Magellan Linux

Contents of /alx-src/tags/kernel26-2.6.12-alx-r9/kernel/sched.c.orig

Parent Directory Parent Directory | Revision Log Revision Log


Revision 630 - (show annotations) (download)
Wed Mar 4 11:03:09 2009 UTC (15 years, 2 months ago) by niro
File size: 122911 byte(s)
Tag kernel26-2.6.12-alx-r9
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2005-06-07 New staircase scheduling policy by Con Kolivas with help
20 * from William Lee Irwin III, Zwane Mwaikambo & Peter Williams.
21 * Staircase v11.3
22 */
23
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/nmi.h>
27 #include <linux/init.h>
28 #include <asm/uaccess.h>
29 #include <linux/highmem.h>
30 #include <linux/smp_lock.h>
31 #include <asm/mmu_context.h>
32 #include <linux/interrupt.h>
33 #include <linux/completion.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/security.h>
36 #include <linux/notifier.h>
37 #include <linux/profile.h>
38 #include <linux/suspend.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/acct.h>
53 #include <asm/tlb.h>
54
55 #include <asm/unistd.h>
56
57 /*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66 /*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75 /*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define NSJIFFY (1000000000 / HZ) /* One jiffy in ns */
80
81 int sched_compute = 0;
82 /*
83 *This is the time all tasks within the same priority round robin.
84 *compute setting is reserved for dedicated computational scheduling
85 *and has ten times larger intervals.
86 */
87 #define _RR_INTERVAL ((10 * HZ / 1000) ? : 1)
88 #define RR_INTERVAL() (_RR_INTERVAL * (1 + 9 * sched_compute))
89 #define DEF_TIMESLICE (RR_INTERVAL() * 19)
90
91 #define task_hot(p, now, sd) ((long long) ((now) - (p)->timestamp) \
92 < (long long) (sd)->cache_hot_time)
93
94 /*
95 * These are the runqueue data structures:
96 */
97
98 typedef struct runqueue runqueue_t;
99
100 /*
101 * This is the main, per-CPU runqueue data structure.
102 *
103 * Locking rule: those places that want to lock multiple runqueues
104 * (such as the load balancing or the thread migration code), lock
105 * acquire operations must be ordered by ascending &runqueue.
106 */
107 struct runqueue {
108 spinlock_t lock;
109
110 /*
111 * nr_running and cpu_load should be in the same cacheline because
112 * remote CPUs use both these fields when doing load calculation.
113 */
114 unsigned long nr_running;
115 #ifdef CONFIG_SMP
116 unsigned long prio_bias;
117 unsigned long cpu_load;
118 #endif
119 unsigned long long nr_switches;
120
121 /*
122 * This is part of a global counter where only the total sum
123 * over all CPUs matters. A task can increase this counter on
124 * one CPU and if it got migrated afterwards it may decrease
125 * it on another CPU. Always updated under the runqueue lock:
126 */
127 unsigned long nr_uninterruptible;
128
129 unsigned long long timestamp_last_tick;
130 unsigned int cache_ticks, preempted;
131 task_t *curr, *idle;
132 struct mm_struct *prev_mm;
133 unsigned long bitmap[BITS_TO_LONGS(MAX_PRIO + 1)];
134 struct list_head queue[MAX_PRIO];
135 atomic_t nr_iowait;
136
137 #ifdef CONFIG_SMP
138 struct sched_domain *sd;
139
140 /* For active balancing */
141 int active_balance;
142 int push_cpu;
143
144 task_t *migration_thread;
145 struct list_head migration_queue;
146 #endif
147
148 #ifdef CONFIG_SCHEDSTATS
149 /* latency stats */
150 struct sched_info rq_sched_info;
151
152 /* sys_sched_yield() stats */
153 unsigned long yld_exp_empty;
154 unsigned long yld_act_empty;
155 unsigned long yld_both_empty;
156 unsigned long yld_cnt;
157
158 /* schedule() stats */
159 unsigned long sched_switch;
160 unsigned long sched_cnt;
161 unsigned long sched_goidle;
162
163 /* try_to_wake_up() stats */
164 unsigned long ttwu_cnt;
165 unsigned long ttwu_local;
166 #endif
167 };
168
169 static DEFINE_PER_CPU(struct runqueue, runqueues);
170
171 #define for_each_domain(cpu, domain) \
172 for (domain = cpu_rq(cpu)->sd; domain; domain = domain->parent)
173
174 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
175 #define this_rq() (&__get_cpu_var(runqueues))
176 #define task_rq(p) cpu_rq(task_cpu(p))
177 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
178
179 /*
180 * Default context-switch locking:
181 */
182 #ifndef prepare_arch_switch
183 # define prepare_arch_switch(rq, next) do { } while (0)
184 # define finish_arch_switch(rq, next) spin_unlock_irq(&(rq)->lock)
185 # define task_running(rq, p) ((rq)->curr == (p))
186 #endif
187
188 /*
189 * task_rq_lock - lock the runqueue a given task resides on and disable
190 * interrupts. Note the ordering: we can safely lookup the task_rq without
191 * explicitly disabling preemption.
192 */
193 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
194 __acquires(rq->lock)
195 {
196 struct runqueue *rq;
197
198 repeat_lock_task:
199 local_irq_save(*flags);
200 rq = task_rq(p);
201 spin_lock(&rq->lock);
202 if (unlikely(rq != task_rq(p))) {
203 spin_unlock_irqrestore(&rq->lock, *flags);
204 goto repeat_lock_task;
205 }
206 return rq;
207 }
208
209 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
210 __releases(rq->lock)
211 {
212 spin_unlock_irqrestore(&rq->lock, *flags);
213 }
214
215 #ifdef CONFIG_SCHEDSTATS
216 /*
217 * bump this up when changing the output format or the meaning of an existing
218 * format, so that tools can adapt (or abort)
219 */
220 #define SCHEDSTAT_VERSION 11
221
222 static int show_schedstat(struct seq_file *seq, void *v)
223 {
224 int cpu;
225
226 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
227 seq_printf(seq, "timestamp %lu\n", jiffies);
228 for_each_online_cpu(cpu) {
229 runqueue_t *rq = cpu_rq(cpu);
230 #ifdef CONFIG_SMP
231 struct sched_domain *sd;
232 int dcnt = 0;
233 #endif
234
235 /* runqueue-specific stats */
236 seq_printf(seq,
237 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
238 cpu, rq->yld_both_empty,
239 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
240 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
241 rq->ttwu_cnt, rq->ttwu_local,
242 rq->rq_sched_info.cpu_time,
243 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
244
245 seq_printf(seq, "\n");
246
247 #ifdef CONFIG_SMP
248 /* domain-specific stats */
249 for_each_domain(cpu, sd) {
250 enum idle_type itype;
251 char mask_str[NR_CPUS];
252
253 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
254 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
255 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
256 itype++) {
257 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
258 sd->lb_cnt[itype],
259 sd->lb_balanced[itype],
260 sd->lb_failed[itype],
261 sd->lb_imbalance[itype],
262 sd->lb_gained[itype],
263 sd->lb_hot_gained[itype],
264 sd->lb_nobusyq[itype],
265 sd->lb_nobusyg[itype]);
266 }
267 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu\n",
268 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
269 sd->sbe_pushed, sd->sbe_attempts,
270 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
271 }
272 #endif
273 }
274 return 0;
275 }
276
277 static int schedstat_open(struct inode *inode, struct file *file)
278 {
279 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
280 char *buf = kmalloc(size, GFP_KERNEL);
281 struct seq_file *m;
282 int res;
283
284 if (!buf)
285 return -ENOMEM;
286 res = single_open(file, show_schedstat, NULL);
287 if (!res) {
288 m = file->private_data;
289 m->buf = buf;
290 m->size = size;
291 } else
292 kfree(buf);
293 return res;
294 }
295
296 struct file_operations proc_schedstat_operations = {
297 .open = schedstat_open,
298 .read = seq_read,
299 .llseek = seq_lseek,
300 .release = single_release,
301 };
302
303 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
304 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
305 #else /* !CONFIG_SCHEDSTATS */
306 # define schedstat_inc(rq, field) do { } while (0)
307 # define schedstat_add(rq, field, amt) do { } while (0)
308 #endif
309
310 /*
311 * rq_lock - lock a given runqueue and disable interrupts.
312 */
313 static inline runqueue_t *this_rq_lock(void)
314 __acquires(rq->lock)
315 {
316 runqueue_t *rq;
317
318 local_irq_disable();
319 rq = this_rq();
320 spin_lock(&rq->lock);
321
322 return rq;
323 }
324
325 #ifdef CONFIG_SCHED_SMT
326 static int cpu_and_siblings_are_idle(int cpu)
327 {
328 int sib;
329 for_each_cpu_mask(sib, cpu_sibling_map[cpu]) {
330 if (idle_cpu(sib))
331 continue;
332 return 0;
333 }
334
335 return 1;
336 }
337 #else
338 #define cpu_and_siblings_are_idle(A) idle_cpu(A)
339 #endif
340
341 #ifdef CONFIG_SCHEDSTATS
342 /*
343 * Called when a process is dequeued from the active array and given
344 * the cpu. We should note that with the exception of interactive
345 * tasks, the expired queue will become the active queue after the active
346 * queue is empty, without explicitly dequeuing and requeuing tasks in the
347 * expired queue. (Interactive tasks may be requeued directly to the
348 * active queue, thus delaying tasks in the expired queue from running;
349 * see scheduler_tick()).
350 *
351 * This function is only called from sched_info_arrive(), rather than
352 * dequeue_task(). Even though a task may be queued and dequeued multiple
353 * times as it is shuffled about, we're really interested in knowing how
354 * long it was from the *first* time it was queued to the time that it
355 * finally hit a cpu.
356 */
357 static inline void sched_info_dequeued(task_t *t)
358 {
359 t->sched_info.last_queued = 0;
360 }
361
362 /*
363 * Called when a task finally hits the cpu. We can now calculate how
364 * long it was waiting to run. We also note when it began so that we
365 * can keep stats on how long its timeslice is.
366 */
367 static inline void sched_info_arrive(task_t *t)
368 {
369 unsigned long now = jiffies, diff = 0;
370 struct runqueue *rq = task_rq(t);
371
372 if (t->sched_info.last_queued)
373 diff = now - t->sched_info.last_queued;
374 sched_info_dequeued(t);
375 t->sched_info.run_delay += diff;
376 t->sched_info.last_arrival = now;
377 t->sched_info.pcnt++;
378
379 if (!rq)
380 return;
381
382 rq->rq_sched_info.run_delay += diff;
383 rq->rq_sched_info.pcnt++;
384 }
385
386 /*
387 * Called when a process is queued into either the active or expired
388 * array. The time is noted and later used to determine how long we
389 * had to wait for us to reach the cpu. Since the expired queue will
390 * become the active queue after active queue is empty, without dequeuing
391 * and requeuing any tasks, we are interested in queuing to either. It
392 * is unusual but not impossible for tasks to be dequeued and immediately
393 * requeued in the same or another array: this can happen in sched_yield(),
394 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
395 * to runqueue.
396 *
397 * This function is only called from enqueue_task(), but also only updates
398 * the timestamp if it is already not set. It's assumed that
399 * sched_info_dequeued() will clear that stamp when appropriate.
400 */
401 static inline void sched_info_queued(task_t *t)
402 {
403 if (!t->sched_info.last_queued)
404 t->sched_info.last_queued = jiffies;
405 }
406
407 /*
408 * Called when a process ceases being the active-running process, either
409 * voluntarily or involuntarily. Now we can calculate how long we ran.
410 */
411 static inline void sched_info_depart(task_t *t)
412 {
413 struct runqueue *rq = task_rq(t);
414 unsigned long diff = jiffies - t->sched_info.last_arrival;
415
416 t->sched_info.cpu_time += diff;
417
418 if (rq)
419 rq->rq_sched_info.cpu_time += diff;
420 }
421
422 /*
423 * Called when tasks are switched involuntarily due, typically, to expiring
424 * their time slice. (This may also be called when switching to or from
425 * the idle task.) We are only called when prev != next.
426 */
427 static inline void sched_info_switch(task_t *prev, task_t *next)
428 {
429 struct runqueue *rq = task_rq(prev);
430
431 /*
432 * prev now departs the cpu. It's not interesting to record
433 * stats about how efficient we were at scheduling the idle
434 * process, however.
435 */
436 if (prev != rq->idle)
437 sched_info_depart(prev);
438
439 if (next != rq->idle)
440 sched_info_arrive(next);
441 }
442 #else
443 #define sched_info_queued(t) do { } while (0)
444 #define sched_info_switch(t, next) do { } while (0)
445 #endif /* CONFIG_SCHEDSTATS */
446
447 /*
448 * Get nanosecond clock difference without overflowing unsigned long.
449 */
450 static inline unsigned long ns_diff(unsigned long long v1, unsigned long long v2)
451 {
452 unsigned long long vdiff;
453 if (likely(v1 > v2)) {
454 vdiff = v1 - v2;
455 if (vdiff > (1 << 31))
456 vdiff = 1 << 31;
457 } else
458 /*
459 * Rarely the clock appears to go backwards. There should
460 * always be a positive difference so return 1.
461 */
462 vdiff = 1;
463 return (unsigned long)vdiff;
464 }
465
466 static inline int task_queued(task_t *task)
467 {
468 return !list_empty(&task->run_list);
469 }
470
471 /*
472 * Adding/removing a task to/from a runqueue:
473 */
474 static inline void dequeue_task(struct task_struct *p, runqueue_t *rq)
475 {
476 list_del_init(&p->run_list);
477 if (list_empty(rq->queue + p->prio))
478 __clear_bit(p->prio, rq->bitmap);
479 p->ns_debit = 0;
480 }
481
482 static void enqueue_task(struct task_struct *p, runqueue_t *rq)
483 {
484 list_add_tail(&p->run_list, rq->queue + p->prio);
485 __set_bit(p->prio, rq->bitmap);
486 }
487
488 /*
489 * Put task to the end of the run list without the overhead of dequeue
490 * followed by enqueue.
