->dentry is NULL, as it walks up the cpuset tree to root.
165 *
166 * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't
167 * (usually) grab cpuset_sem. These are the two most performance
168 * critical pieces of code here. The exception occurs on exit(),
169 * when a task in a notify_on_release cpuset exits. Then cpuset_sem
170 * is taken, and if the cpuset count is zero, a usermode call made
171 * to /sbin/cpuset_release_agent with the name of the cpuset (path
172 * relative to the root of cpuset file system) as the argument.
173 *
174 * A cpuset can only be deleted if both its 'count' of using tasks is
175 * zero, and its list of 'children' cpusets is empty. Since all tasks
176 * in the system use _some_ cpuset, and since there is always at least
177 * one task in the system (init, pid == 1), therefore, top_cpuset
178 * always has either children cpusets and/or using tasks. So no need
179 * for any special hack to ensure that top_cpuset cannot be deleted.
180 */
181
182 static DECLARE_MUTEX(cpuset_sem);
183
184 /*
185 * A couple of forward declarations required, due to cyclic reference loop:
186 * cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file
187 * -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir.
188 */
189
190 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode);
191 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry);
192
193 static struct backing_dev_info cpuset_backing_dev_info = {
194 .ra_pages = 0, /* No readahead */
195 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
196 };
197
198 static struct inode *cpuset_new_inode(mode_t mode)
199 {
200 struct inode *inode = new_inode(cpuset_sb);
201
202 if (inode) {
203 inode->i_mode = mode;
204 inode->i_uid = current->fsuid;
205 inode->i_gid = current->fsgid;
206 inode->i_blksize = PAGE_CACHE_SIZE;
207 inode->i_blocks = 0;
208 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
209 inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info;
210 }
211 return inode;
212 }
213
214 static void cpuset_diput(struct dentry *dentry, struct inode *inode)
215 {
216 /* is dentry a directory ? if so, kfree() associated cpuset */
217 if (S_ISDIR(inode->i_mode)) {
218 struct cpuset *cs = dentry->d_fsdata;
219 BUG_ON(!(is_removed(cs)));
220 kfree(cs);
221 }
222 iput(inode);
223 }
224
225 static struct dentry_operations cpuset_dops = {
226 .d_iput = cpuset_diput,
227 };
228
229 static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name)
230 {
231 struct qstr qstr;
232 struct dentry *d;
233
234 qstr.name = name;
235 qstr.len = strlen(name);
236 qstr.hash = full_name_hash(name, qstr.len);
237 d = lookup_hash(&qstr, parent);
238 if (!IS_ERR(d))
239 d->d_op = &cpuset_dops;
240 return d;
241 }
242
243 static void remove_dir(struct dentry *d)
244 {
245 struct dentry *parent = dget(d->d_parent);
246
247 d_delete(d);
248 simple_rmdir(parent->d_inode, d);
249 dput(parent);
250 }
251
252 /*
253 * NOTE : the dentry must have been dget()'ed
254 */
255 static void cpuset_d_remove_dir(struct dentry *dentry)
256 {
257 struct list_head *node;
258
259 spin_lock(&dcache_lock);
260 node = dentry->d_subdirs.next;
261 while (node != &dentry->d_subdirs) {
262 struct dentry *d = list_entry(node, struct dentry, d_child);
263 list_del_init(node);
264 if (d->d_inode) {
265 d = dget_locked(d);
266 spin_unlock(&dcache_lock);
267 d_delete(d);
268 simple_unlink(dentry->d_inode, d);
269 dput(d);
270 spin_lock(&dcache_lock);
271 }
272 node = dentry->d_subdirs.next;
273 }
274 list_del_init(&dentry->d_child);
275 spin_unlock(&dcache_lock);
276 remove_dir(dentry);
277 }
278
279 static struct super_operations cpuset_ops = {
280 .statfs = simple_statfs,
281 .drop_inode = generic_delete_inode,
282 };
283
284 static int cpuset_fill_super(struct super_block *sb, void *unused_data,
285 int unused_silent)
286 {
287 struct inode *inode;
288 struct dentry *root;
289
290 sb->s_blocksize = PAGE_CACHE_SIZE;
291 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
292 sb->s_magic = CPUSET_SUPER_MAGIC;
293 sb->s_op = &cpuset_ops;
294 cpuset_sb = sb;
295
296 inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR);
297 if (inode) {
298 inode->i_op = &simple_dir_inode_operations;
299 inode->i_fop = &simple_dir_operations;
300 /* directories start off with i_nlink == 2 (for "." entry) */
301 inode->i_nlink++;
302 } else {
303 return -ENOMEM;
304 }
305
306 root = d_alloc_root(inode);
307 if (!root) {
308 iput(inode);
309 return -ENOMEM;
310 }
311 sb->s_root = root;
312 return 0;
313 }
314
315 static struct super_block *cpuset_get_sb(struct file_system_type *fs_type,
316 int flags, const char *unused_dev_name,
317 void *data)
318 {
319 return get_sb_single(fs_type, flags, data, cpuset_fill_super);
320 }
321
322 static struct file_system_type cpuset_fs_type = {
323 .name = "cpuset",
324 .get_sb = cpuset_get_sb,
325 .kill_sb = kill_litter_super,
326 };
327
328 /* struct cftype:
329 *
330 * The files in the cpuset filesystem mostly have a very simple read/write
331 * handling, some common function will take care of it. Nevertheless some cases
332 * (read tasks) are special and therefore I define this structure for every
333 * kind of file.
