Magellan Linux

Contents of /alx-src/tags/kernel26-2.6.12-alx-r9/kernel/exit.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 630 - (show annotations) (download)
Wed Mar 4 11:03:09 2009 UTC (15 years, 3 months ago) by niro
File MIME type: text/plain
File size: 39394 byte(s)
Tag kernel26-2.6.12-alx-r9
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/config.h>
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/interrupt.h>
11 #include <linux/smp_lock.h>
12 #include <linux/module.h>
13 #include <linux/completion.h>
14 #include <linux/personality.h>
15 #include <linux/tty.h>
16 #include <linux/namespace.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/ptrace.h>
24 #include <linux/profile.h>
25 #include <linux/mount.h>
26 #include <linux/proc_fs.h>
27 #include <linux/mempolicy.h>
28 #include <linux/cpuset.h>
29 #include <linux/syscalls.h>
30 #include <linux/signal.h>
31
32 #include <asm/uaccess.h>
33 #include <asm/unistd.h>
34 #include <asm/pgtable.h>
35 #include <asm/mmu_context.h>
36
37 extern void sem_exit (void);
38 extern struct task_struct *child_reaper;
39
40 int getrusage(struct task_struct *, int, struct rusage __user *);
41
42 static void exit_mm(struct task_struct * tsk);
43
44 static void __unhash_process(struct task_struct *p)
45 {
46 nr_threads--;
47 detach_pid(p, PIDTYPE_PID);
48 detach_pid(p, PIDTYPE_TGID);
49 if (thread_group_leader(p)) {
50 detach_pid(p, PIDTYPE_PGID);
51 detach_pid(p, PIDTYPE_SID);
52 if (p->pid)
53 __get_cpu_var(process_counts)--;
54 }
55
56 REMOVE_LINKS(p);
57 }
58
59 void release_task(struct task_struct * p)
60 {
61 int zap_leader;
62 task_t *leader;
63 struct dentry *proc_dentry;
64
65 repeat:
66 atomic_dec(&p->user->processes);
67 spin_lock(&p->proc_lock);
68 proc_dentry = proc_pid_unhash(p);
69 write_lock_irq(&tasklist_lock);
70 if (unlikely(p->ptrace))
71 __ptrace_unlink(p);
72 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
73 __exit_signal(p);
74 __exit_sighand(p);
75 __unhash_process(p);
76
77 /*
78 * If we are the last non-leader member of the thread
79 * group, and the leader is zombie, then notify the
80 * group leader's parent process. (if it wants notification.)
81 */
82 zap_leader = 0;
83 leader = p->group_leader;
84 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
85 BUG_ON(leader->exit_signal == -1);
86 do_notify_parent(leader, leader->exit_signal);
87 /*
88 * If we were the last child thread and the leader has
89 * exited already, and the leader's parent ignores SIGCHLD,
90 * then we are the one who should release the leader.
91 *
92 * do_notify_parent() will have marked it self-reaping in
93 * that case.
94 */
95 zap_leader = (leader->exit_signal == -1);
96 }
97
98 write_unlock_irq(&tasklist_lock);
99 spin_unlock(&p->proc_lock);
100 proc_pid_flush(proc_dentry);
101 release_thread(p);
102 put_task_struct(p);
103
104 p = leader;
105 if (unlikely(zap_leader))
106 goto repeat;
107 }
108
109 /* we are using it only for SMP init */
110
111 void unhash_process(struct task_struct *p)
112 {
113 struct dentry *proc_dentry;
114
115 spin_lock(&p->proc_lock);
116 proc_dentry = proc_pid_unhash(p);
117 write_lock_irq(&tasklist_lock);
118 __unhash_process(p);
119 write_unlock_irq(&tasklist_lock);
120 spin_unlock(&p->proc_lock);
121 proc_pid_flush(proc_dentry);
122 }
123
124 /*
125 * This checks not only the pgrp, but falls back on the pid if no
126 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
127 * without this...
128 */
129 int session_of_pgrp(int pgrp)
130 {
131 struct task_struct *p;
132 int sid = -1;
133
134 read_lock(&tasklist_lock);
135 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
136 if (p->signal->session > 0) {
137 sid = p->signal->session;
138 goto out;
139 }
140 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
141 p = find_task_by_pid(pgrp);
142 if (p)
143 sid = p->signal->session;
144 out:
145 read_unlock(&tasklist_lock);
146
147 return sid;
148 }
149
150 /*
151 * Determine if a process group is "orphaned", according to the POSIX
152 * definition in 2.2.2.52. Orphaned process groups are not to be affected
153 * by terminal-generated stop signals. Newly orphaned process groups are
154 * to receive a SIGHUP and a SIGCONT.
155 *
156 * "I ask you, have you ever known what it is to be an orphan?"
157 */
158 static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task)
159 {
160 struct task_struct *p;
161 int ret = 1;
162
163 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
164 if (p == ignored_task
165 || p->exit_state
166 || p->real_parent->pid == 1)
167 continue;
168 if (process_group(p->real_parent) != pgrp
169 && p->real_parent->signal->session == p->signal->session) {
170 ret = 0;
171 break;
172 }
173 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
174 return ret; /* (sighing) "Often!" */
175 }
176
177 int is_orphaned_pgrp(int pgrp)
178 {
179 int retval;
180
181 read_lock(&tasklist_lock);
182 retval = will_become_orphaned_pgrp(pgrp, NULL);
183 read_unlock(&tasklist_lock);
184
185 return retval;
186 }
187
188 static inline int has_stopped_jobs(int pgrp)
189 {
190 int retval = 0;
191 struct task_struct *p;
192
193 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
194 if (p->state != TASK_STOPPED)
195 continue;
196
197 /* If p is stopped by a debugger on a signal that won't
198 stop it, then don't count p as stopped. This isn't
199 perfect but it's a good approximation. */
200 if (unlikely (p->ptrace)
201 && p->exit_code != SIGSTOP
202 && p->exit_code != SIGTSTP
203 && p->exit_code != SIGTTOU
204 && p->exit_code != SIGTTIN)
205 continue;
206
207 retval = 1;
208 break;
209 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
210 return retval;
211 }
212
213 /**
214 * reparent_to_init - Reparent the calling kernel thread to the init task.