491 */
492 static inline void requeue_task(struct task_struct *p, runqueue_t *rq)
493 {
494 list_move_tail(&p->run_list, rq->queue + p->prio);
495 }
496
497 static inline void enqueue_task_head(struct task_struct *p, runqueue_t *rq)
498 {
499 list_add(&p->run_list, rq->queue + p->prio);
500 __set_bit(p->prio, rq->bitmap);
501 }
502
503 #ifdef CONFIG_SMP
504 static inline void inc_prio_bias(runqueue_t *rq, int prio)
505 {
506 rq->prio_bias += MAX_PRIO - prio;
507 }
508
509 static inline void dec_prio_bias(runqueue_t *rq, int prio)
510 {
511 rq->prio_bias -= MAX_PRIO - prio;
512 }
513 #else
514 static inline void inc_prio_bias(runqueue_t *rq, int prio)
515 {
516 }
517
518 static inline void dec_prio_bias(runqueue_t *rq, int prio)
519 {
520 }
521 #endif
522
523 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
524 {
525 rq->nr_running++;
526 if (rt_task(p)) {
527 if (p != rq->migration_thread)
528 inc_prio_bias(rq, p->prio);
529 } else
530 inc_prio_bias(rq, p->static_prio);
531 }
532
533 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
534 {
535 rq->nr_running--;
536 if (rt_task(p)) {
537 if (p != rq->migration_thread)
538 dec_prio_bias(rq, p->prio);
539 } else
540 dec_prio_bias(rq, p->static_prio);
541 }
542
543 /*
544 * __activate_task - move a task to the runqueue.
545 */
546 static void __activate_task(task_t *p, runqueue_t *rq)
547 {
548 enqueue_task(p, rq);
549 inc_nr_running(p, rq);
550 }
551
552 /*
553 * __activate_idle_task - move idle task to the _front_ of runqueue.
554 */
555 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
556 {
557 enqueue_task_head(p, rq);
558 inc_nr_running(p, rq);
559 }
560
561 /*
562 * burst - extra intervals an interactive task can run for at best priority
563 * instead of descending priorities.
564 */
565 static inline unsigned int burst(task_t *p)
566 {
567 if (likely(!rt_task(p))) {
568 unsigned int task_user_prio = TASK_USER_PRIO(p);
569 return 39 - task_user_prio;
570 } else
571 return p->burst;
572 }
573
574 static void inc_burst(task_t *p)
575 {
576 unsigned int best_burst;
577 best_burst = burst(p);
578 if (p->burst < best_burst)
579 p->burst++;
580 }
581
582 static void dec_burst(task_t *p)
583 {
584 if (p->burst)
585 p->burst--;
586 }
587
588 static inline unsigned int rr_interval(task_t * p)
589 {
590 unsigned int rr_interval = RR_INTERVAL();
591 int nice = TASK_NICE(p);
592
593 if (nice < 0 && !rt_task(p))
594 rr_interval += -(nice);
595 return rr_interval;
596 }
597
598 /*
599 * slice - the duration a task runs before getting requeued at its best
600 * priority and has its burst decremented.
601 */
602 static inline unsigned int slice(task_t *p)
603 {
604 unsigned int slice, rr;
605 slice = rr = rr_interval(p);
606 if (likely(!rt_task(p)))
607 slice += burst(p) * rr;
608 return slice;
609 }
610
611 /*
612 * sched_interactive - sysctl which allows interactive tasks to have bursts
613 */
614 int sched_interactive = 1;
615
616 /*
617 * effective_prio - dynamic priority dependent on burst.
618 * The priority normally decreases by one each RR_INTERVAL.
619 * As the burst increases the priority stays at the top "stair" or
620 * priority for longer.
621 */
622 static int effective_prio(task_t *p)
623 {
624 int prio;
625 unsigned int full_slice, used_slice, first_slice;
626 unsigned int best_burst, rr;
627 if (rt_task(p))
628 return p->prio;
629 if (batch_task(p)) {
630 if (unlikely(p->flags & (PF_NONSLEEP | PF_FREEZE))) {
631 /*
632 * If batch is waking up from in kernel activity
633 * or being frozen, reschedule at a normal priority
634 * to begin with.
635 */
636 p->flags |= PF_YIELDED;
637 return MAX_PRIO - 2;
638 }
639 return MAX_PRIO - 1;
640 }
641
642 best_burst = burst(p);
643 full_slice = slice(p);
644 rr = rr_interval(p);
645 used_slice = full_slice - p->slice;
646 if (p->burst > best_burst)
647 p->burst = best_burst;
648 first_slice = rr;
649 if (sched_interactive && !sched_compute && p->mm)
650 first_slice *= (p->burst + 1);
651 prio = MAX_PRIO - 2 - best_burst;
652
653 if (used_slice < first_slice)
654 return prio;
655 prio += 1 + (used_slice - first_slice) / rr;
656 if (prio >= MAX_PRIO - 2)
657 prio = MAX_PRIO - 2;
658 return prio;
659 }
660
661 static void continue_slice(task_t *p)
662 {
663 unsigned long total_run = NS_TO_JIFFIES(p->totalrun);
664
665 if (total_run >= p->slice) {
666 p->totalrun = 0;
667 dec_burst(p);
668 } else {
669 unsigned int remainder;
670 p->slice -= total_run;
671 remainder = p->slice % rr_interval(p);
672 if (remainder)
673 p->time_slice = remainder;
674 }
675 }
676
677 /*
678 * recalc_task_prio - this checks for tasks that run ultra short timeslices
679 * or have just forked a thread/process and make them continue their old
680 * slice instead of starting a new one at high priority.
681 */
682 static inline void recalc_task_prio(task_t *p, unsigned long long now,
683 unsigned long rq_running)
684 {
685 unsigned long sleep_time = ns_diff(now, p->timestamp);
686
687 /*
688 * Priority is elevated back to best by amount of sleep_time.
689 * sleep_time is scaled down by number of tasks currently running.
690 */
691 if (rq_running > 1)
692 sleep_time /= rq_running;
693
694 p->totalrun += p->runtime;
695 if (NS_TO_JIFFIES(p->totalrun) >= p->slice &&
696 NS_TO_JIFFIES(sleep_time) < p->slice) {
697 p->flags &= ~PF_NONSLEEP;
698 dec_burst(p);
699 goto new_slice;
700 }
701
702 if (p->flags & PF_NONSLEEP) {
703 continue_slice(p);
704 p->flags &= ~PF_NONSLEEP;
705 goto out;
706 }
707
708 if (sched_compute) {
709 continue_slice(p);
710 goto out;
711 }
712
713 if (sleep_time >= p->totalrun) {
714 if (!(p->flags & PF_NONSLEEP))
715 inc_burst(p);
716 goto new_slice;
717 }
718
719 p->totalrun -= sleep_time;
720 continue_slice(p);
721 goto out;
722 new_slice:
723 p->totalrun = 0;
724 out:
725 return;
726 }
727
728 /*
729 * activate_task - move a task to the runqueue and do priority recalculation
730 *
731 * Update all the scheduling statistics stuff. (sleep average
732 * calculation, priority modifiers, etc.)
733 */
734 static void activate_task(task_t *p, runqueue_t *rq, int local)
735 {
736 unsigned long long now = sched_clock();
737 #ifdef CONFIG_SMP
738 if (!local) {
739 /* Compensate for drifting sched_clock */
740 runqueue_t *this_rq = this_rq();
741 now = (now - this_rq->timestamp_last_tick)
742 + rq->timestamp_last_tick;
743 }
744 #endif
745 p->slice = slice(p);
746 p->time_slice = rr_interval(p);
747 recalc_task_prio(p, now, rq->nr_running);
748 p->flags &= ~PF_NONSLEEP;
749 p->prio = effective_prio(p);
750 p->timestamp = now;
751 __activate_task(p, rq);
752 }
753
754 /*
755 * deactivate_task - remove a task from the runqueue.
756 */
757 static inline void deactivate_task(struct task_struct *p, runqueue_t *rq)
758 {
759 dec_nr_running(p, rq);
760 dequeue_task(p, rq);
761 }
762
763 /*
764 * resched_task - mark a task 'to be rescheduled now'.
765 *
766 * On UP this means the setting of the need_resched flag, on SMP it
767 * might also involve a cross-CPU call to trigger the scheduler on
768 * the target CPU.
769 */
770 #ifdef CONFIG_SMP
771 static void resched_task(task_t *p)
772 {
773 int need_resched, nrpolling;
774
775 assert_spin_locked(&task_rq(p)->lock);
776
777 /* minimise the chance of sending an interrupt to poll_idle() */
778 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
779 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
780 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
781
782 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
783 smp_send_reschedule(task_cpu(p));
784 }
785 #else
786 static inline void resched_task(task_t *p)
787 {
788 set_tsk_need_resched(p);
789 }
790 #endif
791
792 /**
793 * task_curr - is this task currently executing on a CPU?
794 * @p: the task in question.
795 */
796 inline int task_curr(const task_t *p)
797 {
798 return cpu_curr(task_cpu(p)) == p;
799 }
800
801 #ifdef CONFIG_SMP
802 enum request_type {
803 REQ_MOVE_TASK,
804 REQ_SET_DOMAIN,
805 };
806
807 typedef struct {
808 struct list_head list;
809 enum request_type type;
810
811 /* For REQ_MOVE_TASK */
812 task_t *task;
813 int dest_cpu;
814
815 /* For REQ_SET_DOMAIN */
816 struct sched_domain *sd;
817
818 struct completion done;
819 } migration_req_t;
820
821 /*
822 * The task's runqueue lock must be held.
823 * Returns true if you have to wait for migration thread.
824 */
825 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
826 {
827 runqueue_t *rq = task_rq(p);
828
829 /*
830 * If the task is not on a runqueue (and not running), then
831 * it is sufficient to simply update the task's cpu field.
832 */
833 if (!task_queued(p) && !task_running(rq, p)) {
834 set_task_cpu(p, dest_cpu);
835 return 0;
836 }
837
838 init_completion(&req->done);
839 req->type = REQ_MOVE_TASK;
840 req->task = p;
841 req->dest_cpu = dest_cpu;
842 list_add(&req->list, &rq->migration_queue);
843 return 1;
844 }
845
846 /*
847 * wait_task_inactive - wait for a thread to unschedule.
848 *
849 * The caller must ensure that the task *will* unschedule sometime soon,
850 * else this function might spin for a *long* time. This function can't
851 * be called with interrupts off, or it may introduce deadlock with
852 * smp_call_function() if an IPI is sent by the same process we are
853 * waiting to become inactive.
854 */
855 void wait_task_inactive(task_t * p)
856 {
857 unsigned long flags;
858 runqueue_t *rq;
859 int preempted;
860
861 repeat:
862 rq = task_rq_lock(p, &flags);
863 /* Must be off runqueue entirely, not preempted. */
864 if (unlikely(task_queued(p) || task_running(rq, p))) {
865 /* If it's preempted, we yield. It could be a while. */
866 preempted = !task_running(rq, p);
867 task_rq_unlock(rq, &flags);
868 cpu_relax();
869 if (preempted)
870 yield();
871 goto repeat;
872 }
873 task_rq_unlock(rq, &flags);
874 }
875
876 /***
877 * kick_process - kick a running thread to enter/exit the kernel
878 * @p: the to-be-kicked thread
879 *
880 * Cause a process which is running on another CPU to enter
881 * kernel-mode, without any delay. (to get signals handled.)
882 *
883 * NOTE: this function doesnt have to take the runqueue lock,
884 * because all it wants to ensure is that the remote task enters
885 * the kernel. If the IPI races and the task has been migrated
886 * to another CPU then no harm is done and the purpose has been
887 * achieved as well.
888 */
889 void kick_process(task_t *p)
890 {
891 int cpu;
892
893 preempt_disable();
894 cpu = task_cpu(p);
895 if ((cpu != smp_processor_id()) && task_curr(p))
896 smp_send_reschedule(cpu);
897 preempt_enable();
898 }
899
900 /*
901 * Return a low guess at the load of a migration-source cpu.
902 *
903 * We want to under-estimate the load of migration sources, to
904 * balance conservatively.
905 */
906 static inline unsigned long __source_load(int cpu, enum idle_type idle)
907 {
908 runqueue_t *rq = cpu_rq(cpu);
909 unsigned long source_load, cpu_load = rq->cpu_load,
910 load_now = rq->nr_running * SCHED_LOAD_SCALE;
911
912 source_load = min(cpu_load, load_now);
913
914 if (rq->nr_running > 1 || (idle == NOT_IDLE && rq->nr_running))
915 /*
916 * If we are busy rebalancing the load is biased by
917 * priority to create 'nice' support across cpus. When
918 * idle rebalancing we should only bias the source_load if
919 * there is more than one task running on that queue to
920 * prevent idle rebalance from trying to pull tasks from a
921 * queue with only one running task.
922 */
923 source_load = source_load * rq->prio_bias / rq->nr_running;
924
925 return source_load;
926 }
927
928 static inline unsigned long source_load(int cpu)
929 {
930 return __source_load(cpu, NOT_IDLE);
931 }
932
933 /*
934 * Return a high guess at the load of a migration-target cpu
935 */
936 static inline unsigned long __target_load(int cpu, enum idle_type idle)
937 {
938 runqueue_t *rq = cpu_rq(cpu);
939 unsigned long target_load, cpu_load = rq->cpu_load,
940 load_now = rq->nr_running * SCHED_LOAD_SCALE;
941
942 target_load = max(cpu_load, load_now);
943
944 if (rq->nr_running > 1 || (idle == NOT_IDLE && rq->nr_running))
945 target_load = target_load * rq->prio_bias / rq->nr_running;
946
947 return target_load;
948 }
949
950 static inline unsigned long target_load(int cpu)
951 {
952 return __target_load(cpu, NOT_IDLE);
953 }
954 #endif
955
956 /*
957 * wake_idle() will wake a task on an idle cpu if task->cpu is
958 * not idle and an idle cpu is available. The span of cpus to
959 * search starts with cpus closest then further out as needed,
960 * so we always favor a closer, idle cpu.