334 *
335 *
336 * When reading/writing to a file:
337 * - the cpuset to use in file->f_dentry->d_parent->d_fsdata
338 * - the 'cftype' of the file is file->f_dentry->d_fsdata
339 */
340
341 struct cftype {
342 char *name;
343 int private;
344 int (*open) (struct inode *inode, struct file *file);
345 ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes,
346 loff_t *ppos);
347 int (*write) (struct file *file, const char __user *buf, size_t nbytes,
348 loff_t *ppos);
349 int (*release) (struct inode *inode, struct file *file);
350 };
351
352 static inline struct cpuset *__d_cs(struct dentry *dentry)
353 {
354 return dentry->d_fsdata;
355 }
356
357 static inline struct cftype *__d_cft(struct dentry *dentry)
358 {
359 return dentry->d_fsdata;
360 }
361
362 /*
363 * Call with cpuset_sem held. Writes path of cpuset into buf.
364 * Returns 0 on success, -errno on error.
365 */
366
367 static int cpuset_path(const struct cpuset *cs, char *buf, int buflen)
368 {
369 char *start;
370
371 start = buf + buflen;
372
373 *--start = '\0';
374 for (;;) {
375 int len = cs->dentry->d_name.len;
376 if ((start -= len) < buf)
377 return -ENAMETOOLONG;
378 memcpy(start, cs->dentry->d_name.name, len);
379 cs = cs->parent;
380 if (!cs)
381 break;
382 if (!cs->parent)
383 continue;
384 if (--start < buf)
385 return -ENAMETOOLONG;
386 *start = '/';
387 }
388 memmove(buf, start, buf + buflen - start);
389 return 0;
390 }
391
392 /*
393 * Notify userspace when a cpuset is released, by running
394 * /sbin/cpuset_release_agent with the name of the cpuset (path
395 * relative to the root of cpuset file system) as the argument.
396 *
397 * Most likely, this user command will try to rmdir this cpuset.
398 *
399 * This races with the possibility that some other task will be
400 * attached to this cpuset before it is removed, or that some other
401 * user task will 'mkdir' a child cpuset of this cpuset. That's ok.
402 * The presumed 'rmdir' will fail quietly if this cpuset is no longer
403 * unused, and this cpuset will be reprieved from its death sentence,
404 * to continue to serve a useful existence. Next time it's released,
405 * we will get notified again, if it still has 'notify_on_release' set.
406 *
407 * Note final arg to call_usermodehelper() is 0 - that means
408 * don't wait. Since we are holding the global cpuset_sem here,
409 * and we are asking another thread (started from keventd) to rmdir a
410 * cpuset, we can't wait - or we'd deadlock with the removing thread
411 * on cpuset_sem.
412 */
413
414 static int cpuset_release_agent(char *cpuset_str)
415 {
416 char *argv[3], *envp[3];
417 int i;
418
419 i = 0;
420 argv[i++] = "/sbin/cpuset_release_agent";
421 argv[i++] = cpuset_str;
422 argv[i] = NULL;
423
424 i = 0;
425 /* minimal command environment */
426 envp[i++] = "HOME=/";
427 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
428 envp[i] = NULL;
429
430 return call_usermodehelper(argv[0], argv, envp, 0);
431 }
432
433 /*
434 * Either cs->count of using tasks transitioned to zero, or the
435 * cs->children list of child cpusets just became empty. If this
436 * cs is notify_on_release() and now both the user count is zero and
437 * the list of children is empty, send notice to user land.
438 */
439
440 static void check_for_release(struct cpuset *cs)
441 {
442 if (notify_on_release(cs) && atomic_read(&cs->count) == 0 &&
443 list_empty(&cs->children)) {
444 char *buf;
445
446 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
447 if (!buf)
448 return;
449 if (cpuset_path(cs, buf, PAGE_SIZE) < 0)
450 goto out;
451 cpuset_release_agent(buf);
452 out:
453 kfree(buf);
454 }
455 }
456
457 /*
458 * Return in *pmask the portion of a cpusets's cpus_allowed that
459 * are online. If none are online, walk up the cpuset hierarchy
460 * until we find one that does have some online cpus. If we get
461 * all the way to the top and still haven't found any online cpus,
462 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
463 * task, return cpu_online_map.
464 *
465 * One way or another, we guarantee to return some non-empty subset
466 * of cpu_online_map.
467 *
468 * Call with cpuset_sem held.
469 */
470
471 static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
472 {
473 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
474 cs = cs->parent;
475 if (cs)
476 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
477 else
478 *pmask = cpu_online_map;
479 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
480 }
481
482 /*
483 * Return in *pmask the portion of a cpusets's mems_allowed that
484 * are online. If none are online, walk up the cpuset hierarchy
485 * until we find one that does have some online mems. If we get
486 * all the way to the top and still haven't found any online mems,
487 * return node_online_map.
488 *
489 * One way or another, we guarantee to return some non-empty subset
490 * of node_online_map.
491 *
492 * Call with cpuset_sem held.
493 */
494
495 static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
496 {
497 while (cs && !nodes_intersects(cs->mems_allowed, node_online_map))
498 cs = cs->parent;
499 if (cs)
500 nodes_and(*pmask, cs->mems_allowed, node_online_map);
501 else
502 *pmask = node_online_map;
503 BUG_ON(!nodes_intersects(*pmask, node_online_map));
504 }
505
506 /*
507 * Refresh current tasks mems_allowed and mems_generation from
508 * current tasks cpuset. Call with cpuset_sem held.