215 *
216 * If a kernel thread is launched as a result of a system call, or if
217 * it ever exits, it should generally reparent itself to init so that
218 * it is correctly cleaned up on exit.
219 *
220 * The various task state such as scheduling policy and priority may have
221 * been inherited from a user process, so we reset them to sane values here.
222 *
223 * NOTE that reparent_to_init() gives the caller full capabilities.
224 */
225 static inline void reparent_to_init(void)
226 {
227 write_lock_irq(&tasklist_lock);
228
229 ptrace_unlink(current);
230 /* Reparent to init */
231 REMOVE_LINKS(current);
232 current->parent = child_reaper;
233 current->real_parent = child_reaper;
234 SET_LINKS(current);
235
236 /* Set the exit signal to SIGCHLD so we signal init on exit */
237 current->exit_signal = SIGCHLD;
238
239 if ((current->policy == SCHED_NORMAL) && (task_nice(current) < 0))
240 set_user_nice(current, 0);
241 /* cpus_allowed? */
242 /* rt_priority? */
243 /* signals? */
244 security_task_reparent_to_init(current);
245 memcpy(current->signal->rlim, init_task.signal->rlim,
246 sizeof(current->signal->rlim));
247 atomic_inc(&(INIT_USER->__count));
248 write_unlock_irq(&tasklist_lock);
249 switch_uid(INIT_USER);
250 }
251
252 void __set_special_pids(pid_t session, pid_t pgrp)
253 {
254 struct task_struct *curr = current;
255
256 if (curr->signal->session != session) {
257 detach_pid(curr, PIDTYPE_SID);
258 curr->signal->session = session;
259 attach_pid(curr, PIDTYPE_SID, session);
260 }
261 if (process_group(curr) != pgrp) {
262 detach_pid(curr, PIDTYPE_PGID);
263 curr->signal->pgrp = pgrp;
264 attach_pid(curr, PIDTYPE_PGID, pgrp);
265 }
266 }
267
268 void set_special_pids(pid_t session, pid_t pgrp)
269 {
270 write_lock_irq(&tasklist_lock);
271 __set_special_pids(session, pgrp);
272 write_unlock_irq(&tasklist_lock);
273 }
274
275 /*
276 * Let kernel threads use this to say that they
277 * allow a certain signal (since daemonize() will
278 * have disabled all of them by default).
279 */
280 int allow_signal(int sig)
281 {
282 if (!valid_signal(sig) || sig < 1)
283 return -EINVAL;
284
285 spin_lock_irq(&current->sighand->siglock);
286 sigdelset(&current->blocked, sig);
287 if (!current->mm) {
288 /* Kernel threads handle their own signals.
289 Let the signal code know it'll be handled, so
290 that they don't get converted to SIGKILL or
291 just silently dropped */
292 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
293 }
294 recalc_sigpending();
295 spin_unlock_irq(&current->sighand->siglock);
296 return 0;
297 }
298
299 EXPORT_SYMBOL(allow_signal);
300
301 int disallow_signal(int sig)
302 {
303 if (!valid_signal(sig) || sig < 1)
304 return -EINVAL;
305
306 spin_lock_irq(&current->sighand->siglock);
307 sigaddset(&current->blocked, sig);
308 recalc_sigpending();
309 spin_unlock_irq(&current->sighand->siglock);
310 return 0;
311 }
312
313 EXPORT_SYMBOL(disallow_signal);
314
315 /*
316 * Put all the gunge required to become a kernel thread without
317 * attached user resources in one place where it belongs.
318 */
319
320 void daemonize(const char *name, ...)
321 {
322 va_list args;
323 struct fs_struct *fs;
324 sigset_t blocked;
325
326 va_start(args, name);
327 vsnprintf(current->comm, sizeof(current->comm), name, args);
328 va_end(args);
329
330 /*
331 * If we were started as result of loading a module, close all of the
332 * user space pages. We don't need them, and if we didn't close them
333 * they would be locked into memory.
334 */
335 exit_mm(current);
336
337 set_special_pids(1, 1);
338 down(&tty_sem);
339 current->signal->tty = NULL;
340 up(&tty_sem);
341
342 /* Block and flush all signals */
343 sigfillset(&blocked);
344 sigprocmask(SIG_BLOCK, &blocked, NULL);
345 flush_signals(current);
346
347 /* Become as one with the init task */
348
349 exit_fs(current); /* current->fs->count--; */
350 fs = init_task.fs;
351 current->fs = fs;
352 atomic_inc(&fs->count);
353 exit_files(current);
354 current->files = init_task.files;
355 atomic_inc(&current->files->count);
356
357 reparent_to_init();
358 }
359
360 EXPORT_SYMBOL(daemonize);
361
362 static inline void close_files(struct files_struct * files)
363 {
364 int i, j;
365
366 j = 0;
367 for (;;) {
368 unsigned long set;
369 i = j * __NFDBITS;
370 if (i >= files->max_fdset || i >= files->max_fds)
371 break;
372 set = files->open_fds->fds_bits[j++];
373 while (set) {
374 if (set & 1) {
375 struct file * file = xchg(&files->fd[i], NULL);
376 if (file)
377 filp_close(file, files);
378 }
379 i++;
380 set >>= 1;
381 }
382 }
383 }
384
385 struct files_struct *get_files_struct(struct task_struct *task)
386 {
387 struct files_struct *files;
388
389 task_lock(task);
390 files = task->files;
391 if (files)
392 atomic_inc(&files->count);
393 task_unlock(task);
394
395 return files;
396 }
397
398 void fastcall put_files_struct(struct files_struct *files)
399 {
400 if (atomic_dec_and_test(&files->count)) {
401 close_files(files);
402 /*
403 * Free the fd and fdset arrays if we expanded them.