961 *
962 * Returns the CPU we should wake onto.
963 */
964 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
965 static inline int wake_idle(int cpu, task_t *p)
966 {
967 cpumask_t tmp;
968 struct sched_domain *sd;
969 int i;
970
971 if (idle_cpu(cpu))
972 return cpu;
973
974 for_each_domain(cpu, sd) {
975 if (sd->flags & SD_WAKE_IDLE) {
976 cpus_and(tmp, sd->span, cpu_online_map);
977 cpus_and(tmp, tmp, p->cpus_allowed);
978 for_each_cpu_mask(i, tmp) {
979 if (idle_cpu(i))
980 return i;
981 }
982 }
983 else break;
984 }
985 return cpu;
986 }
987 #else
988 static inline int wake_idle(int cpu, task_t *p)
989 {
990 return cpu;
991 }
992 #endif
993
994 /*
995 * cache_delay is the time preemption is delayed in sched_compute mode
996 * and is set to a nominal 10ms.
997 */
998 static int cache_delay = 10 * HZ / 1000;
999
1000 /*
1001 * Check to see if p preempts rq->curr and resched if it does. In compute
1002 * mode we do not preempt for at least cache_delay and set rq->preempted.
1003 */
1004 static void preempt(task_t *p, runqueue_t *rq)
1005 {
1006 if (p->prio >= rq->curr->prio)
1007 return;
1008 if (!sched_compute || rq->cache_ticks >= cache_delay ||
1009 !p->mm || rt_task(p))
1010 resched_task(rq->curr);
1011 rq->preempted = 1;
1012 }
1013
1014 /***
1015 * try_to_wake_up - wake up a thread
1016 * @p: the to-be-woken-up thread
1017 * @state: the mask of task states that can be woken
1018 * @sync: do a synchronous wakeup?
1019 *
1020 * Put it on the run-queue if it's not already there. The "current"
1021 * thread is always on the run-queue (except when the actual
1022 * re-schedule is in progress), and as such you're allowed to do
1023 * the simpler "current->state = TASK_RUNNING" to mark yourself
1024 * runnable without the overhead of this.
1025 *
1026 * returns failure only if the task is already active.
1027 */
1028 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1029 {
1030 int cpu, this_cpu, success = 0;
1031 unsigned long flags;
1032 long old_state;
1033 runqueue_t *rq;
1034 #ifdef CONFIG_SMP
1035 unsigned long load, this_load;
1036 struct sched_domain *sd;
1037 int new_cpu;
1038 #endif
1039
1040 rq = task_rq_lock(p, &flags);
1041 old_state = p->state;
1042 if (!(old_state & state))
1043 goto out;
1044
1045 if (task_queued(p))
1046 goto out_running;
1047
1048 cpu = task_cpu(p);
1049 this_cpu = smp_processor_id();
1050
1051 #ifdef CONFIG_SMP
1052 if (unlikely(task_running(rq, p)))
1053 goto out_activate;
1054
1055 #ifdef CONFIG_SCHEDSTATS
1056 schedstat_inc(rq, ttwu_cnt);
1057 if (cpu == this_cpu) {
1058 schedstat_inc(rq, ttwu_local);
1059 } else {
1060 for_each_domain(this_cpu, sd) {
1061 if (cpu_isset(cpu, sd->span)) {
1062 schedstat_inc(sd, ttwu_wake_remote);
1063 break;
1064 }
1065 }
1066 }
1067 #endif
1068
1069 new_cpu = cpu;
1070 if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1071 goto out_set_cpu;
1072
1073 load = source_load(cpu);
1074 this_load = target_load(this_cpu);
1075
1076 /*
1077 * If sync wakeup then subtract the (maximum possible) effect of
1078 * the currently running task from the load of the current CPU:
1079 */
1080 if (sync)
1081 this_load -= SCHED_LOAD_SCALE;
1082
1083 /* Don't pull the task off an idle CPU to a busy one */
1084 if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)
1085 goto out_set_cpu;
1086
1087 new_cpu = this_cpu; /* Wake to this CPU if we can */
1088
1089 /*
1090 * Scan domains for affine wakeup and passive balancing
1091 * possibilities.
1092 */
1093 for_each_domain(this_cpu, sd) {
1094 unsigned int imbalance;
1095 /*
1096 * Start passive balancing when half the imbalance_pct
1097 * limit is reached.
1098 */
1099 imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;
1100
1101 if ((sd->flags & SD_WAKE_AFFINE) &&
1102 !task_hot(p, rq->timestamp_last_tick, sd)) {
1103 /*
1104 * This domain has SD_WAKE_AFFINE and p is cache cold
1105 * in this domain.
1106 */
1107 if (cpu_isset(cpu, sd->span)) {
1108 schedstat_inc(sd, ttwu_move_affine);
1109 goto out_set_cpu;
1110 }
1111 } else if ((sd->flags & SD_WAKE_BALANCE) &&
1112 imbalance*this_load <= 100*load) {
1113 /*
1114 * This domain has SD_WAKE_BALANCE and there is
1115 * an imbalance.
1116 */
1117 if (cpu_isset(cpu, sd->span)) {
1118 schedstat_inc(sd, ttwu_move_balance);
1119 goto out_set_cpu;
1120 }
1121 }
1122 }
1123
1124 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1125 out_set_cpu:
1126 new_cpu = wake_idle(new_cpu, p);
1127 if (new_cpu != cpu) {
1128 set_task_cpu(p, new_cpu);
1129 task_rq_unlock(rq, &flags);
1130 /* might preempt at this point */
1131 rq = task_rq_lock(p, &flags);
1132 old_state = p->state;
1133 if (!(old_state & state))
1134 goto out;
1135 if (task_queued(p))
1136 goto out_running;
1137
1138 this_cpu = smp_processor_id();
1139 cpu = task_cpu(p);
1140 }
1141
1142 out_activate:
1143 #endif /* CONFIG_SMP */
1144 if (old_state == TASK_UNINTERRUPTIBLE)
1145 rq->nr_uninterruptible--;
1146
1147 /*
1148 * Tasks that have marked their sleep as noninteractive get
1149 * woken up without their sleep counting.
1150 */
1151 if (old_state & TASK_NONINTERACTIVE)
1152 p->flags |= PF_NONSLEEP;
1153
1154 /*
1155 * Sync wakeups (i.e. those types of wakeups where the waker
1156 * has indicated that it will leave the CPU in short order)
1157 * don't trigger a preemption, if the woken up task will run on
1158 * this cpu. (in this case the 'I will reschedule' promise of
1159 * the waker guarantees that the freshly woken up task is going
1160 * to be considered on this CPU.)
1161 */
1162 activate_task(p, rq, cpu == this_cpu);
1163 if (!sync || cpu != this_cpu) {
1164 preempt(p, rq);
1165 }
1166 success = 1;
1167
1168 out_running:
1169 p->state = TASK_RUNNING;
1170 out:
1171 task_rq_unlock(rq, &flags);
1172
1173 return success;
1174 }
1175
1176 int fastcall wake_up_process(task_t * p)
1177 {
1178 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1179 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1180 }
1181
1182 EXPORT_SYMBOL(wake_up_process);
1183
1184 int fastcall wake_up_state(task_t *p, unsigned int state)
1185 {
1186 return try_to_wake_up(p, state, 0);
1187 }
1188
1189 #ifdef CONFIG_SMP
1190 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1191 struct sched_domain *sd);
1192 #endif
1193
1194 /*
1195 * Perform scheduler related setup for a newly forked process p.
1196 * p is forked by current.
1197 */
1198 void fastcall sched_fork(task_t *p)
1199 {
1200 /*
1201 * We mark the process as running here, but have not actually
1202 * inserted it onto the runqueue yet. This guarantees that
1203 * nobody will actually run it, and a signal or other external
1204 * event cannot wake it up and insert it on the runqueue either.
1205 */
1206 p->state = TASK_RUNNING;
1207 INIT_LIST_HEAD(&p->run_list);
1208 spin_lock_init(&p->switch_lock);
1209 #ifdef CONFIG_SCHEDSTATS
1210 memset(&p->sched_info, 0, sizeof(p->sched_info));
1211 #endif
1212 #ifdef CONFIG_PREEMPT
1213 /*
1214 * During context-switch we hold precisely one spinlock, which
1215 * schedule_tail drops. (in the common case it's this_rq()->lock,
1216 * but it also can be p->switch_lock.) So we compensate with a count
1217 * of 1. Also, we want to start with kernel preemption disabled.
1218 */
1219 p->thread_info->preempt_count = 1;
1220 #endif
1221 }
1222
1223 /*
1224 * wake_up_new_task - wake up a newly created task for the first time.
1225 *
1226 * This function will do some initial scheduler statistics housekeeping
1227 * that must be done for every newly created context, then puts the task
1228 * on the runqueue and wakes it.
1229 */
1230 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1231 {
1232 unsigned long flags;
1233 int this_cpu, cpu;
1234 runqueue_t *rq, *this_rq;
1235
1236 rq = task_rq_lock(p, &flags);
1237 cpu = task_cpu(p);
1238 this_cpu = smp_processor_id();
1239
1240 BUG_ON(p->state != TASK_RUNNING);
1241
1242 /*
1243 * Forked process gets no burst to prevent fork bombs.
1244 */
1245 p->burst = 0;
1246
1247 if (likely(cpu == this_cpu)) {
1248 current->flags |= PF_NONSLEEP;
1249 activate_task(p, rq, 1);
1250 if (!(clone_flags & CLONE_VM))
1251 /*
1252 * The VM isn't cloned, so we're in a good position to
1253 * do child-runs-first in anticipation of an exec. This
1254 * usually avoids a lot of COW overhead.
1255 */
1256 set_need_resched();
1257 /*
1258 * We skip the following code due to cpu == this_cpu
1259 *
1260 * task_rq_unlock(rq, &flags);
1261 * this_rq = task_rq_lock(current, &flags);
1262 */
1263 this_rq = rq;
1264 } else {
1265 this_rq = cpu_rq(this_cpu);
1266
1267 /*
1268 * Not the local CPU - must adjust timestamp. This should
1269 * get optimised away in the !CONFIG_SMP case.
1270 */
1271 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1272 + rq->timestamp_last_tick;
1273 activate_task(p, rq, 0);
1274 preempt(p, rq);
1275
1276 /*
1277 * Parent and child are on different CPUs, now get the
1278 * parent runqueue to update the parent's ->flags:
1279 */
1280 task_rq_unlock(rq, &flags);
1281 this_rq = task_rq_lock(current, &flags);
1282 current->flags |= PF_NONSLEEP;
1283 }
1284 task_rq_unlock(this_rq, &flags);
1285 }
1286
1287 /**
1288 * finish_task_switch - clean up after a task-switch
1289 * @prev: the thread we just switched away from.
1290 *
1291 * We enter this with the runqueue still locked, and finish_arch_switch()
1292 * will unlock it along with doing any other architecture-specific cleanup
1293 * actions.
1294 *
1295 * Note that we may have delayed dropping an mm in context_switch(). If
1296 * so, we finish that here outside of the runqueue lock. (Doing it
1297 * with the lock held can cause deadlocks; see schedule() for
1298 * details.)
1299 */
1300 static inline void finish_task_switch(task_t *prev)
1301 __releases(rq->lock)
1302 {
1303 runqueue_t *rq = this_rq();
1304 struct mm_struct *mm = rq->prev_mm;
1305 unsigned long prev_task_flags;
1306
1307 rq->prev_mm = NULL;
1308
1309 /*
1310 * A task struct has one reference for the use as "current".
1311 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1312 * calls schedule one last time. The schedule call will never return,
1313 * and the scheduled task must drop that reference.
1314 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1315 * still held, otherwise prev could be scheduled on another cpu, die
1316 * there before we look at prev->state, and then the reference would
1317 * be dropped twice.
1318 * Manfred Spraul <manfred@colorfullife.com>
1319 */
1320 prev_task_flags = prev->flags;
1321 finish_arch_switch(rq, prev);
1322 if (mm)
1323 mmdrop(mm);
1324 if (unlikely(prev_task_flags & PF_DEAD))
1325 put_task_struct(prev);
1326 }
1327
1328 /**
1329 * schedule_tail - first thing a freshly forked thread must call.
1330 * @prev: the thread we just switched away from.
1331 */
1332 asmlinkage void schedule_tail(task_t *prev)
1333 __releases(rq->lock)
1334 {
1335 finish_task_switch(prev);
1336
1337 if (current->set_child_tid)
1338 put_user(current->pid, current->set_child_tid);
1339 }
1340
1341 /*
1342 * context_switch - switch to the new MM and the new
1343 * thread's register state.
1344 */
1345 static inline
1346 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1347 {
1348 struct mm_struct *mm = next->mm;
1349 struct mm_struct *oldmm = prev->active_mm;
1350
1351 if (unlikely(!mm)) {
1352 next->active_mm = oldmm;
1353 atomic_inc(&oldmm->mm_count);
1354 enter_lazy_tlb(oldmm, next);
1355 } else
1356 switch_mm(oldmm, mm, next);
1357
1358 if (unlikely(!prev->mm)) {
1359 prev->active_mm = NULL;
1360 WARN_ON(rq->prev_mm);
1361 rq->prev_mm = oldmm;
1362 }
1363
1364 /* Here we just switch the register state and the stack. */
1365 switch_to(prev, next, prev);
1366
1367 return prev;
1368 }
1369
1370 /*
1371 * nr_running, nr_uninterruptible and nr_context_switches:
1372 *
1373 * externally visible scheduler statistics: current number of runnable
1374 * threads, current number of uninterruptible-sleeping threads, total
1375 * number of context switches performed since bootup.