509 *
510 * Be sure to call refresh_mems() on any cpuset operation which
511 * (1) holds cpuset_sem, and (2) might possibly alloc memory.
512 * Call after obtaining cpuset_sem lock, before any possible
513 * allocation. Otherwise one risks trying to allocate memory
514 * while the task cpuset_mems_generation is not the same as
515 * the mems_generation in its cpuset, which would deadlock on
516 * cpuset_sem in cpuset_update_current_mems_allowed().
517 *
518 * Since we hold cpuset_sem, once refresh_mems() is called, the
519 * test (current->cpuset_mems_generation != cs->mems_generation)
520 * in cpuset_update_current_mems_allowed() will remain false,
521 * until we drop cpuset_sem. Anyone else who would change our
522 * cpusets mems_generation needs to lock cpuset_sem first.
523 */
524
525 static void refresh_mems(void)
526 {
527 struct cpuset *cs = current->cpuset;
528
529 if (current->cpuset_mems_generation != cs->mems_generation) {
530 guarantee_online_mems(cs, &current->mems_allowed);
531 current->cpuset_mems_generation = cs->mems_generation;
532 }
533 }
534
535 /*
536 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
537 *
538 * One cpuset is a subset of another if all its allowed CPUs and
539 * Memory Nodes are a subset of the other, and its exclusive flags
540 * are only set if the other's are set.
541 */
542
543 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
544 {
545 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
546 nodes_subset(p->mems_allowed, q->mems_allowed) &&
547 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
548 is_mem_exclusive(p) <= is_mem_exclusive(q);
549 }
550
551 /*
552 * validate_change() - Used to validate that any proposed cpuset change
553 * follows the structural rules for cpusets.
554 *
555 * If we replaced the flag and mask values of the current cpuset
556 * (cur) with those values in the trial cpuset (trial), would
557 * our various subset and exclusive rules still be valid? Presumes
558 * cpuset_sem held.
559 *
560 * 'cur' is the address of an actual, in-use cpuset. Operations
561 * such as list traversal that depend on the actual address of the
562 * cpuset in the list must use cur below, not trial.
563 *
564 * 'trial' is the address of bulk structure copy of cur, with
565 * perhaps one or more of the fields cpus_allowed, mems_allowed,
566 * or flags changed to new, trial values.
567 *
568 * Return 0 if valid, -errno if not.
569 */
570
571 static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
572 {
573 struct cpuset *c, *par;
574
575 /* Each of our child cpusets must be a subset of us */
576 list_for_each_entry(c, &cur->children, sibling) {
577 if (!is_cpuset_subset(c, trial))
578 return -EBUSY;
579 }
580
581 /* Remaining checks don't apply to root cpuset */
582 if ((par = cur->parent) == NULL)
583 return 0;
584
585 /* We must be a subset of our parent cpuset */
586 if (!is_cpuset_subset(trial, par))
587 return -EACCES;
588
589 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
590 list_for_each_entry(c, &par->children, sibling) {
591 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
592 c != cur &&
593 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
594 return -EINVAL;
595 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
596 c != cur &&
597 nodes_intersects(trial->mems_allowed, c->mems_allowed))
598 return -EINVAL;
599 }
600
601 return 0;
602 }
603
604 static int update_cpumask(struct cpuset *cs, char *buf)
605 {
606 struct cpuset trialcs;
607 int retval;
608
609 trialcs = *cs;
610 retval = cpulist_parse(buf, trialcs.cpus_allowed);
611 if (retval < 0)
612 return retval;
613 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
614 if (cpus_empty(trialcs.cpus_allowed))
615 return -ENOSPC;
616 retval = validate_change(cs, &trialcs);
617 if (retval == 0)
618 cs->cpus_allowed = trialcs.cpus_allowed;
619 return retval;
620 }
621
622 static int update_nodemask(struct cpuset *cs, char *buf)
623 {
624 struct cpuset trialcs;
625 int retval;
626
627 trialcs = *cs;
628 retval = nodelist_parse(buf, trialcs.mems_allowed);
629 if (retval < 0)
630 return retval;
631 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map);
632 if (nodes_empty(trialcs.mems_allowed))
633 return -ENOSPC;
634 retval = validate_change(cs, &trialcs);
635 if (retval == 0) {
636 cs->mems_allowed = trialcs.mems_allowed;
637 atomic_inc(&cpuset_mems_generation);
638 cs->mems_generation = atomic_read(&cpuset_mems_generation);
639 }
640 return retval;
641 }
642
643 /*
644 * update_flag - read a 0 or a 1 in a file and update associated flag
645 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