404 */
405 if (files->fd != &files->fd_array[0])
406 free_fd_array(files->fd, files->max_fds);
407 if (files->max_fdset > __FD_SETSIZE) {
408 free_fdset(files->open_fds, files->max_fdset);
409 free_fdset(files->close_on_exec, files->max_fdset);
410 }
411 kmem_cache_free(files_cachep, files);
412 }
413 }
414
415 EXPORT_SYMBOL(put_files_struct);
416
417 static inline void __exit_files(struct task_struct *tsk)
418 {
419 struct files_struct * files = tsk->files;
420
421 if (files) {
422 task_lock(tsk);
423 tsk->files = NULL;
424 task_unlock(tsk);
425 put_files_struct(files);
426 }
427 }
428
429 void exit_files(struct task_struct *tsk)
430 {
431 __exit_files(tsk);
432 }
433
434 static inline void __put_fs_struct(struct fs_struct *fs)
435 {
436 /* No need to hold fs->lock if we are killing it */
437 if (atomic_dec_and_test(&fs->count)) {
438 dput(fs->root);
439 mntput(fs->rootmnt);
440 dput(fs->pwd);
441 mntput(fs->pwdmnt);
442 if (fs->altroot) {
443 dput(fs->altroot);
444 mntput(fs->altrootmnt);
445 }
446 kmem_cache_free(fs_cachep, fs);
447 }
448 }
449
450 void put_fs_struct(struct fs_struct *fs)
451 {
452 __put_fs_struct(fs);
453 }
454
455 static inline void __exit_fs(struct task_struct *tsk)
456 {
457 struct fs_struct * fs = tsk->fs;
458
459 if (fs) {
460 task_lock(tsk);
461 tsk->fs = NULL;
462 task_unlock(tsk);
463 __put_fs_struct(fs);
464 }
465 }
466
467 void exit_fs(struct task_struct *tsk)
468 {
469 __exit_fs(tsk);
470 }
471
472 EXPORT_SYMBOL_GPL(exit_fs);
473
474 /*
475 * Turn us into a lazy TLB process if we
476 * aren't already..
477 */
478 static void exit_mm(struct task_struct * tsk)
479 {
480 struct mm_struct *mm = tsk->mm;
481
482 mm_release(tsk, mm);
483 if (!mm)
484 return;
485 /*
486 * Serialize with any possible pending coredump.
487 * We must hold mmap_sem around checking core_waiters
488 * and clearing tsk->mm. The core-inducing thread
489 * will increment core_waiters for each thread in the
490 * group with ->mm != NULL.
491 */
492 down_read(&mm->mmap_sem);
493 if (mm->core_waiters) {
494 up_read(&mm->mmap_sem);
495 down_write(&mm->mmap_sem);
496 if (!--mm->core_waiters)
497 complete(mm->core_startup_done);
498 up_write(&mm->mmap_sem);
499
500 wait_for_completion(&mm->core_done);
501 down_read(&mm->mmap_sem);
502 }
503 atomic_inc(&mm->mm_count);
504 if (mm != tsk->active_mm) BUG();
505 /* more a memory barrier than a real lock */
506 task_lock(tsk);
507 tsk->mm = NULL;
508 up_read(&mm->mmap_sem);
509 enter_lazy_tlb(mm, current);
510 task_unlock(tsk);
511 mmput(mm);
512 }
513
514 static inline void choose_new_parent(task_t *p, task_t *reaper, task_t *child_reaper)
515 {
516 /*
517 * Make sure we're not reparenting to ourselves and that
518 * the parent is not a zombie.
519 */
520 BUG_ON(p == reaper || reaper->exit_state >= EXIT_ZOMBIE);
521 p->real_parent = reaper;
522 }
523
524 static inline void reparent_thread(task_t *p, task_t *father, int traced)
525 {
526 /* We don't want people slaying init. */
527 if (p->exit_signal != -1)
528 p->exit_signal = SIGCHLD;
529
530 if (p->pdeath_signal)
531 /* We already hold the tasklist_lock here. */
532 group_send_sig_info(p->pdeath_signal, (void *) 0, p);
533
534 /* Move the child from its dying parent to the new one. */
535 if (unlikely(traced)) {
536 /* Preserve ptrace links if someone else is tracing this child. */
537 list_del_init(&p->ptrace_list);
538 if (p->parent != p->real_parent)
539 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
540 } else {
541 /* If this child is being traced, then we're the one tracing it
542 * anyway, so let go of it.
543 */
544 p->ptrace = 0;
545 list_del_init(&p->sibling);
546 p->parent = p->real_parent;
547 list_add_tail(&p->sibling, &p->parent->children);
548
549 /* If we'd notified the old parent about this child's death,
550 * also notify the new parent.
551 */
552 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
553 thread_group_empty(p))
554 do_notify_parent(p, p->exit_signal);
555 else if (p->state == TASK_TRACED) {
556 /*
557 * If it was at a trace stop, turn it into
558 * a normal stop since it's no longer being
559 * traced.
560 */
561 ptrace_untrace(p);
562 }
563 }
564
565 /*
566 * process group orphan check
567 * Case ii: Our child is in a different pgrp
568 * than we are, and it was the only connection
569 * outside, so the child pgrp is now orphaned.
570 */
571 if ((process_group(p) != process_group(father)) &&
572 (p->signal->session == father->signal->session)) {
573 int pgrp = process_group(p);
574
575 if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) {
576 __kill_pg_info(SIGHUP, (void *)1, pgrp);
577 __kill_pg_info(SIGCONT, (void *)1, pgrp);
578 }
579 }
580 }
581
582 /*
583 * When we die, we re-parent all our children.