1376 */
1377 unsigned long nr_running(void)
1378 {
1379 unsigned long i, sum = 0;
1380
1381 for_each_online_cpu(i)
1382 sum += cpu_rq(i)->nr_running;
1383
1384 return sum;
1385 }
1386
1387 unsigned long nr_uninterruptible(void)
1388 {
1389 unsigned long i, sum = 0;
1390
1391 for_each_cpu(i)
1392 sum += cpu_rq(i)->nr_uninterruptible;
1393
1394 /*
1395 * Since we read the counters lockless, it might be slightly
1396 * inaccurate. Do not allow it to go below zero though:
1397 */
1398 if (unlikely((long)sum < 0))
1399 sum = 0;
1400
1401 return sum;
1402 }
1403
1404 unsigned long long nr_context_switches(void)
1405 {
1406 unsigned long long i, sum = 0;
1407
1408 for_each_cpu(i)
1409 sum += cpu_rq(i)->nr_switches;
1410
1411 return sum;
1412 }
1413
1414 unsigned long nr_iowait(void)
1415 {
1416 unsigned long i, sum = 0;
1417
1418 for_each_cpu(i)
1419 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1420
1421 return sum;
1422 }
1423
1424 #ifdef CONFIG_SMP
1425
1426 /*
1427 * double_rq_lock - safely lock two runqueues
1428 *
1429 * Note this does not disable interrupts like task_rq_lock,
1430 * you need to do so manually before calling.
1431 */
1432 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1433 __acquires(rq1->lock)
1434 __acquires(rq2->lock)
1435 {
1436 if (rq1 == rq2) {
1437 spin_lock(&rq1->lock);
1438 __acquire(rq2->lock); /* Fake it out ;) */
1439 } else {
1440 if (rq1 < rq2) {
1441 spin_lock(&rq1->lock);
1442 spin_lock(&rq2->lock);
1443 } else {
1444 spin_lock(&rq2->lock);
1445 spin_lock(&rq1->lock);
1446 }
1447 }
1448 }
1449
1450 /*
1451 * double_rq_unlock - safely unlock two runqueues
1452 *
1453 * Note this does not restore interrupts like task_rq_unlock,
1454 * you need to do so manually after calling.
1455 */
1456 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1457 __releases(rq1->lock)
1458 __releases(rq2->lock)
1459 {
1460 spin_unlock(&rq1->lock);
1461 if (rq1 != rq2)
1462 spin_unlock(&rq2->lock);
1463 else
1464 __release(rq2->lock);
1465 }
1466
1467 /*
1468 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1469 */
1470 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1471 __releases(this_rq->lock)
1472 __acquires(busiest->lock)
1473 __acquires(this_rq->lock)
1474 {
1475 if (unlikely(!spin_trylock(&busiest->lock))) {
1476 if (busiest < this_rq) {
1477 spin_unlock(&this_rq->lock);
1478 spin_lock(&busiest->lock);
1479 spin_lock(&this_rq->lock);
1480 } else
1481 spin_lock(&busiest->lock);
1482 }
1483 }
1484
1485 /*
1486 * find_idlest_cpu - find the least busy runqueue.
1487 */
1488 static int find_idlest_cpu(struct task_struct *p, int this_cpu,
1489 struct sched_domain *sd)
1490 {
1491 unsigned long load, min_load, this_load;
1492 int i, min_cpu;
1493 cpumask_t mask;
1494
1495 min_cpu = UINT_MAX;
1496 min_load = ULONG_MAX;
1497
1498 cpus_and(mask, sd->span, p->cpus_allowed);
1499
1500 for_each_cpu_mask(i, mask) {
1501 load = target_load(i);
1502
1503 if (load < min_load) {
1504 min_cpu = i;
1505 min_load = load;
1506
1507 /* break out early on an idle CPU: */
1508 if (!min_load)
1509 break;
1510 }
1511 }
1512
1513 /* add +1 to account for the new task */
1514 this_load = source_load(this_cpu) + SCHED_LOAD_SCALE;
1515
1516 /*
1517 * Would with the addition of the new task to the
1518 * current CPU there be an imbalance between this
1519 * CPU and the idlest CPU?
1520 *
1521 * Use half of the balancing threshold - new-context is
1522 * a good opportunity to balance.
1523 */
1524 if (min_load*(100 + (sd->imbalance_pct-100)/2) < this_load*100)
1525 return min_cpu;
1526
1527 return this_cpu;
1528 }
1529
1530 /*
1531 * If dest_cpu is allowed for this process, migrate the task to it.
1532 * This is accomplished by forcing the cpu_allowed mask to only
1533 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1534 * the cpu_allowed mask is restored.
1535 */
1536 static inline void sched_migrate_task(task_t *p, int dest_cpu)
1537 {
1538 migration_req_t req;
1539 runqueue_t *rq;
1540 unsigned long flags;
1541
1542 rq = task_rq_lock(p, &flags);
1543 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1544 || unlikely(cpu_is_offline(dest_cpu)))
1545 goto out;
1546
1547 /* force the process onto the specified CPU */
1548 if (migrate_task(p, dest_cpu, &req)) {
1549 /* Need to wait for migration thread (might exit: take ref). */
1550 struct task_struct *mt = rq->migration_thread;
1551 get_task_struct(mt);
1552 task_rq_unlock(rq, &flags);
1553 wake_up_process(mt);
1554 put_task_struct(mt);
1555 wait_for_completion(&req.done);
1556 return;
1557 }
1558 out:
1559 task_rq_unlock(rq, &flags);
1560 }
1561
1562 /*
1563 * sched_exec(): find the highest-level, exec-balance-capable
1564 * domain and try to migrate the task to the least loaded CPU.
1565 *
1566 * execve() is a valuable balancing opportunity, because at this point
1567 * the task has the smallest effective memory and cache footprint.
1568 */
1569 void sched_exec(void)
1570 {
1571 struct sched_domain *tmp, *sd = NULL;
1572 int new_cpu, this_cpu = get_cpu();
1573
1574 /* Prefer the current CPU if there's only this task running */
1575 if (this_rq()->nr_running <= 1)
1576 goto out;
1577
1578 for_each_domain(this_cpu, tmp)
1579 if (tmp->flags & SD_BALANCE_EXEC)
1580 sd = tmp;
1581
1582 if (sd) {
1583 schedstat_inc(sd, sbe_attempts);
1584 new_cpu = find_idlest_cpu(current, this_cpu, sd);
1585 if (new_cpu != this_cpu) {
1586 schedstat_inc(sd, sbe_pushed);
1587 put_cpu();
1588 sched_migrate_task(current, new_cpu);
1589 return;
1590 }
1591 }
1592 out:
1593 put_cpu();
1594 }
1595
1596 /*
1597 * pull_task - move a task from a remote runqueue to the local runqueue.
1598 * Both runqueues must be locked.
1599 */
1600 static inline void pull_task(runqueue_t *src_rq, task_t *p,
1601 runqueue_t *this_rq, int this_cpu)
1602 {
1603 dequeue_task(p, src_rq);
1604 dec_nr_running(p, src_rq);
1605 set_task_cpu(p, this_cpu);
1606 inc_nr_running(p, this_rq);
1607 enqueue_task(p, this_rq);
1608 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1609 + this_rq->timestamp_last_tick;
1610 /*
1611 * Note that idle threads have a prio of MAX_PRIO, for this test
1612 * to be always true for them.
1613 */
1614 preempt(p, this_rq);
1615 }
1616
1617 /*
1618 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1619 */
1620 static inline int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1621 struct sched_domain *sd, enum idle_type idle)
1622 {
1623 /*
1624 * We do not migrate tasks that are:
1625 * 1) running (obviously), or
1626 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1627 * 3) are cache-hot on their current CPU.
1628 */
1629 if (task_running(rq, p))
1630 return 0;
1631 if (!cpu_isset(this_cpu, p->cpus_allowed))
1632 return 0;
1633
1634 /*
1635 * Aggressive migration if:
1636 * 1) the [whole] cpu is idle, or
1637 * 2) too many balance attempts have failed.
1638 */
1639
1640 if (cpu_and_siblings_are_idle(this_cpu) || \
1641 sd->nr_balance_failed > sd->cache_nice_tries)
1642 return 1;
1643
1644 if (task_hot(p, rq->timestamp_last_tick, sd))
1645 return 0;
1646 return 1;
1647 }
1648
1649 /*
1650 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1651 * as part of a balancing operation within "domain". Returns the number of
1652 * tasks moved.
1653 *
1654 * Called with both runqueues locked.
1655 */
1656 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1657 unsigned long max_nr_move, struct sched_domain *sd,
1658 enum idle_type idle)
1659 {
1660 struct list_head *head, *curr;
1661 int idx, pulled = 0;
1662 task_t *tmp;
1663
1664 if (max_nr_move <= 0 || busiest->nr_running <= 1)
1665 goto out;
1666
1667 /* Start searching at priority 0: */
1668 idx = 0;
1669 skip_bitmap:
1670 if (!idx)
1671 idx = sched_find_first_bit(busiest->bitmap);
1672 else
1673 idx = find_next_bit(busiest->bitmap, MAX_PRIO, idx);
1674 if (idx >= MAX_PRIO)
1675 goto out;
1676
1677 head = busiest->queue + idx;
1678 curr = head->prev;
1679 skip_queue:
1680 tmp = list_entry(curr, task_t, run_list);
1681
1682 curr = curr->prev;
1683
1684 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle)) {
1685 if (curr != head)
1686 goto skip_queue;
1687 idx++;
1688 goto skip_bitmap;
1689 }
1690
1691 #ifdef CONFIG_SCHEDSTATS
1692 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1693 schedstat_inc(sd, lb_hot_gained[idle]);
1694 #endif
1695
1696 pull_task(busiest, tmp, this_rq, this_cpu);
1697 pulled++;
1698
1699 /* We only want to steal up to the prescribed number of tasks. */
1700 if (pulled < max_nr_move) {
1701 if (curr != head)
1702 goto skip_queue;
1703 idx++;
1704 goto skip_bitmap;
1705 }
1706 out:
1707 /*
1708 * Right now, this is the only place pull_task() is called,
1709 * so we can safely collect pull_task() stats here rather than
1710 * inside pull_task().
1711 */
1712 schedstat_add(sd, lb_gained[idle], pulled);
1713 return pulled;
1714 }
1715
1716 /*
1717 * find_busiest_group finds and returns the busiest CPU group within the
1718 * domain. It calculates and returns the number of tasks which should be
1719 * moved to restore balance via the imbalance parameter.
1720 */
1721 static inline struct sched_group *
1722 find_busiest_group(struct sched_domain *sd, int this_cpu,
1723 unsigned long *imbalance, enum idle_type idle)
1724 {
1725 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1726 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1727
1728 max_load = this_load = total_load = total_pwr = 0;
1729
1730 do {
1731 unsigned long load;
1732 int local_group;
1733 int i;
1734
1735 local_group = cpu_isset(this_cpu, group->cpumask);
1736
1737 /* Tally up the load of all CPUs in the group */
1738 avg_load = 0;
1739
1740 for_each_cpu_mask(i, group->cpumask) {
1741 /* Bias balancing toward cpus of our domain */
1742 if (local_group)
1743 load = __target_load(i, idle);
1744 else
1745 load = __source_load(i, idle);
1746
1747 avg_load += load;
1748 }
1749
1750 total_load += avg_load;
1751 total_pwr += group->cpu_power;
1752
1753 /* Adjust by relative CPU power of the group */
1754 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1755
1756 if (local_group) {
1757 this_load = avg_load;
1758 this = group;
1759 goto nextgroup;
1760 } else if (avg_load > max_load) {
1761 max_load = avg_load;
1762 busiest = group;
1763 }
1764 nextgroup:
1765 group = group->next;
1766 } while (group != sd->groups);
1767
1768 if (!busiest || this_load >= max_load)
1769 goto out_balanced;
1770
1771 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1772
1773 if (this_load >= avg_load ||
1774 100*max_load <= sd->imbalance_pct*this_load)
1775 goto out_balanced;
1776
1777 /*
1778 * We're trying to get all the cpus to the average_load, so we don't
1779 * want to push ourselves above the average load, nor do we wish to
1780 * reduce the max loaded cpu below the average load, as either of these
1781 * actions would just result in more rebalancing later, and ping-pong
1782 * tasks around. Thus we look for the minimum possible imbalance.
1783 * Negative imbalances (*we* are more loaded than anyone else) will
1784 * be counted as no imbalance for these purposes -- we can't fix that
1785 * by pulling tasks to us. Be careful of negative numbers as they'll
1786 * appear as very large values with unsigned longs.
1787 */
1788 /* How much load to actually move to equalise the imbalance */
1789 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1790 (avg_load - this_load) * this->cpu_power)
1791 / SCHED_LOAD_SCALE;
1792
1793 if (*imbalance < SCHED_LOAD_SCALE) {
1794 unsigned long pwr_now = 0, pwr_move = 0;
1795 unsigned long tmp;
1796
1797 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1798 *imbalance = 1;
1799 return busiest;
1800 }
1801
1802 /*
1803 * OK, we don't have enough imbalance to justify moving tasks,
1804 * however we may be able to increase total CPU power used by
1805 * moving them.