646 * CS_NOTIFY_ON_RELEASE)
647 * cs: the cpuset to update
648 * buf: the buffer where we read the 0 or 1
649 */
650
651 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
652 {
653 int turning_on;
654 struct cpuset trialcs;
655 int err;
656
657 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
658
659 trialcs = *cs;
660 if (turning_on)
661 set_bit(bit, &trialcs.flags);
662 else
663 clear_bit(bit, &trialcs.flags);
664
665 err = validate_change(cs, &trialcs);
666 if (err == 0) {
667 if (turning_on)
668 set_bit(bit, &cs->flags);
669 else
670 clear_bit(bit, &cs->flags);
671 }
672 return err;
673 }
674
675 static int attach_task(struct cpuset *cs, char *buf)
676 {
677 pid_t pid;
678 struct task_struct *tsk;
679 struct cpuset *oldcs;
680 cpumask_t cpus;
681
682 if (sscanf(buf, "%d", &pid) != 1)
683 return -EIO;
684 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
685 return -ENOSPC;
686
687 if (pid) {
688 read_lock(&tasklist_lock);
689
690 tsk = find_task_by_pid(pid);
691 if (!tsk) {
692 read_unlock(&tasklist_lock);
693 return -ESRCH;
694 }
695
696 get_task_struct(tsk);
697 read_unlock(&tasklist_lock);
698
699 if ((current->euid) && (current->euid != tsk->uid)
700 && (current->euid != tsk->suid)) {
701 put_task_struct(tsk);
702 return -EACCES;
703 }
704 } else {
705 tsk = current;
706 get_task_struct(tsk);
707 }
708
709 task_lock(tsk);
710 oldcs = tsk->cpuset;
711 if (!oldcs) {
712 task_unlock(tsk);
713 put_task_struct(tsk);
714 return -ESRCH;
715 }
716 atomic_inc(&cs->count);
717 tsk->cpuset = cs;
718 task_unlock(tsk);
719
720 guarantee_online_cpus(cs, &cpus);
721 set_cpus_allowed(tsk, cpus);
722
723 put_task_struct(tsk);
724 if (atomic_dec_and_test(&oldcs->count))
725 check_for_release(oldcs);
726 return 0;
727 }
728
729 /* The various types of files and directories in a cpuset file system */
730
731 typedef enum {
732 FILE_ROOT,
733 FILE_DIR,
734 FILE_CPULIST,
735 FILE_MEMLIST,
736 FILE_CPU_EXCLUSIVE,
737 FILE_MEM_EXCLUSIVE,
738 FILE_NOTIFY_ON_RELEASE,
739 FILE_TASKLIST,
740 } cpuset_filetype_t;
741
742 static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf,
743 size_t nbytes, loff_t *unused_ppos)
744 {
745 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
746 struct cftype *cft = __d_cft(file->f_dentry);
747 cpuset_filetype_t type = cft->private;
748 char *buffer;
749 int retval = 0;
750
751 /* Crude upper limit on largest legitimate cpulist user might write. */
752 if (nbytes > 100 + 6 * NR_CPUS)
753 return -E2BIG;
754
755 /* +1 for nul-terminator */
756 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
757 return -ENOMEM;
758
759 if (copy_from_user(buffer, userbuf, nbytes)) {
760 retval = -EFAULT;
761 goto out1;
762 }
763 buffer[nbytes] = 0; /* nul-terminate */
764
765 down(&cpuset_sem);
766
767 if (is_removed(cs)) {
768 retval = -ENODEV;
769 goto out2;
770 }
771
772 switch (type) {
773 case FILE_CPULIST:
774 retval = update_cpumask(cs, buffer);
775 break;
776 case FILE_MEMLIST:
777 retval = update_nodemask(cs, buffer);
778 break;
779 case FILE_CPU_EXCLUSIVE:
780 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
781 break;
782 case FILE_MEM_EXCLUSIVE:
783 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
784 break;
785 case FILE_NOTIFY_ON_RELEASE:
786 retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer);
787 break;
788 case FILE_TASKLIST:
789 retval = attach_task(cs, buffer);
790 break;
791 default:
792 retval = -EINVAL;
793 goto out2;
794 }
795
796 if (retval == 0)
797 retval = nbytes;
798 out2:
799 up(&cpuset_sem);
800 out1:
801 kfree(buffer);
802 return retval;
803 }
804
805 static ssize_t cpuset_file_write(struct file *file, const char __user *buf,
806 size_t nbytes, loff_t *ppos)
807 {
808 ssize_t retval = 0;
809 struct cftype *cft = __d_cft(file->f_dentry);
810 if (!cft)
811 return -ENODEV;
812
813 /* special function ? */
814 if (cft->write)
815 retval = cft->write(file, buf, nbytes, ppos);
816 else
817 retval = cpuset_common_file_write(file, buf, nbytes, ppos);
818
819 return retval;
820 }
821
822 /*
823 * These ascii lists should be read in a single call, by using a user
824 * buffer large enough to hold the entire map. If read in smaller
825 * chunks, there is no guarantee of atomicity. Since the display format
826 * used, list of ranges of sequential numbers, is variable length,
827 * and since these maps can change value dynamically, one could read
828 * gibberish by doing partial reads while a list was changing.
829 * A single large read to a buffer that crosses a page boundary is
830 * ok, because the result being copied to user land is not recomputed
831 * across a page fault.