584 * Try to give them to another thread in our thread
585 * group, and if no such member exists, give it to
586 * the global child reaper process (ie "init")
587 */
588 static inline void forget_original_parent(struct task_struct * father,
589 struct list_head *to_release)
590 {
591 struct task_struct *p, *reaper = father;
592 struct list_head *_p, *_n;
593
594 do {
595 reaper = next_thread(reaper);
596 if (reaper == father) {
597 reaper = child_reaper;
598 break;
599 }
600 } while (reaper->exit_state);
601
602 /*
603 * There are only two places where our children can be:
604 *
605 * - in our child list
606 * - in our ptraced child list
607 *
608 * Search them and reparent children.
609 */
610 list_for_each_safe(_p, _n, &father->children) {
611 int ptrace;
612 p = list_entry(_p,struct task_struct,sibling);
613
614 ptrace = p->ptrace;
615
616 /* if father isn't the real parent, then ptrace must be enabled */
617 BUG_ON(father != p->real_parent && !ptrace);
618
619 if (father == p->real_parent) {
620 /* reparent with a reaper, real father it's us */
621 choose_new_parent(p, reaper, child_reaper);
622 reparent_thread(p, father, 0);
623 } else {
624 /* reparent ptraced task to its real parent */
625 __ptrace_unlink (p);
626 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
627 thread_group_empty(p))
628 do_notify_parent(p, p->exit_signal);
629 }
630
631 /*
632 * if the ptraced child is a zombie with exit_signal == -1
633 * we must collect it before we exit, or it will remain
634 * zombie forever since we prevented it from self-reap itself
635 * while it was being traced by us, to be able to see it in wait4.
636 */
637 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
638 list_add(&p->ptrace_list, to_release);
639 }
640 list_for_each_safe(_p, _n, &father->ptrace_children) {
641 p = list_entry(_p,struct task_struct,ptrace_list);
642 choose_new_parent(p, reaper, child_reaper);
643 reparent_thread(p, father, 1);
644 }
645 }
646
647 /*
648 * Send signals to all our closest relatives so that they know
649 * to properly mourn us..
650 */
651 static void exit_notify(struct task_struct *tsk)
652 {
653 int state;
654 struct task_struct *t;
655 struct list_head ptrace_dead, *_p, *_n;
656
657 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
658 && !thread_group_empty(tsk)) {
659 /*
660 * This occurs when there was a race between our exit
661 * syscall and a group signal choosing us as the one to
662 * wake up. It could be that we are the only thread
663 * alerted to check for pending signals, but another thread
664 * should be woken now to take the signal since we will not.
665 * Now we'll wake all the threads in the group just to make
666 * sure someone gets all the pending signals.
667 */
668 read_lock(&tasklist_lock);
669 spin_lock_irq(&tsk->sighand->siglock);
670 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
671 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
672 recalc_sigpending_tsk(t);
673 if (signal_pending(t))
674 signal_wake_up(t, 0);
675 }
676 spin_unlock_irq(&tsk->sighand->siglock);
677 read_unlock(&tasklist_lock);
678 }
679
680 write_lock_irq(&tasklist_lock);
681
682 /*
683 * This does two things:
684 *
685 * A. Make init inherit all the child processes
686 * B. Check to see if any process groups have become orphaned
687 * as a result of our exiting, and if they have any stopped
688 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
689 */
690
691 INIT_LIST_HEAD(&ptrace_dead);
692 forget_original_parent(tsk, &ptrace_dead);
693 BUG_ON(!list_empty(&tsk->children));
694 BUG_ON(!list_empty(&tsk->ptrace_children));
695
696 /*
697 * Check to see if any process groups have become orphaned
698 * as a result of our exiting, and if they have any stopped
699 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
700 *
701 * Case i: Our father is in a different pgrp than we are
702 * and we were the only connection outside, so our pgrp
703 * is about to become orphaned.
704 */
705
706 t = tsk->real_parent;
707
708 if ((process_group(t) != process_group(tsk)) &&
709 (t->signal->session == tsk->signal->session) &&
710 will_become_orphaned_pgrp(process_group(tsk), tsk) &&
711 has_stopped_jobs(process_group(tsk))) {
712 __kill_pg_info(SIGHUP, (void *)1, process_group(tsk));
713 __kill_pg_info(SIGCONT, (void *)1, process_group(tsk));
714 }
715
716 /* Let father know we died
717 *
718 * Thread signals are configurable, but you aren't going to use
719 * that to send signals to arbitary processes.
720 * That stops right now.
721 *
722 * If the parent exec id doesn't match the exec id we saved
723 * when we started then we know the parent has changed security
724 * domain.
725 *
726 * If our self_exec id doesn't match our parent_exec_id then
727 * we have changed execution domain as these two values started
728 * the same after a fork.
729 *
730 */
731
732 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
733 ( tsk->parent_exec_id != t->self_exec_id ||
734 tsk->self_exec_id != tsk->parent_exec_id)
735 && !capable(CAP_KILL))
736 tsk->exit_signal = SIGCHLD;
737
738
739 /* If something other than our normal parent is ptracing us, then
740 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
741 * only has special meaning to our real parent.
742 */
743 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
744 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
745 do_notify_parent(tsk, signal);
746 } else if (tsk->ptrace) {
747 do_notify_parent(tsk, SIGCHLD);
748 }
749
750 state = EXIT_ZOMBIE;
751 if (tsk->exit_signal == -1 &&
752 (likely(tsk->ptrace == 0) ||
753 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
754 state = EXIT_DEAD;
755 tsk->exit_state = state;
756
757 write_unlock_irq(&tasklist_lock);
758
759 list_for_each_safe(_p, _n, &ptrace_dead) {
760 list_del_init(_p);
761 t = list_entry(_p,struct task_struct,ptrace_list);
762 release_task(t);
763 }
764
765 /* If the process is dead, release it - nobody will wait for it */
766 if (state == EXIT_DEAD)
767 release_task(tsk);
768
769 /* PF_DEAD causes final put_task_struct after we schedule. */
770 preempt_disable();
771 tsk->flags |= PF_DEAD;
772 }
773
774 fastcall NORET_TYPE void do_exit(long code)
775 {
776 struct task_struct *tsk = current;
777 int group_dead;
778
779 profile_task_exit(tsk);
780
781 WARN_ON(atomic_read(&tsk->fs_excl));
782
783 if (unlikely(in_interrupt()))
784 panic("Aiee, killing interrupt handler!");
785 if (unlikely(!tsk->pid))
786 panic("Attempted to kill the idle task!");
787 if (unlikely(tsk->pid == 1))
788 panic("Attempted to kill init!");
789 if (tsk->io_context)
790 exit_io_context();
791
792 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
793 current->ptrace_message = code;
794 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
795 }
796
797 tsk->flags |= PF_EXITING;
798
799 /*
800 * Make sure we don't try to process any timer firings
801 * while we are already exiting.