1806 */
1807
1808 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1809 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1810 pwr_now /= SCHED_LOAD_SCALE;
1811
1812 /* Amount of load we'd subtract */
1813 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1814 if (max_load > tmp)
1815 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1816 max_load - tmp);
1817
1818 /* Amount of load we'd add */
1819 if (max_load*busiest->cpu_power <
1820 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1821 tmp = max_load*busiest->cpu_power/this->cpu_power;
1822 else
1823 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1824 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1825 pwr_move /= SCHED_LOAD_SCALE;
1826
1827 /* Move if we gain throughput */
1828 if (pwr_move <= pwr_now)
1829 goto out_balanced;
1830
1831 *imbalance = 1;
1832 return busiest;
1833 }
1834
1835 /* Get rid of the scaling factor, rounding down as we divide */
1836 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1837
1838 return busiest;
1839
1840 out_balanced:
1841 if (busiest && (idle == NEWLY_IDLE ||
1842 (idle == SCHED_IDLE && max_load > SCHED_LOAD_SCALE)) ) {
1843 *imbalance = 1;
1844 return busiest;
1845 }
1846
1847 *imbalance = 0;
1848 return NULL;
1849 }
1850
1851 /*
1852 * find_busiest_queue - find the busiest runqueue among the cpus in group.
1853 */
1854 static runqueue_t *find_busiest_queue(struct sched_group *group,
1855 enum idle_type idle)
1856 {
1857 unsigned long load, max_load = 0;
1858 runqueue_t *busiest = NULL;
1859 int i;
1860
1861 for_each_cpu_mask(i, group->cpumask) {
1862 load = __source_load(i, idle);
1863
1864 if (load > max_load) {
1865 max_load = load;
1866 busiest = cpu_rq(i);
1867 }
1868 }
1869
1870 return busiest;
1871 }
1872
1873 /*
1874 * Check this_cpu to ensure it is balanced within domain. Attempt to move
1875 * tasks if there is an imbalance.
1876 *
1877 * Called with this_rq unlocked.
1878 */
1879 static inline int load_balance(int this_cpu, runqueue_t *this_rq,
1880 struct sched_domain *sd, enum idle_type idle)
1881 {
1882 struct sched_group *group;
1883 runqueue_t *busiest;
1884 unsigned long imbalance;
1885 int nr_moved;
1886
1887 spin_lock(&this_rq->lock);
1888 schedstat_inc(sd, lb_cnt[idle]);
1889
1890 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
1891 if (!group) {
1892 schedstat_inc(sd, lb_nobusyg[idle]);
1893 goto out_balanced;
1894 }
1895
1896 busiest = find_busiest_queue(group, idle);
1897 if (!busiest) {
1898 schedstat_inc(sd, lb_nobusyq[idle]);
1899 goto out_balanced;
1900 }
1901
1902 /*
1903 * This should be "impossible", but since load
1904 * balancing is inherently racy and statistical,
1905 * it could happen in theory.
1906 */
1907 if (unlikely(busiest == this_rq)) {
1908 WARN_ON(1);
1909 goto out_balanced;
1910 }
1911
1912 schedstat_add(sd, lb_imbalance[idle], imbalance);
1913
1914 nr_moved = 0;
1915 if (busiest->nr_running > 1) {
1916 /*
1917 * Attempt to move tasks. If find_busiest_group has found
1918 * an imbalance but busiest->nr_running <= 1, the group is
1919 * still unbalanced. nr_moved simply stays zero, so it is
1920 * correctly treated as an imbalance.
1921 */
1922 double_lock_balance(this_rq, busiest);
1923 nr_moved = move_tasks(this_rq, this_cpu, busiest,
1924 imbalance, sd, idle);
1925 spin_unlock(&busiest->lock);
1926 }
1927 spin_unlock(&this_rq->lock);
1928
1929 if (!nr_moved) {
1930 schedstat_inc(sd, lb_failed[idle]);
1931 sd->nr_balance_failed++;
1932
1933 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1934 int wake = 0;
1935
1936 spin_lock(&busiest->lock);
1937 if (!busiest->active_balance) {
1938 busiest->active_balance = 1;
1939 busiest->push_cpu = this_cpu;
1940 wake = 1;
1941 }
1942 spin_unlock(&busiest->lock);
1943 if (wake)
1944 wake_up_process(busiest->migration_thread);
1945
1946 /*
1947 * We've kicked active balancing, reset the failure
1948 * counter.
1949 */
1950 sd->nr_balance_failed = sd->cache_nice_tries;
1951 }
1952
1953 /*
1954 * We were unbalanced, but unsuccessful in move_tasks(),
1955 * so bump the balance_interval to lessen the lock contention.
1956 */
1957 if (sd->balance_interval < sd->max_interval)
1958 sd->balance_interval++;
1959 } else {
1960 sd->nr_balance_failed = 0;
1961
1962 /* We were unbalanced, so reset the balancing interval */
1963 sd->balance_interval = sd->min_interval;
1964 }
1965
1966 return nr_moved;
1967
1968 out_balanced:
1969 spin_unlock(&this_rq->lock);
1970
1971 schedstat_inc(sd, lb_balanced[idle]);
1972
1973 /* tune up the balancing interval */
1974 if (sd->balance_interval < sd->max_interval)
1975 sd->balance_interval *= 2;
1976
1977 return 0;
1978 }
1979
1980 /*
1981 * Check this_cpu to ensure it is balanced within domain. Attempt to move
1982 * tasks if there is an imbalance.
1983 *
1984 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
1985 * this_rq is locked.
1986 */
1987 static inline int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
1988 struct sched_domain *sd)
1989 {
1990 struct sched_group *group;
1991 runqueue_t *busiest = NULL;
1992 unsigned long imbalance;
1993 int nr_moved = 0;
1994
1995 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
1996 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
1997 if (!group) {
1998 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
1999 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2000 goto out;
2001 }
2002
2003 busiest = find_busiest_queue(group, NEWLY_IDLE);
2004 if (!busiest || busiest == this_rq) {
2005 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2006 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2007 goto out;
2008 }
2009
2010 /* Attempt to move tasks */
2011 double_lock_balance(this_rq, busiest);
2012
2013 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2014 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2015 imbalance, sd, NEWLY_IDLE);
2016 if (!nr_moved)
2017 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2018
2019 spin_unlock(&busiest->lock);
2020
2021 out:
2022 return nr_moved;
2023 }
2024
2025 /*
2026 * idle_balance is called by schedule() if this_cpu is about to become
2027 * idle. Attempts to pull tasks from other CPUs.
2028 */
2029 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2030 {
2031 struct sched_domain *sd;
2032
2033 for_each_domain(this_cpu, sd) {
2034 if (sd->flags & SD_BALANCE_NEWIDLE) {
2035 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2036 /* We've pulled tasks over so stop searching */
2037 break;
2038 }
2039 }
2040 }
2041 }
2042
2043 /*
2044 * active_load_balance is run by migration threads. It pushes running tasks
2045 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2046 * running on each physical CPU where possible, and avoids physical /
2047 * logical imbalances.
2048 *
2049 * Called with busiest_rq locked.
2050 */
2051 static inline void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2052 {
2053 struct sched_domain *sd;
2054 struct sched_group *cpu_group;
2055 runqueue_t *target_rq;
2056 cpumask_t visited_cpus;
2057 int cpu;
2058
2059 /*
2060 * Search for suitable CPUs to push tasks to in successively higher
2061 * domains with SD_LOAD_BALANCE set.
2062 */
2063 visited_cpus = CPU_MASK_NONE;
2064 for_each_domain(busiest_cpu, sd) {
2065 if (!(sd->flags & SD_LOAD_BALANCE))
2066 /* no more domains to search */
2067 break;
2068
2069 schedstat_inc(sd, alb_cnt);
2070
2071 cpu_group = sd->groups;
2072 do {
2073 for_each_cpu_mask(cpu, cpu_group->cpumask) {
2074 if (busiest_rq->nr_running <= 1)
2075 /* no more tasks left to move */
2076 return;
2077 if (cpu_isset(cpu, visited_cpus))
2078 continue;
2079 cpu_set(cpu, visited_cpus);
2080 if (!cpu_and_siblings_are_idle(cpu) || cpu == busiest_cpu)
2081 continue;
2082
2083 target_rq = cpu_rq(cpu);
2084 /*
2085 * This condition is "impossible", if it occurs
2086 * we need to fix it. Originally reported by
2087 * Bjorn Helgaas on a 128-cpu setup.
2088 */
2089 BUG_ON(busiest_rq == target_rq);
2090
2091 /* move a task from busiest_rq to target_rq */
2092 double_lock_balance(busiest_rq, target_rq);
2093 if (move_tasks(target_rq, cpu, busiest_rq,
2094 1, sd, SCHED_IDLE)) {
2095 schedstat_inc(sd, alb_pushed);
2096 } else {
2097 schedstat_inc(sd, alb_failed);
2098 }
2099 spin_unlock(&target_rq->lock);
2100 }
2101 cpu_group = cpu_group->next;
2102 } while (cpu_group != sd->groups);
2103 }
2104 }
2105
2106 /*
2107 * rebalance_tick will get called every timer tick, on every CPU.
2108 *
2109 * It checks each scheduling domain to see if it is due to be balanced,
2110 * and initiates a balancing operation if so.
2111 *
2112 * Balancing parameters are set up in arch_init_sched_domains.
2113 */
2114
2115 /* Don't have all balancing operations going off at once */
2116 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2117
2118 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2119 enum idle_type idle)
2120 {
2121 unsigned long old_load, this_load;
2122 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2123 struct sched_domain *sd;
2124
2125 /* Update our load */
2126 old_load = this_rq->cpu_load;
2127 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2128 /*
2129 * Round up the averaging division if load is increasing. This
2130 * prevents us from getting stuck on 9 if the load is 10, for
2131 * example.
2132 */
2133 if (this_load > old_load)
2134 old_load++;
2135 this_rq->cpu_load = (old_load + this_load) / 2;
2136
2137 for_each_domain(this_cpu, sd) {
2138 unsigned long interval;
2139
2140 if (!(sd->flags & SD_LOAD_BALANCE))
2141 continue;
2142
2143 interval = sd->balance_interval;
2144
2145 /* scale ms to jiffies */
2146 interval = msecs_to_jiffies(interval);
2147 if (unlikely(!interval))
2148 interval = 1;
2149
2150 if (idle != SCHED_IDLE || j - sd->last_balance >= interval) {
2151 if (load_balance(this_cpu, this_rq, sd, idle)) {
2152 /* We've pulled tasks over so no longer idle */
2153 idle = NOT_IDLE;
2154 }
2155 sd->last_balance += interval;
2156 }
2157 }
2158 }
2159 #else
2160 /*
2161 * on UP we do not need to balance between CPUs:
2162 */
2163 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2164 {
2165 }
2166 static inline void idle_balance(int cpu, runqueue_t *rq)
2167 {
2168 }
2169 #endif
2170
2171 static inline int wake_priority_sleeper(runqueue_t *rq)
2172 {
2173 int ret = 0;
2174 #ifdef CONFIG_SCHED_SMT
2175 spin_lock(&rq->lock);
2176 /*
2177 * If an SMT sibling task has been put to sleep for priority
2178 * reasons reschedule the idle task to see if it can now run.
2179 */
2180 if (rq->nr_running) {
2181 resched_task(rq->idle);
2182 ret = 1;
2183 }
2184 spin_unlock(&rq->lock);
2185 #endif
2186 return ret;
2187 }
2188
2189 DEFINE_PER_CPU(struct kernel_stat, kstat);
2190
2191 EXPORT_PER_CPU_SYMBOL(kstat);
2192
2193 /*
2194 * This is called on clock ticks and on context switches.
2195 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2196 */
2197 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2198 unsigned long long now)
2199 {
2200 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2201 p->sched_time += now - last;
2202 }
2203
2204 /*
2205 * Return current->sched_time plus any more ns on the sched_clock
2206 * that have not yet been banked.
2207 */
2208 unsigned long long current_sched_time(const task_t *tsk)
2209 {
2210 unsigned long long ns;
2211 unsigned long flags;
2212 local_irq_save(flags);
2213 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2214 ns = tsk->sched_time + (sched_clock() - ns);
2215 local_irq_restore(flags);
2216 return ns;
2217 }
2218
2219 /*
2220 * Account user cpu time to a process.
2221 * @p: the process that the cpu time gets accounted to
2222 * @hardirq_offset: the offset to subtract from hardirq_count()
2223 * @cputime: the cpu time spent in user space since the last update
2224 */
2225 void account_user_time(struct task_struct *p, cputime_t cputime)
2226 {
2227 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2228 cputime64_t tmp;
2229
2230 p->utime = cputime_add(p->utime, cputime);
2231
2232 /* Add user time to cpustat. */
2233 tmp = cputime_to_cputime64(cputime);
2234 if (TASK_NICE(p) > 0 || batch_task(p))
2235 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2236 else
2237 cpustat->user = cputime64_add(cpustat->user, tmp);
2238 }
2239
2240 /*
2241 * Account system cpu time to a process.
2242 * @p: the process that the cpu time gets accounted to
2243 * @hardirq_offset: the offset to subtract from hardirq_count()
2244 * @cputime: the cpu time spent in kernel space since the last update
2245 */
2246 void account_system_time(struct task_struct *p, int hardirq_offset,
2247 cputime_t cputime)
2248 {
2249 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2250 runqueue_t *rq = this_rq();
2251 cputime64_t tmp;
2252
2253 p->stime = cputime_add(p->stime, cputime);
2254
2255 /* Add system time to cpustat. */
2256 tmp = cputime_to_cputime64(cputime);
2257 if (hardirq_count() - hardirq_offset)
2258 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2259 else if (softirq_count())
2260 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2261 else if (p != rq->idle)
2262 cpustat->system = cputime64_add(cpustat->system, tmp);
2263 else if (atomic_read(&rq->nr_iowait) > 0)
2264 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2265 else
2266 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2267
2268 /* Account for system time used */
2269 acct_update_integrals(p);
2270 /* Update rss highwater mark */
2271 update_mem_hiwater(p);
2272 }
2273
2274 /*
2275 * Account for involuntary wait time.