832 */
833
834 static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
835 {
836 cpumask_t mask;
837
838 down(&cpuset_sem);
839 mask = cs->cpus_allowed;
840 up(&cpuset_sem);
841
842 return cpulist_scnprintf(page, PAGE_SIZE, mask);
843 }
844
845 static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
846 {
847 nodemask_t mask;
848
849 down(&cpuset_sem);
850 mask = cs->mems_allowed;
851 up(&cpuset_sem);
852
853 return nodelist_scnprintf(page, PAGE_SIZE, mask);
854 }
855
856 static ssize_t cpuset_common_file_read(struct file *file, char __user *buf,
857 size_t nbytes, loff_t *ppos)
858 {
859 struct cftype *cft = __d_cft(file->f_dentry);
860 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
861 cpuset_filetype_t type = cft->private;
862 char *page;
863 ssize_t retval = 0;
864 char *s;
865 char *start;
866 size_t n;
867
868 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
869 return -ENOMEM;
870
871 s = page;
872
873 switch (type) {
874 case FILE_CPULIST:
875 s += cpuset_sprintf_cpulist(s, cs);
876 break;
877 case FILE_MEMLIST:
878 s += cpuset_sprintf_memlist(s, cs);
879 break;
880 case FILE_CPU_EXCLUSIVE:
881 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
882 break;
883 case FILE_MEM_EXCLUSIVE:
884 *s++ = is_mem_exclusive(cs) ? '1' : '0';
885 break;
886 case FILE_NOTIFY_ON_RELEASE:
887 *s++ = notify_on_release(cs) ? '1' : '0';
888 break;
889 default:
890 retval = -EINVAL;
891 goto out;
892 }
893 *s++ = '\n';
894 *s = '\0';
895
896 start = page + *ppos;
897 n = s - start;
898 retval = n - copy_to_user(buf, start, min(n, nbytes));
899 *ppos += retval;
900 out:
901 free_page((unsigned long)page);
902 return retval;
903 }
904
905 static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes,
906 loff_t *ppos)
907 {
908 ssize_t retval = 0;
909 struct cftype *cft = __d_cft(file->f_dentry);
910 if (!cft)
911 return -ENODEV;
912
913 /* special function ? */
914 if (cft->read)
915 retval = cft->read(file, buf, nbytes, ppos);
916 else
917 retval = cpuset_common_file_read(file, buf, nbytes, ppos);
918
919 return retval;
920 }
921
922 static int cpuset_file_open(struct inode *inode, struct file *file)
923 {
924 int err;
925 struct cftype *cft;
926
927 err = generic_file_open(inode, file);
928 if (err)
929 return err;
930
931 cft = __d_cft(file->f_dentry);
932 if (!cft)
933 return -ENODEV;
934 if (cft->open)
935 err = cft->open(inode, file);
936 else
937 err = 0;
938
939 return err;
940 }
941
942 static int cpuset_file_release(struct inode *inode, struct file *file)
943 {
944 struct cftype *cft = __d_cft(file->f_dentry);
945 if (cft->release)
946 return cft->release(inode, file);
947 return 0;
948 }
949
950 static struct file_operations cpuset_file_operations = {
951 .read = cpuset_file_read,
952 .write = cpuset_file_write,
953 .llseek = generic_file_llseek,
954 .open = cpuset_file_open,
955 .release = cpuset_file_release,
956 };
957
958 static struct inode_operations cpuset_dir_inode_operations = {
959 .lookup = simple_lookup,
960 .mkdir = cpuset_mkdir,
961 .rmdir = cpuset_rmdir,
962 };
963
964 static int cpuset_create_file(struct dentry *dentry, int mode)
965 {
966 struct inode *inode;
967
968 if (!dentry)
969 return -ENOENT;
970 if (dentry->d_inode)
971 return -EEXIST;
972
973 inode = cpuset_new_inode(mode);
974 if (!inode)
975 return -ENOMEM;
976
977 if (S_ISDIR(mode)) {
978 inode->i_op = &cpuset_dir_inode_operations;
979 inode->i_fop = &simple_dir_operations;
980
981 /* start off with i_nlink == 2 (for "." entry) */
982 inode->i_nlink++;
983 } else if (S_ISREG(mode)) {
984 inode->i_size = 0;
985 inode->i_fop = &cpuset_file_operations;
986 }
987
988 d_instantiate(dentry, inode);
989 dget(dentry); /* Extra count - pin the dentry in core */
990 return 0;
991 }
992
993 /*
994 * cpuset_create_dir - create a directory for an object.
995 * cs: the cpuset we create the directory for.
996 * It must have a valid ->parent field
997 * And we are going to fill its ->dentry field.
998 * name: The name to give to the cpuset directory. Will be copied.
999 * mode: mode to set on new directory.
1000 */
1001
1002 static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode)
1003 {
1004 struct dentry *dentry = NULL;
1005 struct dentry *parent;
1006 int error = 0;
1007
1008 parent = cs->parent->dentry;
1009 dentry = cpuset_get_dentry(parent, name);
1010 if (IS_ERR(dentry))
1011 return PTR_ERR(dentry);
1012 error = cpuset_create_file(dentry, S_IFDIR | mode);
1013 if (!error) {
1014 dentry->d_fsdata = cs;
1015 parent->d_inode->i_nlink++;
1016 cs->dentry = dentry;
1017 }
1018 dput(dentry);
1019
1020 return error;
1021 }
1022
1023 static int cpuset_add_file(struct dentry *dir, const struct cftype *cft)
1024 {
1025 struct dentry *dentry;
1026 int error;
1027
1028 down(&dir->d_inode->i_sem);
1029 dentry = cpuset_get_dentry(dir, cft->name);
1030 if (!IS_ERR(dentry)) {
1031 error = cpuset_create_file(dentry, 0644 | S_IFREG);
1032 if (!error)
1033 dentry->d_fsdata = (void *)cft;
1034 dput(dentry);
1035 } else
1036 error = PTR_ERR(dentry);
1037 up(&dir->d_inode->i_sem);
1038 return error;
1039 }
1040
1041 /*
1042 * Stuff for reading the 'tasks' file.
1043 *
1044 * Reading this file can return large amounts of data if a cpuset has
1045 * *lots* of attached tasks. So it may need several calls to read(),
1046 * but we cannot guarantee that the information we produce is correct
1047 * unless we produce it entirely atomically.