802 */
803 tsk->it_virt_expires = cputime_zero;
804 tsk->it_prof_expires = cputime_zero;
805 tsk->it_sched_expires = 0;
806
807 if (unlikely(in_atomic()))
808 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
809 current->comm, current->pid,
810 preempt_count());
811
812 acct_update_integrals(tsk);
813 update_mem_hiwater(tsk);
814 group_dead = atomic_dec_and_test(&tsk->signal->live);
815 if (group_dead)
816 acct_process(code);
817 exit_mm(tsk);
818
819 exit_sem(tsk);
820 __exit_files(tsk);
821 __exit_fs(tsk);
822 exit_namespace(tsk);
823 exit_thread();
824 cpuset_exit(tsk);
825 exit_keys(tsk);
826
827 if (group_dead && tsk->signal->leader)
828 disassociate_ctty(1);
829
830 module_put(tsk->thread_info->exec_domain->module);
831 if (tsk->binfmt)
832 module_put(tsk->binfmt->module);
833
834 tsk->exit_code = code;
835 exit_notify(tsk);
836 #ifdef CONFIG_NUMA
837 mpol_free(tsk->mempolicy);
838 tsk->mempolicy = NULL;
839 #endif
840
841 BUG_ON(!(current->flags & PF_DEAD));
842 schedule();
843 BUG();
844 /* Avoid "noreturn function does return". */
845 for (;;) ;
846 }
847
848 EXPORT_SYMBOL_GPL(do_exit);
849
850 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
851 {
852 if (comp)
853 complete(comp);
854
855 do_exit(code);
856 }
857
858 EXPORT_SYMBOL(complete_and_exit);
859
860 asmlinkage long sys_exit(int error_code)
861 {
862 do_exit((error_code&0xff)<<8);
863 }
864
865 task_t fastcall *next_thread(const task_t *p)
866 {
867 return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID);
868 }
869
870 EXPORT_SYMBOL(next_thread);
871
872 /*
873 * Take down every thread in the group. This is called by fatal signals
874 * as well as by sys_exit_group (below).
875 */
876 NORET_TYPE void
877 do_group_exit(int exit_code)
878 {
879 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
880
881 if (current->signal->flags & SIGNAL_GROUP_EXIT)
882 exit_code = current->signal->group_exit_code;
883 else if (!thread_group_empty(current)) {
884 struct signal_struct *const sig = current->signal;
885 struct sighand_struct *const sighand = current->sighand;
886 read_lock(&tasklist_lock);
887 spin_lock_irq(&sighand->siglock);
888 if (sig->flags & SIGNAL_GROUP_EXIT)
889 /* Another thread got here before we took the lock. */
890 exit_code = sig->group_exit_code;
891 else {
892 sig->flags = SIGNAL_GROUP_EXIT;
893 sig->group_exit_code = exit_code;
894 zap_other_threads(current);
895 }
896 spin_unlock_irq(&sighand->siglock);
897 read_unlock(&tasklist_lock);
898 }
899
900 do_exit(exit_code);
901 /* NOTREACHED */
902 }
903
904 /*
905 * this kills every thread in the thread group. Note that any externally
906 * wait4()-ing process will get the correct exit code - even if this
907 * thread is not the thread group leader.
908 */
909 asmlinkage void sys_exit_group(int error_code)
910 {
911 do_group_exit((error_code & 0xff) << 8);
912 }
913
914 static int eligible_child(pid_t pid, int options, task_t *p)
915 {
916 if (pid > 0) {
917 if (p->pid != pid)
918 return 0;
919 } else if (!pid) {
920 if (process_group(p) != process_group(current))
921 return 0;
922 } else if (pid != -1) {
923 if (process_group(p) != -pid)
924 return 0;
925 }
926
927 /*
928 * Do not consider detached threads that are
929 * not ptraced:
930 */
931 if (p->exit_signal == -1 && !p->ptrace)
932 return 0;
933
934 /* Wait for all children (clone and not) if __WALL is set;
935 * otherwise, wait for clone children *only* if __WCLONE is
936 * set; otherwise, wait for non-clone children *only*. (Note:
937 * A "clone" child here is one that reports to its parent
938 * using a signal other than SIGCHLD.) */
939 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
940 && !(options & __WALL))
941 return 0;
942 /*
943 * Do not consider thread group leaders that are
944 * in a non-empty thread group:
945 */
946 if (current->tgid != p->tgid && delay_group_leader(p))
947 return 2;
948
949 if (security_task_wait(p))
950 return 0;
951
952 return 1;
953 }
954
955 static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid,
956 int why, int status,
957 struct siginfo __user *infop,
958 struct rusage __user *rusagep)
959 {
960 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
961 put_task_struct(p);
962 if (!retval)
963 retval = put_user(SIGCHLD, &infop->si_signo);
964 if (!retval)
965 retval = put_user(0, &infop->si_errno);
966 if (!retval)
967 retval = put_user((short)why, &infop->si_code);
968 if (!retval)
969 retval = put_user(pid, &infop->si_pid);
970 if (!retval)
971 retval = put_user(uid, &infop->si_uid);
972 if (!retval)
973 retval = put_user(status, &infop->si_status);
974 if (!retval)
975 retval = pid;
976 return retval;
977 }
978
979 /*
980 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
981 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
982 * the lock and this task is uninteresting. If we return nonzero, we have
983 * released the lock and the system call should return.