2276 * @p: the process from which the cpu time has been stolen
2277 * @steal: the cpu time spent in involuntary wait
2278 */
2279 void account_steal_time(struct task_struct *p, cputime_t steal)
2280 {
2281 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2282 cputime64_t tmp = cputime_to_cputime64(steal);
2283 runqueue_t *rq = this_rq();
2284
2285 if (p == rq->idle) {
2286 p->stime = cputime_add(p->stime, steal);
2287 if (atomic_read(&rq->nr_iowait) > 0)
2288 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2289 else
2290 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2291 } else
2292 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2293 }
2294
2295 static void time_slice_expired(task_t *p, runqueue_t *rq)
2296 {
2297 set_tsk_need_resched(p);
2298 dequeue_task(p, rq);
2299 p->prio = effective_prio(p);
2300 p->time_slice = rr_interval(p);
2301 enqueue_task(p, rq);
2302 }
2303
2304 /*
2305 * This function gets called by the timer code, with HZ frequency.
2306 * We call it with interrupts disabled.
2307 */
2308 void scheduler_tick(void)
2309 {
2310 int cpu = smp_processor_id();
2311 runqueue_t *rq = this_rq();
2312 task_t *p = current;
2313 unsigned long debit, expired_balance = rq->nr_running;
2314 unsigned long long now = sched_clock();
2315
2316 update_cpu_clock(p, rq, now);
2317
2318 rq->timestamp_last_tick = now;
2319
2320 if (p == rq->idle) {
2321 if (wake_priority_sleeper(rq))
2322 goto out;
2323 rebalance_tick(cpu, rq, SCHED_IDLE);
2324 return;
2325 }
2326
2327 /* Task might have expired already, but not scheduled off yet */
2328 if (unlikely(!task_queued(p))) {
2329 set_tsk_need_resched(p);
2330 goto out;
2331 }
2332 /*
2333 * SCHED_FIFO tasks never run out of timeslice.
2334 */
2335 if (unlikely(p->policy == SCHED_FIFO)) {
2336 expired_balance = 0;
2337 goto out;
2338 }
2339
2340 spin_lock(&rq->lock);
2341 debit = ns_diff(rq->timestamp_last_tick, p->timestamp);
2342 p->ns_debit += debit;
2343 if (p->ns_debit < NSJIFFY)
2344 goto out_unlock;
2345 p->ns_debit %= NSJIFFY;
2346 /*
2347 * Tasks lose burst each time they use up a full slice().
2348 */
2349 if (!--p->slice) {
2350 dec_burst(p);
2351 p->slice = slice(p);
2352 time_slice_expired(p, rq);
2353 p->totalrun = 0;
2354 goto out_unlock;
2355 }
2356 /*
2357 * Tasks that run out of time_slice but still have slice left get
2358 * requeued with a lower priority && RR_INTERVAL time_slice.
2359 */
2360 if (!--p->time_slice) {
2361 time_slice_expired(p, rq);
2362 goto out_unlock;
2363 }
2364 rq->cache_ticks++;
2365 if (rq->preempted && rq->cache_ticks >= cache_delay) {
2366 set_tsk_need_resched(p);
2367 goto out_unlock;
2368 }
2369 expired_balance = 0;
2370 out_unlock:
2371 spin_unlock(&rq->lock);
2372 out:
2373 if (expired_balance > 1)
2374 rebalance_tick(cpu, rq, NOT_IDLE);
2375 }
2376
2377 #ifdef CONFIG_SCHED_SMT
2378 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2379 {
2380 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2381 if (rq->curr == rq->idle && rq->nr_running)
2382 resched_task(rq->idle);
2383 }
2384
2385 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2386 {
2387 struct sched_domain *sd = this_rq->sd;
2388 cpumask_t sibling_map;
2389 int i;
2390
2391 if (!(sd->flags & SD_SHARE_CPUPOWER))
2392 return;
2393
2394 /*
2395 * Unlock the current runqueue because we have to lock in
2396 * CPU order to avoid deadlocks. Caller knows that we might
2397 * unlock. We keep IRQs disabled.
2398 */
2399 spin_unlock(&this_rq->lock);
2400
2401 sibling_map = sd->span;
2402
2403 for_each_cpu_mask(i, sibling_map)
2404 spin_lock(&cpu_rq(i)->lock);
2405 /*
2406 * We clear this CPU from the mask. This both simplifies the
2407 * inner loop and keps this_rq locked when we exit:
2408 */
2409 cpu_clear(this_cpu, sibling_map);
2410
2411 for_each_cpu_mask(i, sibling_map) {
2412 runqueue_t *smt_rq = cpu_rq(i);
2413
2414 wakeup_busy_runqueue(smt_rq);
2415 }
2416
2417 for_each_cpu_mask(i, sibling_map)
2418 spin_unlock(&cpu_rq(i)->lock);
2419 /*
2420 * We exit with this_cpu's rq still held and IRQs
2421 * still disabled:
2422 */
2423 }
2424
2425 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2426 {
2427 struct sched_domain *sd = this_rq->sd;
2428 cpumask_t sibling_map;
2429 int ret = 0, i;
2430 task_t *p;
2431
2432 if (!(sd->flags & SD_SHARE_CPUPOWER))
2433 return 0;
2434
2435 /*
2436 * The same locking rules and details apply as for
2437 * wake_sleeping_dependent():
2438 */
2439 spin_unlock(&this_rq->lock);
2440 sibling_map = sd->span;
2441 for_each_cpu_mask(i, sibling_map)
2442 spin_lock(&cpu_rq(i)->lock);
2443 cpu_clear(this_cpu, sibling_map);
2444
2445 /*
2446 * Establish next task to be run - it might have gone away because
2447 * we released the runqueue lock above:
2448 */
2449 if (!this_rq->nr_running)
2450 goto out_unlock;
2451
2452 p = list_entry(this_rq->queue[sched_find_first_bit(this_rq->bitmap)].next,
2453 task_t, run_list);
2454
2455 for_each_cpu_mask(i, sibling_map) {
2456 runqueue_t *smt_rq = cpu_rq(i);
2457 task_t *smt_curr = smt_rq->curr;
2458
2459 /* Kernel threads do not participate in dependent sleeping */
2460 if (!p->mm || !smt_curr->mm || rt_task(p))
2461 goto check_smt_task;
2462
2463 /*
2464 * If a user task with lower static priority than the
2465 * running task on the SMT sibling is trying to schedule,
2466 * delay it till there is proportionately less timeslice
2467 * left of the sibling task to prevent a lower priority
2468 * task from using an unfair proportion of the
2469 * physical cpu's resources. -ck
2470 */
2471 if (rt_task(smt_curr)) {
2472 /*
2473 * With real time tasks we run non-rt tasks only
2474 * per_cpu_gain% of the time.
2475 */
2476 if ((jiffies % DEF_TIMESLICE) >
2477 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2478 ret = 1;
2479 else if (batch_task(p))
2480 ret = 1;
2481 } else {
2482 if (((smt_curr->slice * (100 - sd->per_cpu_gain) /
2483 100) > slice(p)))
2484 ret = 1;
2485 else if (batch_task(p) && !batch_task(smt_curr) &&
2486 smt_curr->slice * sd->per_cpu_gain >
2487 slice(smt_curr))
2488 /*
2489 * With batch tasks they run just the last
2490 * per_cpu_gain percent of the smt task's slice.
2491 */
2492 ret = 1;
2493 }
2494
2495 check_smt_task:
2496 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2497 rt_task(smt_curr))
2498 continue;
2499 if (!p->mm) {
2500 wakeup_busy_runqueue(smt_rq);
2501 continue;
2502 }
2503
2504 /*
2505 * Reschedule a lower priority task on the SMT sibling,
2506 * or wake it up if it has been put to sleep for priority
2507 * reasons to see if it should run now.
2508 */
2509 if (rt_task(p)) {
2510 if ((jiffies % DEF_TIMESLICE) >
2511 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2512 resched_task(smt_curr);
2513 else if (batch_task(smt_curr))
2514 resched_task(smt_curr);
2515 } else {
2516 if ((p->slice * (100 - sd->per_cpu_gain) / 100) >
2517 slice(smt_curr))
2518 resched_task(smt_curr);
2519 else if (batch_task(smt_curr) && !batch_task(p) &&
2520 p->slice * sd->per_cpu_gain > slice(p))
2521 resched_task(smt_curr);
2522 else
2523 wakeup_busy_runqueue(smt_rq);
2524 }
2525 }
2526 out_unlock:
2527 for_each_cpu_mask(i, sibling_map)
2528 spin_unlock(&cpu_rq(i)->lock);
2529 return ret;
2530 }
2531 #else
2532 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2533 {
2534 }
2535
2536 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2537 {
2538 return 0;
2539 }
2540 #endif
2541
2542 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2543
2544 void fastcall add_preempt_count(int val)
2545 {
2546 /*
2547 * Underflow?
2548 */
2549 BUG_ON(((int)preempt_count() < 0));
2550 preempt_count() += val;
2551 /*
2552 * Spinlock count overflowing soon?
2553 */
2554 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2555 }
2556 EXPORT_SYMBOL(add_preempt_count);
2557
2558 void fastcall sub_preempt_count(int val)
2559 {
2560 /*
2561 * Underflow?
2562 */
2563 BUG_ON(val > preempt_count());
2564 /*
2565 * Is the spinlock portion underflowing?
2566 */
2567 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2568 preempt_count() -= val;
2569 }
2570 EXPORT_SYMBOL(sub_preempt_count);
2571
2572 #endif
2573
2574 /*
2575 * schedule() is the main scheduler function.
2576 */
2577 asmlinkage void __sched schedule(void)
2578 {
2579 long *switch_count;
2580 task_t *prev, *next;
2581 runqueue_t *rq;
2582 struct list_head *queue;
2583 unsigned long long now;
2584 unsigned long debit;
2585 int cpu, idx;
2586
2587 /*
2588 * Test if we are atomic. Since do_exit() needs to call into
2589 * schedule() atomically, we ignore that path for now.
2590 * Otherwise, whine if we are scheduling when we should not be.
2591 */
2592 if (likely(!current->exit_state)) {
2593 if (unlikely(in_atomic())) {
2594 printk(KERN_ERR "scheduling while atomic: "
2595 "%s/0x%08x/%d\n",
2596 current->comm, preempt_count(), current->pid);
2597 dump_stack();
2598 }
2599 }
2600 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2601
2602 need_resched:
2603 preempt_disable();
2604 prev = current;
2605 release_kernel_lock(prev);
2606 need_resched_nonpreemptible:
2607 rq = this_rq();
2608
2609 /*
2610 * The idle thread is not allowed to schedule!
2611 * Remove this check after it has been exercised a bit.
2612 */
2613 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2614 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2615 dump_stack();
2616 }
2617
2618 schedstat_inc(rq, sched_cnt);
2619 now = sched_clock();
2620
2621 spin_lock_irq(&rq->lock);
2622 prev->runtime = ns_diff(now, prev->timestamp);
2623 debit = ns_diff(now, rq->timestamp_last_tick) % NSJIFFY;
2624 prev->ns_debit += debit;
2625
2626 if (unlikely(prev->flags & PF_DEAD))
2627 prev->state = EXIT_DEAD;
2628
2629 switch_count = &prev->nivcsw;
2630 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2631 switch_count = &prev->nvcsw;
2632 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2633 unlikely(signal_pending(prev))))
2634 prev->state = TASK_RUNNING;
2635 else {
2636 if (prev->state == TASK_UNINTERRUPTIBLE) {
2637 prev->flags |= PF_NONSLEEP;
2638 rq->nr_uninterruptible++;
2639 }
2640 deactivate_task(prev, rq);
2641 }
2642 }
2643
2644 cpu = smp_processor_id();
2645 if (unlikely(!rq->nr_running)) {
2646 go_idle:
2647 idle_balance(cpu, rq);
2648 if (!rq->nr_running) {
2649 next = rq->idle;
2650 wake_sleeping_dependent(cpu, rq);
2651 /*
2652 * wake_sleeping_dependent() might have released
2653 * the runqueue, so break out if we got new
2654 * tasks meanwhile:
2655 */
2656 if (!rq->nr_running)
2657 goto switch_tasks;
2658 }
2659 } else {
2660 if (dependent_sleeper(cpu, rq)) {
2661 next = rq->idle;
2662 goto switch_tasks;
2663 }
2664 /*
2665 * dependent_sleeper() releases and reacquires the runqueue
2666 * lock, hence go into the idle loop if the rq went
2667 * empty meanwhile:
2668 */
2669 if (unlikely(!rq->nr_running))
2670 goto go_idle;
2671 }
2672
2673 idx = sched_find_first_bit(rq->bitmap);
2674 queue = rq->queue + idx;
2675 next = list_entry(queue->next, task_t, run_list);
2676
2677 switch_tasks:
2678 if (next == rq->idle)
2679 schedstat_inc(rq, sched_goidle);
2680 prev->timestamp = now;
2681 if (unlikely(next->flags & PF_YIELDED)) {
2682 /*
2683 * Tasks that have yield()ed get requeued at normal priority
2684 */
2685 int newprio = effective_prio(next);
2686 next->flags &= ~PF_YIELDED;
2687 if (newprio != next->prio) {
2688 dequeue_task(next, rq);
2689 next->prio = newprio;
2690 enqueue_task(next, rq);
2691 }
2692 }
2693
2694 prefetch(next);
2695 clear_tsk_need_resched(prev);
2696 rcu_qsctr_inc(task_cpu(prev));
2697
2698 update_cpu_clock(prev, rq, now);
2699
2700 sched_info_switch(prev, next);
2701 if (likely(prev != next)) {
2702 rq->preempted = 0;
2703 rq->cache_ticks = 0;
2704 next->timestamp = now;
2705 rq->nr_switches++;
2706 rq->curr = next;
2707 ++*switch_count;
2708
2709 prepare_arch_switch(rq, next);
2710 prev = context_switch(rq, prev, next);
2711 barrier();
2712
2713 finish_task_switch(prev);
2714 } else
2715 spin_unlock_irq(&rq->lock);
2716
2717 prev = current;
2718 if (unlikely(reacquire_kernel_lock(prev) < 0))
2719 goto need_resched_nonpreemptible;
2720 preempt_enable_no_resched();
2721 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2722 goto need_resched;
2723 }
2724
2725 EXPORT_SYMBOL(schedule);
2726
2727 #ifdef CONFIG_PREEMPT
2728 /*
2729 * this is is the entry point to schedule() from in-kernel preemption
2730 * off of preempt_enable. Kernel preemptions off return from interrupt
2731 * occur there and call schedule directly.