1048 *
1049 * Upon tasks file open(), a struct ctr_struct is allocated, that
1050 * will have a pointer to an array (also allocated here). The struct
1051 * ctr_struct * is stored in file->private_data. Its resources will
1052 * be freed by release() when the file is closed. The array is used
1053 * to sprintf the PIDs and then used by read().
1054 */
1055
1056 /* cpusets_tasks_read array */
1057
1058 struct ctr_struct {
1059 char *buf;
1060 int bufsz;
1061 };
1062
1063 /*
1064 * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'.
1065 * Return actual number of pids loaded.
1066 */
1067 static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs)
1068 {
1069 int n = 0;
1070 struct task_struct *g, *p;
1071
1072 read_lock(&tasklist_lock);
1073
1074 do_each_thread(g, p) {
1075 if (p->cpuset == cs) {
1076 pidarray[n++] = p->pid;
1077 if (unlikely(n == npids))
1078 goto array_full;
1079 }
1080 } while_each_thread(g, p);
1081
1082 array_full:
1083 read_unlock(&tasklist_lock);
1084 return n;
1085 }
1086
1087 static int cmppid(const void *a, const void *b)
1088 {
1089 return *(pid_t *)a - *(pid_t *)b;
1090 }
1091
1092 /*
1093 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1094 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
1095 * count 'cnt' of how many chars would be written if buf were large enough.
1096 */
1097 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1098 {
1099 int cnt = 0;
1100 int i;
1101
1102 for (i = 0; i < npids; i++)
1103 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1104 return cnt;
1105 }
1106
1107 static int cpuset_tasks_open(struct inode *unused, struct file *file)
1108 {
1109 struct cpuset *cs = __d_cs(file->f_dentry->d_parent);
1110 struct ctr_struct *ctr;
1111 pid_t *pidarray;
1112 int npids;
1113 char c;
1114
1115 if (!(file->f_mode & FMODE_READ))
1116 return 0;
1117
1118 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1119 if (!ctr)
1120 goto err0;
1121
1122 /*
1123 * If cpuset gets more users after we read count, we won't have
1124 * enough space - tough. This race is indistinguishable to the
1125 * caller from the case that the additional cpuset users didn't
1126 * show up until sometime later on.
1127 */
1128 npids = atomic_read(&cs->count);
1129 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1130 if (!pidarray)
1131 goto err1;
1132
1133 npids = pid_array_load(pidarray, npids, cs);
1134 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1135
1136 /* Call pid_array_to_buf() twice, first just to get bufsz */
1137 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1138 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1139 if (!ctr->buf)
1140 goto err2;
1141 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1142
1143 kfree(pidarray);
1144 file->private_data = ctr;
1145 return 0;
1146
1147 err2:
1148 kfree(pidarray);
1149 err1:
1150 kfree(ctr);
1151 err0:
1152 return -ENOMEM;
1153 }
1154
1155 static ssize_t cpuset_tasks_read(struct file *file, char __user *buf,
1156 size_t nbytes, loff_t *ppos)
1157 {
1158 struct ctr_struct *ctr = file->private_data;
1159
1160 if (*ppos + nbytes > ctr->bufsz)
1161 nbytes = ctr->bufsz - *ppos;
1162 if (copy_to_user(buf, ctr->buf + *ppos, nbytes))
1163 return -EFAULT;
1164 *ppos += nbytes;
1165 return nbytes;
1166 }
1167
1168 static int cpuset_tasks_release(struct inode *unused_inode, struct file *file)
1169 {
1170 struct ctr_struct *ctr;
1171
1172 if (file->f_mode & FMODE_READ) {
1173 ctr = file->private_data;
1174 kfree(ctr->buf);
1175 kfree(ctr);
1176 }
1177 return 0;
1178 }
1179
1180 /*
1181 * for the common functions, 'private' gives the type of file
1182 */
1183
1184 static struct cftype cft_tasks = {
1185 .name = "tasks",
1186 .open = cpuset_tasks_open,
1187 .read = cpuset_tasks_read,
1188 .release = cpuset_tasks_release,
1189 .private = FILE_TASKLIST,
1190 };
1191
1192 static struct cftype cft_cpus = {
1193 .name = "cpus",
1194 .private = FILE_CPULIST,
1195 };
1196
1197 static struct cftype cft_mems = {
1198 .name = "mems",
1199 .private = FILE_MEMLIST,
1200 };
1201
1202 static struct cftype cft_cpu_exclusive = {
1203 .name = "cpu_exclusive",
1204 .private = FILE_CPU_EXCLUSIVE,
1205 };
1206
1207 static struct cftype cft_mem_exclusive = {
1208 .name = "mem_exclusive",
1209 .private = FILE_MEM_EXCLUSIVE,
1210 };
1211
1212 static struct cftype cft_notify_on_release = {
1213 .name = "notify_on_release",
1214 .private = FILE_NOTIFY_ON_RELEASE,
1215 };
1216
1217 static int cpuset_populate_dir(struct dentry *cs_dentry)
1218 {
1219 int err;
1220
1221 if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0)
1222 return err;
1223 if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0)
1224 return err;
1225 if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0)
1226 return err;
1227 if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0)
1228 return err;
1229 if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0)
1230 return err;
1231 if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0)
1232 return err;
1233 return 0;
1234 }
1235
1236 /*
1237 * cpuset_create - create a cpuset
1238 * parent: cpuset that will be parent of the new cpuset.
1239 * name: name of the new cpuset. Will be strcpy'ed.