984 */
985 static int wait_task_zombie(task_t *p, int noreap,
986 struct siginfo __user *infop,
987 int __user *stat_addr, struct rusage __user *ru)
988 {
989 unsigned long state;
990 int retval;
991 int status;
992
993 if (unlikely(noreap)) {
994 pid_t pid = p->pid;
995 uid_t uid = p->uid;
996 int exit_code = p->exit_code;
997 int why, status;
998
999 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1000 return 0;
1001 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1002 return 0;
1003 get_task_struct(p);
1004 read_unlock(&tasklist_lock);
1005 if ((exit_code & 0x7f) == 0) {
1006 why = CLD_EXITED;
1007 status = exit_code >> 8;
1008 } else {
1009 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1010 status = exit_code & 0x7f;
1011 }
1012 return wait_noreap_copyout(p, pid, uid, why,
1013 status, infop, ru);
1014 }
1015
1016 /*
1017 * Try to move the task's state to DEAD
1018 * only one thread is allowed to do this:
1019 */
1020 state = xchg(&p->exit_state, EXIT_DEAD);
1021 if (state != EXIT_ZOMBIE) {
1022 BUG_ON(state != EXIT_DEAD);
1023 return 0;
1024 }
1025 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1026 /*
1027 * This can only happen in a race with a ptraced thread
1028 * dying on another processor.
1029 */
1030 return 0;
1031 }
1032
1033 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1034 /*
1035 * The resource counters for the group leader are in its
1036 * own task_struct. Those for dead threads in the group
1037 * are in its signal_struct, as are those for the child
1038 * processes it has previously reaped. All these
1039 * accumulate in the parent's signal_struct c* fields.
1040 *
1041 * We don't bother to take a lock here to protect these
1042 * p->signal fields, because they are only touched by
1043 * __exit_signal, which runs with tasklist_lock
1044 * write-locked anyway, and so is excluded here. We do
1045 * need to protect the access to p->parent->signal fields,
1046 * as other threads in the parent group can be right
1047 * here reaping other children at the same time.
1048 */
1049 spin_lock_irq(&p->parent->sighand->siglock);
1050 p->parent->signal->cutime =
1051 cputime_add(p->parent->signal->cutime,
1052 cputime_add(p->utime,
1053 cputime_add(p->signal->utime,
1054 p->signal->cutime)));
1055 p->parent->signal->cstime =
1056 cputime_add(p->parent->signal->cstime,
1057 cputime_add(p->stime,
1058 cputime_add(p->signal->stime,
1059 p->signal->cstime)));
1060 p->parent->signal->cmin_flt +=
1061 p->min_flt + p->signal->min_flt + p->signal->cmin_flt;
1062 p->parent->signal->cmaj_flt +=
1063 p->maj_flt + p->signal->maj_flt + p->signal->cmaj_flt;
1064 p->parent->signal->cnvcsw +=
1065 p->nvcsw + p->signal->nvcsw + p->signal->cnvcsw;
1066 p->parent->signal->cnivcsw +=
1067 p->nivcsw + p->signal->nivcsw + p->signal->cnivcsw;
1068 spin_unlock_irq(&p->parent->sighand->siglock);
1069 }
1070
1071 /*
1072 * Now we are sure this task is interesting, and no other
1073 * thread can reap it because we set its state to EXIT_DEAD.
1074 */
1075 read_unlock(&tasklist_lock);
1076
1077 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1078 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1079 ? p->signal->group_exit_code : p->exit_code;
1080 if (!retval && stat_addr)
1081 retval = put_user(status, stat_addr);
1082 if (!retval && infop)
1083 retval = put_user(SIGCHLD, &infop->si_signo);
1084 if (!retval && infop)
1085 retval = put_user(0, &infop->si_errno);
1086 if (!retval && infop) {
1087 int why;
1088
1089 if ((status & 0x7f) == 0) {
1090 why = CLD_EXITED;
1091 status >>= 8;
1092 } else {
1093 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1094 status &= 0x7f;
1095 }
1096 retval = put_user((short)why, &infop->si_code);
1097 if (!retval)
1098 retval = put_user(status, &infop->si_status);
1099 }
1100 if (!retval && infop)
1101 retval = put_user(p->pid, &infop->si_pid);
1102 if (!retval && infop)
1103 retval = put_user(p->uid, &infop->si_uid);
1104 if (retval) {
1105 // TODO: is this safe?
1106 p->exit_state = EXIT_ZOMBIE;
1107 return retval;
1108 }
1109 retval = p->pid;
1110 if (p->real_parent != p->parent) {
1111 write_lock_irq(&tasklist_lock);
1112 /* Double-check with lock held. */
1113 if (p->real_parent != p->parent) {
1114 __ptrace_unlink(p);
1115 // TODO: is this safe?
1116 p->exit_state = EXIT_ZOMBIE;
1117 /*
1118 * If this is not a detached task, notify the parent.
1119 * If it's still not detached after that, don't release
1120 * it now.
1121 */
1122 if (p->exit_signal != -1) {
1123 do_notify_parent(p, p->exit_signal);
1124 if (p->exit_signal != -1)
1125 p = NULL;
1126 }
1127 }
1128 write_unlock_irq(&tasklist_lock);
1129 }
1130 if (p != NULL)
1131 release_task(p);
1132 BUG_ON(!retval);
1133 return retval;
1134 }
1135
1136 /*
1137 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1138 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1139 * the lock and this task is uninteresting. If we return nonzero, we have
1140 * released the lock and the system call should return.
1141 */
1142 static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap,
1143 struct siginfo __user *infop,
1144 int __user *stat_addr, struct rusage __user *ru)
1145 {
1146 int retval, exit_code;
1147
1148 if (!p->exit_code)
1149 return 0;
1150 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1151 p->signal && p->signal->group_stop_count > 0)
1152 /*
1153 * A group stop is in progress and this is the group leader.