2732 */
2733 asmlinkage void __sched preempt_schedule(void)
2734 {
2735 struct thread_info *ti = current_thread_info();
2736 #ifdef CONFIG_PREEMPT_BKL
2737 struct task_struct *task = current;
2738 int saved_lock_depth;
2739 #endif
2740 /*
2741 * If there is a non-zero preempt_count or interrupts are disabled,
2742 * we do not want to preempt the current task. Just return..
2743 */
2744 if (unlikely(ti->preempt_count || irqs_disabled()))
2745 return;
2746
2747 need_resched:
2748 add_preempt_count(PREEMPT_ACTIVE);
2749 /*
2750 * We keep the big kernel semaphore locked, but we
2751 * clear ->lock_depth so that schedule() doesnt
2752 * auto-release the semaphore:
2753 */
2754 #ifdef CONFIG_PREEMPT_BKL
2755 saved_lock_depth = task->lock_depth;
2756 task->lock_depth = -1;
2757 #endif
2758 schedule();
2759 #ifdef CONFIG_PREEMPT_BKL
2760 task->lock_depth = saved_lock_depth;
2761 #endif
2762 sub_preempt_count(PREEMPT_ACTIVE);
2763
2764 /* we could miss a preemption opportunity between schedule and now */
2765 barrier();
2766 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2767 goto need_resched;
2768 }
2769
2770 EXPORT_SYMBOL(preempt_schedule);
2771
2772 /*
2773 * this is is the entry point to schedule() from kernel preemption
2774 * off of irq context.
2775 * Note, that this is called and return with irqs disabled. This will
2776 * protect us against recursive calling from irq.
2777 */
2778 asmlinkage void __sched preempt_schedule_irq(void)
2779 {
2780 struct thread_info *ti = current_thread_info();
2781 #ifdef CONFIG_PREEMPT_BKL
2782 struct task_struct *task = current;
2783 int saved_lock_depth;
2784 #endif
2785 /* Catch callers which need to be fixed*/
2786 BUG_ON(ti->preempt_count || !irqs_disabled());
2787
2788 need_resched:
2789 add_preempt_count(PREEMPT_ACTIVE);
2790 /*
2791 * We keep the big kernel semaphore locked, but we
2792 * clear ->lock_depth so that schedule() doesnt
2793 * auto-release the semaphore:
2794 */
2795 #ifdef CONFIG_PREEMPT_BKL
2796 saved_lock_depth = task->lock_depth;
2797 task->lock_depth = -1;
2798 #endif
2799 local_irq_enable();
2800 schedule();
2801 local_irq_disable();
2802 #ifdef CONFIG_PREEMPT_BKL
2803 task->lock_depth = saved_lock_depth;
2804 #endif
2805 sub_preempt_count(PREEMPT_ACTIVE);
2806
2807 /* we could miss a preemption opportunity between schedule and now */
2808 barrier();
2809 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2810 goto need_resched;
2811 }
2812
2813 #endif /* CONFIG_PREEMPT */
2814
2815 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
2816 {
2817 task_t *p = curr->task;
2818 return try_to_wake_up(p, mode, sync);
2819 }
2820
2821 EXPORT_SYMBOL(default_wake_function);
2822
2823 /*
2824 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2825 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
2826 * number) then we wake all the non-exclusive tasks and one exclusive task.
2827 *
2828 * There are circumstances in which we can try to wake a task which has already
2829 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
2830 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2831 */
2832 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2833 int nr_exclusive, int sync, void *key)
2834 {
2835 struct list_head *tmp, *next;
2836
2837 list_for_each_safe(tmp, next, &q->task_list) {
2838 wait_queue_t *curr;
2839 unsigned flags;
2840 curr = list_entry(tmp, wait_queue_t, task_list);
2841 flags = curr->flags;
2842 if (curr->func(curr, mode, sync, key) &&
2843 (flags & WQ_FLAG_EXCLUSIVE) &&
2844 !--nr_exclusive)
2845 break;
2846 }
2847 }
2848
2849 /**
2850 * __wake_up - wake up threads blocked on a waitqueue.
2851 * @q: the waitqueue
2852 * @mode: which threads
2853 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2854 * @key: is directly passed to the wakeup function
2855 */
2856 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
2857 int nr_exclusive, void *key)
2858 {
2859 unsigned long flags;
2860
2861 spin_lock_irqsave(&q->lock, flags);
2862 __wake_up_common(q, mode, nr_exclusive, 0, key);
2863 spin_unlock_irqrestore(&q->lock, flags);
2864 }
2865
2866 EXPORT_SYMBOL(__wake_up);
2867
2868 /*
2869 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2870 */
2871 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
2872 {
2873 __wake_up_common(q, mode, 1, 0, NULL);
2874 }
2875
2876 /**
2877 * __wake_up_sync - wake up threads blocked on a waitqueue.
2878 * @q: the waitqueue
2879 * @mode: which threads
2880 * @nr_exclusive: how many wake-one or wake-many threads to wake up
2881 *
2882 * The sync wakeup differs that the waker knows that it will schedule
2883 * away soon, so while the target thread will be woken up, it will not
2884 * be migrated to another CPU - ie. the two threads are 'synchronized'
2885 * with each other. This can prevent needless bouncing between CPUs.
2886 *
2887 * On UP it can prevent extra preemption.
2888 */
2889 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2890 {
2891 unsigned long flags;
2892 int sync = 1;
2893
2894 if (unlikely(!q))
2895 return;
2896
2897 if (unlikely(!nr_exclusive))
2898 sync = 0;
2899
2900 spin_lock_irqsave(&q->lock, flags);
2901 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
2902 spin_unlock_irqrestore(&q->lock, flags);
2903 }
2904 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2905
2906 void fastcall complete(struct completion *x)
2907 {
2908 unsigned long flags;
2909
2910 spin_lock_irqsave(&x->wait.lock, flags);
2911 x->done++;
2912 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2913 1, 0, NULL);
2914 spin_unlock_irqrestore(&x->wait.lock, flags);
2915 }
2916 EXPORT_SYMBOL(complete);
2917
2918 void fastcall complete_all(struct completion *x)
2919 {
2920 unsigned long flags;
2921
2922 spin_lock_irqsave(&x->wait.lock, flags);
2923 x->done += UINT_MAX/2;
2924 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2925 0, 0, NULL);
2926 spin_unlock_irqrestore(&x->wait.lock, flags);
2927 }
2928 EXPORT_SYMBOL(complete_all);
2929
2930 void fastcall __sched wait_for_completion(struct completion *x)
2931 {
2932 might_sleep();
2933 spin_lock_irq(&x->wait.lock);
2934 if (!x->done) {
2935 DECLARE_WAITQUEUE(wait, current);
2936
2937 wait.flags |= WQ_FLAG_EXCLUSIVE;
2938 __add_wait_queue_tail(&x->wait, &wait);
2939 do {
2940 __set_current_state(TASK_UNINTERRUPTIBLE);
2941 spin_unlock_irq(&x->wait.lock);
2942 schedule();
2943 spin_lock_irq(&x->wait.lock);
2944 } while (!x->done);
2945 __remove_wait_queue(&x->wait, &wait);
2946 }
2947 x->done--;
2948 spin_unlock_irq(&x->wait.lock);
2949 }
2950 EXPORT_SYMBOL(wait_for_completion);
2951
2952 unsigned long fastcall __sched
2953 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
2954 {
2955 might_sleep();
2956
2957 spin_lock_irq(&x->wait.lock);
2958 if (!x->done) {
2959 DECLARE_WAITQUEUE(wait, current);
2960
2961 wait.flags |= WQ_FLAG_EXCLUSIVE;
2962 __add_wait_queue_tail(&x->wait, &wait);
2963 do {
2964 __set_current_state(TASK_UNINTERRUPTIBLE);
2965 spin_unlock_irq(&x->wait.lock);
2966 timeout = schedule_timeout(timeout);
2967 spin_lock_irq(&x->wait.lock);
2968 if (!timeout) {
2969 __remove_wait_queue(&x->wait, &wait);
2970 goto out;
2971 }
2972 } while (!x->done);
2973 __remove_wait_queue(&x->wait, &wait);
2974 }
2975 x->done--;
2976 out:
2977 spin_unlock_irq(&x->wait.lock);
2978 return timeout;
2979 }
2980 EXPORT_SYMBOL(wait_for_completion_timeout);
2981
2982 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
2983 {
2984 int ret = 0;
2985
2986 might_sleep();
2987
2988 spin_lock_irq(&x->wait.lock);
2989 if (!x->done) {
2990 DECLARE_WAITQUEUE(wait, current);
2991
2992 wait.flags |= WQ_FLAG_EXCLUSIVE;
2993 __add_wait_queue_tail(&x->wait, &wait);
2994 do {
2995 if (signal_pending(current)) {
2996 ret = -ERESTARTSYS;
2997 __remove_wait_queue(&x->wait, &wait);
2998 goto out;
2999 }
3000 __set_current_state(TASK_INTERRUPTIBLE);
3001 spin_unlock_irq(&x->wait.lock);
3002 schedule();
3003 spin_lock_irq(&x->wait.lock);
3004 } while (!x->done);
3005 __remove_wait_queue(&x->wait, &wait);
3006 }
3007 x->done--;
3008 out:
3009 spin_unlock_irq(&x->wait.lock);
3010
3011 return ret;
3012 }
3013 EXPORT_SYMBOL(wait_for_completion_interruptible);
3014
3015 unsigned long fastcall __sched
3016 wait_for_completion_interruptible_timeout(struct completion *x,
3017 unsigned long timeout)
3018 {
3019 might_sleep();
3020
3021 spin_lock_irq(&x->wait.lock);
3022 if (!x->done) {
3023 DECLARE_WAITQUEUE(wait, current);
3024
3025 wait.flags |= WQ_FLAG_EXCLUSIVE;
3026 __add_wait_queue_tail(&x->wait, &wait);
3027 do {
3028 if (signal_pending(current)) {
3029 timeout = -ERESTARTSYS;
3030 __remove_wait_queue(&x->wait, &wait);
3031 goto out;
3032 }
3033 __set_current_state(TASK_INTERRUPTIBLE);
3034 spin_unlock_irq(&x->wait.lock);
3035 timeout = schedule_timeout(timeout);
3036 spin_lock_irq(&x->wait.lock);
3037 if (!timeout) {
3038 __remove_wait_queue(&x->wait, &wait);
3039 goto out;
3040 }
3041 } while (!x->done);
3042 __remove_wait_queue(&x->wait, &wait);
3043 }
3044 x->done--;
3045 out:
3046 spin_unlock_irq(&x->wait.lock);
3047 return timeout;
3048 }
3049 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3050
3051
3052 #define SLEEP_ON_VAR \
3053 unsigned long flags; \
3054 wait_queue_t wait; \
3055 init_waitqueue_entry(&wait, current);
3056
3057 #define SLEEP_ON_HEAD \
3058 spin_lock_irqsave(&q->lock,flags); \
3059 __add_wait_queue(q, &wait); \
3060 spin_unlock(&q->lock);
3061
3062 #define SLEEP_ON_TAIL \
3063 spin_lock_irq(&q->lock); \
3064 __remove_wait_queue(q, &wait); \
3065 spin_unlock_irqrestore(&q->lock, flags);
3066
3067 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3068 {
3069 SLEEP_ON_VAR
3070
3071 current->state = TASK_INTERRUPTIBLE;
3072
3073 SLEEP_ON_HEAD
3074 schedule();
3075 SLEEP_ON_TAIL
3076 }
3077
3078 EXPORT_SYMBOL(interruptible_sleep_on);
3079
3080 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3081 {
3082 SLEEP_ON_VAR
3083
3084 current->state = TASK_INTERRUPTIBLE;
3085
3086 SLEEP_ON_HEAD
3087 timeout = schedule_timeout(timeout);
3088 SLEEP_ON_TAIL
3089
3090 return timeout;
3091 }
3092
3093 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3094
3095 void fastcall __sched sleep_on(wait_queue_head_t *q)
3096 {
3097 SLEEP_ON_VAR
3098
3099 current->state = TASK_UNINTERRUPTIBLE;
3100
3101 SLEEP_ON_HEAD
3102 schedule();
3103 SLEEP_ON_TAIL
3104 }
3105
3106 EXPORT_SYMBOL(sleep_on);
3107
3108 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3109 {
3110 SLEEP_ON_VAR
3111
3112 current->state = TASK_UNINTERRUPTIBLE;
3113
3114 SLEEP_ON_HEAD
3115 timeout = schedule_timeout(timeout);
3116 SLEEP_ON_TAIL
3117
3118 return timeout;
3119 }
3120
3121 EXPORT_SYMBOL(sleep_on_timeout);
3122
3123 void set_user_nice(task_t *p, long nice)
3124 {
3125 unsigned long flags;
3126 runqueue_t *rq;
3127 int queued, old_prio, new_prio, delta;
3128
3129 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3130 return;
3131 /*
3132 * We have to be careful, if called from sys_setpriority(),
3133 * the task might be in the middle of scheduling on another CPU.