1240 * mode: mode to set on new inode
1241 *
1242 * Must be called with the semaphore on the parent inode held
1243 */
1244
1245 static long cpuset_create(struct cpuset *parent, const char *name, int mode)
1246 {
1247 struct cpuset *cs;
1248 int err;
1249
1250 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1251 if (!cs)
1252 return -ENOMEM;
1253
1254 down(&cpuset_sem);
1255 refresh_mems();
1256 cs->flags = 0;
1257 if (notify_on_release(parent))
1258 set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags);
1259 cs->cpus_allowed = CPU_MASK_NONE;
1260 cs->mems_allowed = NODE_MASK_NONE;
1261 atomic_set(&cs->count, 0);
1262 INIT_LIST_HEAD(&cs->sibling);
1263 INIT_LIST_HEAD(&cs->children);
1264 atomic_inc(&cpuset_mems_generation);
1265 cs->mems_generation = atomic_read(&cpuset_mems_generation);
1266
1267 cs->parent = parent;
1268
1269 list_add(&cs->sibling, &cs->parent->children);
1270
1271 err = cpuset_create_dir(cs, name, mode);
1272 if (err < 0)
1273 goto err;
1274
1275 /*
1276 * Release cpuset_sem before cpuset_populate_dir() because it
1277 * will down() this new directory's i_sem and if we race with
1278 * another mkdir, we might deadlock.
1279 */
1280 up(&cpuset_sem);
1281
1282 err = cpuset_populate_dir(cs->dentry);
1283 /* If err < 0, we have a half-filled directory - oh well ;) */
1284 return 0;
1285 err:
1286 list_del(&cs->sibling);
1287 up(&cpuset_sem);
1288 kfree(cs);
1289 return err;
1290 }
1291
1292 static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1293 {
1294 struct cpuset *c_parent = dentry->d_parent->d_fsdata;
1295
1296 /* the vfs holds inode->i_sem already */
1297 return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR);
1298 }
1299
1300 static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry)
1301 {
1302 struct cpuset *cs = dentry->d_fsdata;
1303 struct dentry *d;
1304 struct cpuset *parent;
1305
1306 /* the vfs holds both inode->i_sem already */
1307
1308 down(&cpuset_sem);
1309 refresh_mems();
1310 if (atomic_read(&cs->count) > 0) {
1311 up(&cpuset_sem);
1312 return -EBUSY;
1313 }
1314 if (!list_empty(&cs->children)) {
1315 up(&cpuset_sem);
1316 return -EBUSY;
1317 }
1318 spin_lock(&cs->dentry->d_lock);
1319 parent = cs->parent;
1320 set_bit(CS_REMOVED, &cs->flags);
1321 list_del(&cs->sibling); /* delete my sibling from parent->children */
1322 if (list_empty(&parent->children))
1323 check_for_release(parent);
1324 d = dget(cs->dentry);
1325 cs->dentry = NULL;
1326 spin_unlock(&d->d_lock);
1327 cpuset_d_remove_dir(d);
1328 dput(d);
1329 up(&cpuset_sem);
1330 return 0;
1331 }
1332
1333 /**
1334 * cpuset_init - initialize cpusets at system boot
1335 *
1336 * Description: Initialize top_cpuset and the cpuset internal file system,
1337 **/
1338
1339 int __init cpuset_init(void)
1340 {
1341 struct dentry *root;
1342 int err;
1343
1344 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1345 top_cpuset.mems_allowed = NODE_MASK_ALL;
1346
1347 atomic_inc(&cpuset_mems_generation);
1348 top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation);
1349
1350 init_task.cpuset = &top_cpuset;
1351
1352 err = register_filesystem(&cpuset_fs_type);
1353 if (err < 0)
1354 goto out;
1355 cpuset_mount = kern_mount(&cpuset_fs_type);
1356 if (IS_ERR(cpuset_mount)) {
1357 printk(KERN_ERR "cpuset: could not mount!\n");
1358 err = PTR_ERR(cpuset_mount);
1359 cpuset_mount = NULL;
1360 goto out;
1361 }
1362 root = cpuset_mount->mnt_sb->s_root;
1363 root->d_fsdata = &top_cpuset;
1364 root->d_inode->i_nlink++;
1365 top_cpuset.dentry = root;
1366 root->d_inode->i_op = &cpuset_dir_inode_operations;
1367 err = cpuset_populate_dir(root);
1368 out:
1369 return err;
1370 }
1371
1372 /**
1373 * cpuset_init_smp - initialize cpus_allowed
1374 *
1375 * Description: Finish top cpuset after cpu, node maps are initialized
1376 **/
1377
1378 void __init cpuset_init_smp(void)
1379 {
1380 top_cpuset.cpus_allowed = cpu_online_map;
1381 top_cpuset.mems_allowed = node_online_map;
1382 }
1383
1384 /**
1385 * cpuset_fork - attach newly forked task to its parents cpuset.
1386 * @p: pointer to task_struct of forking parent process.
1387 *
1388 * Description: By default, on fork, a task inherits its
1389 * parents cpuset. The pointer to the shared cpuset is
1390 * automatically copied in fork.c by dup_task_struct().
1391 * This cpuset_fork() routine need only increment the usage
1392 * counter in that cpuset.
1393 **/
1394
1395 void cpuset_fork(struct task_struct *tsk)
1396 {
1397 atomic_inc(&tsk->cpuset->count);
1398 }
1399
1400 /**
1401 * cpuset_exit - detach cpuset from exiting task
1402 * @tsk: pointer to task_struct of exiting process
1403 *
1404 * Description: Detach cpuset from @tsk and release it.