1154 * We won't report until all threads have stopped.
1155 */
1156 return 0;
1157
1158 /*
1159 * Now we are pretty sure this task is interesting.
1160 * Make sure it doesn't get reaped out from under us while we
1161 * give up the lock and then examine it below. We don't want to
1162 * keep holding onto the tasklist_lock while we call getrusage and
1163 * possibly take page faults for user memory.
1164 */
1165 get_task_struct(p);
1166 read_unlock(&tasklist_lock);
1167
1168 if (unlikely(noreap)) {
1169 pid_t pid = p->pid;
1170 uid_t uid = p->uid;
1171 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1172
1173 exit_code = p->exit_code;
1174 if (unlikely(!exit_code) ||
1175 unlikely(p->state > TASK_STOPPED))
1176 goto bail_ref;
1177 return wait_noreap_copyout(p, pid, uid,
1178 why, (exit_code << 8) | 0x7f,
1179 infop, ru);
1180 }
1181
1182 write_lock_irq(&tasklist_lock);
1183
1184 /*
1185 * This uses xchg to be atomic with the thread resuming and setting
1186 * it. It must also be done with the write lock held to prevent a
1187 * race with the EXIT_ZOMBIE case.
1188 */
1189 exit_code = xchg(&p->exit_code, 0);
1190 if (unlikely(p->exit_state)) {
1191 /*
1192 * The task resumed and then died. Let the next iteration
1193 * catch it in EXIT_ZOMBIE. Note that exit_code might
1194 * already be zero here if it resumed and did _exit(0).
1195 * The task itself is dead and won't touch exit_code again;
1196 * other processors in this function are locked out.
1197 */
1198 p->exit_code = exit_code;
1199 exit_code = 0;
1200 }
1201 if (unlikely(exit_code == 0)) {
1202 /*
1203 * Another thread in this function got to it first, or it
1204 * resumed, or it resumed and then died.
1205 */
1206 write_unlock_irq(&tasklist_lock);
1207 bail_ref:
1208 put_task_struct(p);
1209 /*
1210 * We are returning to the wait loop without having successfully
1211 * removed the process and having released the lock. We cannot
1212 * continue, since the "p" task pointer is potentially stale.
1213 *
1214 * Return -EAGAIN, and do_wait() will restart the loop from the
1215 * beginning. Do _not_ re-acquire the lock.
1216 */
1217 return -EAGAIN;
1218 }
1219
1220 /* move to end of parent's list to avoid starvation */
1221 remove_parent(p);
1222 add_parent(p, p->parent);
1223
1224 write_unlock_irq(&tasklist_lock);
1225
1226 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1227 if (!retval && stat_addr)
1228 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1229 if (!retval && infop)
1230 retval = put_user(SIGCHLD, &infop->si_signo);
1231 if (!retval && infop)
1232 retval = put_user(0, &infop->si_errno);
1233 if (!retval && infop)
1234 retval = put_user((short)((p->ptrace & PT_PTRACED)
1235 ? CLD_TRAPPED : CLD_STOPPED),
1236 &infop->si_code);
1237 if (!retval && infop)
1238 retval = put_user(exit_code, &infop->si_status);
1239 if (!retval && infop)
1240 retval = put_user(p->pid, &infop->si_pid);
1241 if (!retval && infop)
1242 retval = put_user(p->uid, &infop->si_uid);
1243 if (!retval)
1244 retval = p->pid;
1245 put_task_struct(p);
1246
1247 BUG_ON(!retval);
1248 return retval;
1249 }
1250
1251 /*
1252 * Handle do_wait work for one task in a live, non-stopped state.
1253 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1254 * the lock and this task is uninteresting. If we return nonzero, we have
1255 * released the lock and the system call should return.
1256 */
1257 static int wait_task_continued(task_t *p, int noreap,
1258 struct siginfo __user *infop,
1259 int __user *stat_addr, struct rusage __user *ru)
1260 {
1261 int retval;
1262 pid_t pid;
1263 uid_t uid;
1264
1265 if (unlikely(!p->signal))
1266 return 0;
1267
1268 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1269 return 0;
1270
1271 spin_lock_irq(&p->sighand->siglock);
1272 /* Re-check with the lock held. */
1273 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1274 spin_unlock_irq(&p->sighand->siglock);
1275 return 0;
1276 }
1277 if (!noreap)
1278 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1279 spin_unlock_irq(&p->sighand->siglock);
1280
1281 pid = p->pid;
1282 uid = p->uid;
1283 get_task_struct(p);
1284 read_unlock(&tasklist_lock);
1285
1286 if (!infop) {
1287 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1288 put_task_struct(p);
1289 if (!retval && stat_addr)
1290 retval = put_user(0xffff, stat_addr);
1291 if (!retval)
1292 retval = p->pid;
1293 } else {
1294 retval = wait_noreap_copyout(p, pid, uid,
1295 CLD_CONTINUED, SIGCONT,
1296 infop, ru);
1297 BUG_ON(retval == 0);
1298 }
1299
1300 return retval;
1301 }
1302
1303
1304 static inline int my_ptrace_child(struct task_struct *p)
1305 {
1306 if (!(p->ptrace & PT_PTRACED))
1307 return 0;
1308 if (!(p->ptrace & PT_ATTACHED))
1309 return 1;
1310 /*
1311 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1312 * we are the attacher. If we are the real parent, this is a race
1313 * inside ptrace_attach. It is waiting for the tasklist_lock,
1314 * which we have to switch the parent links, but has already set
1315 * the flags in p->ptrace.
1316 */
1317 return (p->parent != p->real_parent);
1318 }
1319
1320 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1321 int __user *stat_addr, struct rusage __user *ru)
1322 {
1323 DECLARE_WAITQUEUE(wait, current);
1324 struct task_struct *tsk;
1325 int flag, retval;
1326
1327 add_wait_queue(&current->signal->wait_chldexit,&wait);
1328 repeat:
1329 /*
1330 * We will set this flag if we see any child that might later
1331 * match our criteria, even if we are not able to reap it yet.