1405 *
1406 * Note that cpusets marked notify_on_release force every task
1407 * in them to take the global cpuset_sem semaphore when exiting.
1408 * This could impact scaling on very large systems. Be reluctant
1409 * to use notify_on_release cpusets where very high task exit
1410 * scaling is required on large systems.
1411 *
1412 * Don't even think about derefencing 'cs' after the cpuset use
1413 * count goes to zero, except inside a critical section guarded
1414 * by the cpuset_sem semaphore. If you don't hold cpuset_sem,
1415 * then a zero cpuset use count is a license to any other task to
1416 * nuke the cpuset immediately.
1417 *
1418 **/
1419
1420 void cpuset_exit(struct task_struct *tsk)
1421 {
1422 struct cpuset *cs;
1423
1424 task_lock(tsk);
1425 cs = tsk->cpuset;
1426 tsk->cpuset = NULL;
1427 task_unlock(tsk);
1428
1429 if (notify_on_release(cs)) {
1430 down(&cpuset_sem);
1431 if (atomic_dec_and_test(&cs->count))
1432 check_for_release(cs);
1433 up(&cpuset_sem);
1434 } else {
1435 atomic_dec(&cs->count);
1436 }
1437 }
1438
1439 /**
1440 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1441 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1442 *
1443 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1444 * attached to the specified @tsk. Guaranteed to return some non-empty
1445 * subset of cpu_online_map, even if this means going outside the
1446 * tasks cpuset.
1447 **/
1448
1449 cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk)
1450 {
1451 cpumask_t mask;
1452
1453 down(&cpuset_sem);
1454 task_lock((struct task_struct *)tsk);
1455 guarantee_online_cpus(tsk->cpuset, &mask);
1456 task_unlock((struct task_struct *)tsk);
1457 up(&cpuset_sem);
1458
1459 return mask;
1460 }
1461
1462 void cpuset_init_current_mems_allowed(void)
1463 {
1464 current->mems_allowed = NODE_MASK_ALL;
1465 }
1466
1467 /*
1468 * If the current tasks cpusets mems_allowed changed behind our backs,
1469 * update current->mems_allowed and mems_generation to the new value.
1470 * Do not call this routine if in_interrupt().
1471 */
1472
1473 void cpuset_update_current_mems_allowed(void)
1474 {
1475 struct cpuset *cs = current->cpuset;
1476
1477 if (!cs)
1478 return; /* task is exiting */
1479 if (current->cpuset_mems_generation != cs->mems_generation) {
1480 down(&cpuset_sem);
1481 refresh_mems();
1482 up(&cpuset_sem);
1483 }
1484 }
1485
1486 void cpuset_restrict_to_mems_allowed(unsigned long *nodes)
1487 {
1488 bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed),
1489 MAX_NUMNODES);
1490 }
1491
1492 /*
1493 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1494 */
1495 int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1496 {
1497 int i;
1498
1499 for (i = 0; zl->zones[i]; i++) {
1500 int nid = zl->zones[i]->zone_pgdat->node_id;
1501
1502 if (node_isset(nid, current->mems_allowed))
1503 return 1;
1504 }
1505 return 0;
1506 }
1507
1508 /*
1509 * Is 'current' valid, and is zone z allowed in current->mems_allowed?
1510 */
1511 int cpuset_zone_allowed(struct zone *z)
1512 {
1513 return in_interrupt() ||
1514 node_isset(z->zone_pgdat->node_id, current->mems_allowed);
1515 }
1516
1517 /*
1518 * proc_cpuset_show()
1519 * - Print tasks cpuset path into seq_file.
1520 * - Used for /proc/<pid>/cpuset.
1521 */
1522
1523 static int proc_cpuset_show(struct seq_file *m, void *v)
1524 {
1525 struct cpuset *cs;
1526 struct task_struct *tsk;
1527 char *buf;
1528 int retval = 0;
1529
1530 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1531 if (!buf)
1532 return -ENOMEM;
1533
1534 tsk = m->private;
1535 down(&cpuset_sem);
1536 task_lock(tsk);
1537 cs = tsk->cpuset;
1538 task_unlock(tsk);
1539 if (!cs) {
1540 retval = -EINVAL;
1541 goto out;
1542 }
1543
1544 retval = cpuset_path(cs, buf, PAGE_SIZE);
1545 if (retval < 0)
1546 goto out;
1547 seq_puts(m, buf);
1548 seq_putc(m, '\n');
1549 out:
1550 up(&cpuset_sem);
1551 kfree(buf);
1552 return retval;
1553 }
1554
1555 static int cpuset_open(struct inode *inode, struct file *file)
1556 {
1557 struct task_struct *tsk = PROC_I(inode)->task;
1558 return single_open(file, proc_cpuset_show, tsk);
1559 }
1560
1561 struct file_operations proc_cpuset_operations = {
1562 .open = cpuset_open,
1563 .read = seq_read,
1564 .llseek = seq_lseek,
1565 .release = single_release,
1566 };
1567
1568 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
1569 char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
1570 {
1571 buffer += sprintf(buffer, "Cpus_allowed:\t");
1572 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
1573 buffer += sprintf(buffer, "\n");
1574 buffer += sprintf(buffer, "Mems_allowed:\t");
1575 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
1576 buffer += sprintf(buffer, "\n");
1577 return buffer;
1578 }