1332 */
1333 flag = 0;
1334 current->state = TASK_INTERRUPTIBLE;
1335 read_lock(&tasklist_lock);
1336 tsk = current;
1337 do {
1338 struct task_struct *p;
1339 struct list_head *_p;
1340 int ret;
1341
1342 list_for_each(_p,&tsk->children) {
1343 p = list_entry(_p,struct task_struct,sibling);
1344
1345 ret = eligible_child(pid, options, p);
1346 if (!ret)
1347 continue;
1348
1349 switch (p->state) {
1350 case TASK_TRACED:
1351 if (!my_ptrace_child(p))
1352 continue;
1353 /*FALLTHROUGH*/
1354 case TASK_STOPPED:
1355 /*
1356 * It's stopped now, so it might later
1357 * continue, exit, or stop again.
1358 */
1359 flag = 1;
1360 if (!(options & WUNTRACED) &&
1361 !my_ptrace_child(p))
1362 continue;
1363 retval = wait_task_stopped(p, ret == 2,
1364 (options & WNOWAIT),
1365 infop,
1366 stat_addr, ru);
1367 if (retval == -EAGAIN)
1368 goto repeat;
1369 if (retval != 0) /* He released the lock. */
1370 goto end;
1371 break;
1372 default:
1373 // case EXIT_DEAD:
1374 if (p->exit_state == EXIT_DEAD)
1375 continue;
1376 // case EXIT_ZOMBIE:
1377 if (p->exit_state == EXIT_ZOMBIE) {
1378 /*
1379 * Eligible but we cannot release
1380 * it yet:
1381 */
1382 if (ret == 2)
1383 goto check_continued;
1384 if (!likely(options & WEXITED))
1385 continue;
1386 retval = wait_task_zombie(
1387 p, (options & WNOWAIT),
1388 infop, stat_addr, ru);
1389 /* He released the lock. */
1390 if (retval != 0)
1391 goto end;
1392 break;
1393 }
1394 check_continued:
1395 /*
1396 * It's running now, so it might later
1397 * exit, stop, or stop and then continue.
1398 */
1399 flag = 1;
1400 if (!unlikely(options & WCONTINUED))
1401 continue;
1402 retval = wait_task_continued(
1403 p, (options & WNOWAIT),
1404 infop, stat_addr, ru);
1405 if (retval != 0) /* He released the lock. */
1406 goto end;
1407 break;
1408 }
1409 }
1410 if (!flag) {
1411 list_for_each(_p, &tsk->ptrace_children) {
1412 p = list_entry(_p, struct task_struct,
1413 ptrace_list);
1414 if (!eligible_child(pid, options, p))
1415 continue;
1416 flag = 1;
1417 break;
1418 }
1419 }
1420 if (options & __WNOTHREAD)
1421 break;
1422 tsk = next_thread(tsk);
1423 if (tsk->signal != current->signal)
1424 BUG();
1425 } while (tsk != current);
1426
1427 read_unlock(&tasklist_lock);
1428 if (flag) {
1429 retval = 0;
1430 if (options & WNOHANG)
1431 goto end;
1432 retval = -ERESTARTSYS;
1433 if (signal_pending(current))
1434 goto end;
1435 schedule();
1436 goto repeat;
1437 }
1438 retval = -ECHILD;
1439 end:
1440 current->state = TASK_RUNNING;
1441 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1442 if (infop) {
1443 if (retval > 0)
1444 retval = 0;
1445 else {
1446 /*
1447 * For a WNOHANG return, clear out all the fields
1448 * we would set so the user can easily tell the
1449 * difference.
1450 */
1451 if (!retval)
1452 retval = put_user(0, &infop->si_signo);
1453 if (!retval)
1454 retval = put_user(0, &infop->si_errno);
1455 if (!retval)
1456 retval = put_user(0, &infop->si_code);
1457 if (!retval)
1458 retval = put_user(0, &infop->si_pid);
1459 if (!retval)
1460 retval = put_user(0, &infop->si_uid);
1461 if (!retval)
1462 retval = put_user(0, &infop->si_status);
1463 }
1464 }
1465 return retval;
1466 }
1467
1468 asmlinkage long sys_waitid(int which, pid_t pid,
1469 struct siginfo __user *infop, int options,
1470 struct rusage __user *ru)
1471 {
1472 long ret;
1473
1474 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1475 return -EINVAL;
1476 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1477 return -EINVAL;
1478
1479 switch (which) {
1480 case P_ALL:
1481 pid = -1;
1482 break;
1483 case P_PID:
1484 if (pid <= 0)
1485 return -EINVAL;
1486 break;
1487 case P_PGID:
1488 if (pid <= 0)
1489 return -EINVAL;
1490 pid = -pid;
1491 break;
1492 default:
1493 return -EINVAL;
1494 }
1495
1496 ret = do_wait(pid, options, infop, NULL, ru);
1497
1498 /* avoid REGPARM breakage on x86: */
1499 prevent_tail_call(ret);
1500 return ret;
1501 }
1502
1503 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1504 int options, struct rusage __user *ru)
1505 {
1506 long ret;
1507
1508 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1509 __WNOTHREAD|__WCLONE|__WALL))
1510 return -EINVAL;
1511 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1512
1513 /* avoid REGPARM breakage on x86: */
1514 prevent_tail_call(ret);
1515 return ret;
1516 }
1517
1518 #ifdef __ARCH_WANT_SYS_WAITPID
1519
1520 /*
1521 * sys_waitpid() remains for compatibility. waitpid() should be
1522 * implemented by calling sys_wait4() from libc.a.
1523 */
1524 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1525 {
1526 return sys_wait4(pid, stat_addr, options, NULL);
1527 }
1528
1529 #endif