3134 */
3135 rq = task_rq_lock(p, &flags);
3136 /*
3137 * The RT priorities are set via sched_setscheduler(), but we still
3138 * allow the 'normal' nice value to be set - but as expected
3139 * it wont have any effect on scheduling until the task is
3140 * not SCHED_NORMAL:
3141 */
3142 if (rt_task(p)) {
3143 p->static_prio = NICE_TO_PRIO(nice);
3144 goto out_unlock;
3145 }
3146 if ((queued = task_queued(p))) {
3147 dequeue_task(p, rq);
3148 dec_prio_bias(rq, p->static_prio);
3149 }
3150
3151 old_prio = p->prio;
3152 new_prio = NICE_TO_PRIO(nice);
3153 delta = new_prio - old_prio;
3154 p->static_prio = NICE_TO_PRIO(nice);
3155 p->prio += delta;
3156
3157 if (queued) {
3158 enqueue_task(p, rq);
3159 inc_prio_bias(rq, p->static_prio);
3160 /*
3161 * If the task increased its priority or is running and
3162 * lowered its priority, then reschedule its CPU:
3163 */
3164 if (delta < 0 || ((delta > 0 || batch_task(p)) &&
3165 task_running(rq, p)))
3166 resched_task(rq->curr);
3167 }
3168 out_unlock:
3169 task_rq_unlock(rq, &flags);
3170 }
3171
3172 EXPORT_SYMBOL(set_user_nice);
3173
3174 /*
3175 * can_nice - check if a task can reduce its nice value
3176 * @p: task
3177 * @nice: nice value
3178 */
3179 int can_nice(const task_t *p, const int nice)
3180 {
3181 /* convert nice value [19,-20] to rlimit style value [0,39] */
3182 int nice_rlim = 19 - nice;
3183 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3184 capable(CAP_SYS_NICE));
3185 }
3186
3187 #ifdef __ARCH_WANT_SYS_NICE
3188
3189 /*
3190 * sys_nice - change the priority of the current process.
3191 * @increment: priority increment
3192 *
3193 * sys_setpriority is a more generic, but much slower function that
3194 * does similar things.
3195 */
3196 asmlinkage long sys_nice(int increment)
3197 {
3198 int retval;
3199 long nice;
3200
3201 /*
3202 * Setpriority might change our priority at the same moment.
3203 * We don't have to worry. Conceptually one call occurs first
3204 * and we have a single winner.
3205 */
3206 if (increment < -40)
3207 increment = -40;
3208 if (increment > 40)
3209 increment = 40;
3210
3211 nice = PRIO_TO_NICE(current->static_prio) + increment;
3212 if (nice < -20)
3213 nice = -20;
3214 if (nice > 19)
3215 nice = 19;
3216
3217 if (increment < 0 && !can_nice(current, nice))
3218 return -EPERM;
3219
3220 retval = security_task_setnice(current, nice);
3221 if (retval)
3222 return retval;
3223
3224 set_user_nice(current, nice);
3225 return 0;
3226 }
3227
3228 #endif
3229
3230 /**
3231 * task_prio - return the priority value of a given task.
3232 * @p: the task in question.
3233 *
3234 * This is the priority value as seen by users in /proc.
3235 * RT tasks are offset by -200. Normal tasks are centered
3236 * around 0, value goes from -16 to +15.
3237 */
3238 int task_prio(const task_t *p)
3239 {
3240 return p->prio - MAX_RT_PRIO;
3241 }
3242
3243 /**
3244 * task_nice - return the nice value of a given task.
3245 * @p: the task in question.
3246 */
3247 int task_nice(const task_t *p)
3248 {
3249 return TASK_NICE(p);
3250 }
3251
3252 /*
3253 * The only users of task_nice are binfmt_elf and binfmt_elf32.
3254 * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3255 * Therefore, task_nice is needed if there is a compat_mode.
3256 */
3257 #ifdef CONFIG_COMPAT
3258 EXPORT_SYMBOL_GPL(task_nice);
3259 #endif
3260
3261 /**
3262 * idle_cpu - is a given cpu idle currently?
3263 * @cpu: the processor in question.
3264 */
3265 int idle_cpu(int cpu)
3266 {
3267 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3268 }
3269
3270 EXPORT_SYMBOL_GPL(idle_cpu);
3271
3272 /**
3273 * idle_task - return the idle task for a given cpu.
3274 * @cpu: the processor in question.
3275 */
3276 task_t *idle_task(int cpu)
3277 {
3278 return cpu_rq(cpu)->idle;
3279 }
3280
3281 /**
3282 * find_process_by_pid - find a process with a matching PID value.
3283 * @pid: the pid in question.
3284 */
3285 static inline task_t *find_process_by_pid(pid_t pid)
3286 {
3287 return pid ? find_task_by_pid(pid) : current;
3288 }
3289
3290 /* Actually do priority change: must hold rq lock. */
3291 static void __setscheduler(struct task_struct *p, int policy, int prio)
3292 {
3293 BUG_ON(task_queued(p));
3294 p->policy = policy;
3295 p->rt_priority = prio;
3296 if (SCHED_RT(policy))
3297 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3298 else
3299 p->prio = p->static_prio;
3300 }
3301
3302 /**
3303 * sched_setscheduler - change the scheduling policy and/or RT priority of
3304 * a thread.
3305 * @p: the task in question.
3306 * @policy: new policy.
3307 * @param: structure containing the new RT priority.
3308 */
3309 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3310 {
3311 int retval;
3312 int queued, oldprio, oldpolicy = -1;
3313 unsigned long flags;
3314 runqueue_t *rq;
3315
3316 recheck:
3317 /* double check policy once rq lock held */
3318 if (policy < 0)
3319 policy = oldpolicy = p->policy;
3320 else if (!SCHED_RANGE(policy))
3321 return -EINVAL;
3322 /*
3323 * Valid priorities for SCHED_FIFO and SCHED_RR are
3324 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3325 */
3326 if (param->sched_priority < 0 ||
3327 param->sched_priority > MAX_USER_RT_PRIO-1)
3328 return -EINVAL;
3329 if ((!SCHED_RT(policy)) != (param->sched_priority == 0))
3330 return -EINVAL;
3331
3332 if (SCHED_RT(policy) &&
3333 param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
3334 !capable(CAP_SYS_NICE))
3335 return -EPERM;
3336 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3337 !capable(CAP_SYS_NICE))
3338 return -EPERM;
3339
3340 if (!(p->mm) && policy == SCHED_BATCH)
3341 /*
3342 * Don't allow kernel threads to be SCHED_BATCH.
3343 */
3344 return -EINVAL;
3345
3346 retval = security_task_setscheduler(p, policy, param);
3347 if (retval)
3348 return retval;
3349 /*
3350 * To be able to change p->policy safely, the apropriate
3351 * runqueue lock must be held.
3352 */
3353 rq = task_rq_lock(p, &flags);
3354 /* recheck policy now with rq lock held */
3355 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3356 policy = oldpolicy = -1;
3357 task_rq_unlock(rq, &flags);
3358 goto recheck;
3359 }
3360 if ((queued = task_queued(p)))
3361 deactivate_task(p, rq);
3362 oldprio = p->prio;
3363 __setscheduler(p, policy, param->sched_priority);
3364 if (queued) {
3365 __activate_task(p, rq);
3366 /*
3367 * Reschedule if we are currently running on this runqueue and
3368 * our priority decreased, or if we are not currently running on
3369 * this runqueue and our priority is higher than the current's
3370 */
3371 if (task_running(rq, p)) {
3372 if (p->prio > oldprio)
3373 resched_task(rq->curr);
3374 } else
3375 preempt(p, rq);
3376 }
3377 task_rq_unlock(rq, &flags);
3378 return 0;
3379 }
3380 EXPORT_SYMBOL_GPL(sched_setscheduler);
3381
3382 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3383 {
3384 int retval;
3385 struct sched_param lparam;
3386 struct task_struct *p;
3387
3388 if (!param || pid < 0)
3389 return -EINVAL;
3390 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3391 return -EFAULT;
3392 read_lock_irq(&tasklist_lock);
3393 p = find_process_by_pid(pid);
3394 if (!p) {
3395 read_unlock_irq(&tasklist_lock);
3396 return -ESRCH;
3397 }
3398 retval = sched_setscheduler(p, policy, &lparam);
3399 read_unlock_irq(&tasklist_lock);
3400 return retval;
3401 }
3402
3403 /**
3404 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3405 * @pid: the pid in question.
3406 * @policy: new policy.
3407 * @param: structure containing the new RT priority.
3408 */
3409 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3410 struct sched_param __user *param)
3411 {
3412 return do_sched_setscheduler(pid, policy, param);
3413 }
3414
3415 /**
3416 * sys_sched_setparam - set/change the RT priority of a thread
3417 * @pid: the pid in question.
3418 * @param: structure containing the new RT priority.
3419 */
3420 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3421 {
3422 return do_sched_setscheduler(pid, -1, param);
3423 }
3424
3425 /**
3426 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3427 * @pid: the pid in question.
3428 */
3429 asmlinkage long sys_sched_getscheduler(pid_t pid)
3430 {
3431 int retval = -EINVAL;
3432 task_t *p;
3433
3434 if (pid < 0)
3435 goto out_nounlock;
3436
3437 retval = -ESRCH;
3438 read_lock(&tasklist_lock);
3439 p = find_process_by_pid(pid);
3440 if (p) {
3441 retval = security_task_getscheduler(p);
3442 if (!retval)
3443 retval = p->policy;
3444 }
3445 read_unlock(&tasklist_lock);
3446
3447 out_nounlock:
3448 return retval;
3449 }
3450
3451 /**
3452 * sys_sched_getscheduler - get the RT priority of a thread
3453 * @pid: the pid in question.
3454 * @param: structure containing the RT priority.
3455 */
3456 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3457 {
3458 struct sched_param lp;
3459 int retval = -EINVAL;
3460 task_t *p;
3461
3462 if (!param || pid < 0)
3463 goto out_nounlock;
3464
3465 read_lock(&tasklist_lock);
3466 p = find_process_by_pid(pid);
3467 retval = -ESRCH;
3468 if (!p)
3469 goto out_unlock;
3470
3471 retval = security_task_getscheduler(p);
3472 if (retval)
3473 goto out_unlock;
3474
3475 lp.sched_priority = p->rt_priority;
3476 read_unlock(&tasklist_lock);
3477
3478 /*
3479 * This one might sleep, we cannot do it with a spinlock held ...
3480 */
3481 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3482
3483 out_nounlock:
3484 return retval;
3485
3486 out_unlock:
3487 read_unlock(&tasklist_lock);
3488 return retval;
3489 }
3490
3491 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3492 {
3493 task_t *p;
3494 int retval;
3495 cpumask_t cpus_allowed;
3496
3497 lock_cpu_hotplug();
3498 read_lock(&tasklist_lock);
3499
3500 p = find_process_by_pid(pid);
3501 if (!p) {
3502 read_unlock(&tasklist_lock);
3503 unlock_cpu_hotplug();
3504 return -ESRCH;
3505 }
3506
3507 /*
3508 * It is not safe to call set_cpus_allowed with the
3509 * tasklist_lock held. We will bump the task_struct's
3510 * usage count and then drop tasklist_lock.
3511 */
3512 get_task_struct(p);
3513 read_unlock(&tasklist_lock);
3514
3515 retval = -EPERM;
3516 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3517 !capable(CAP_SYS_NICE))
3518 goto out_unlock;
3519
3520 cpus_allowed = cpuset_cpus_allowed(p);
3521 cpus_and(new_mask, new_mask, cpus_allowed);
3522 retval = set_cpus_allowed(p, new_mask);
3523
3524 out_unlock:
3525 put_task_struct(p);
3526 unlock_cpu_hotplug();
3527 return retval;
3528 }
3529
3530 static inline int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3531 cpumask_t *new_mask)
3532 {
3533 if (len < sizeof(cpumask_t)) {
3534 memset(new_mask, 0, sizeof(cpumask_t));
3535 } else if (len > sizeof(cpumask_t)) {
3536 len = sizeof(cpumask_t);
3537 }
3538 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3539 }
3540
3541 /**
3542 * sys_sched_setaffinity - set the cpu affinity of a process
3543 * @pid: pid of the process
3544 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3545 * @user_mask_ptr: user-space pointer to the new cpu mask
3546 */
3547 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3548 unsigned long __user *user_mask_ptr)
3549 {
3550 cpumask_t new_mask;
3551 int retval;
3552
3553 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3554 if (retval)
3555 return retval;
3556
3557 return sched_setaffinity(pid, new_mask);
3558 }
3559
3560 /*
3561 * Represents all cpu's present in the system
3562 * In systems capable of hotplug, this map could dynamically grow
3563 * as new cpu's are detected in the system via any platform specific
3564 * method, such as ACPI for e.g.
3565 */
3566
3567 cpumask_t cpu_present_map;
3568 EXPORT_SYMBOL(cpu_present_map);
3569
3570 #ifndef CONFIG_SMP
3571 cpumask_t cpu_online_map = CPU_MASK_ALL;
3572 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3573 #endif
3574
3575 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3576 {
3577 int retval;
3578 task_t *p;
3579
3580 lock_cpu_hotplug();
3581 read_lock(&tasklist_lock);
3582
3583 retval = -ESRCH;
3584 p = find_process_by_pid(pid);
3585 if (!p)
3586 goto out_unlock;
3587
3588 retval = 0;
3589 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3590
3591 out_unlock:
3592 read_unlock(&tasklist_lock);
3593 unlock_cpu_hotplug();
3594 if (retval)
3595 return retval;
3596
3597 return 0;
3598 }
3599
3600 /**
3601 * sys_sched_getaffinity - get the cpu affinity of a process
3602 * @pid: pid of the process
3603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3605 */
3606 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3607 unsigned long __user *user_mask_ptr)
3608 {
3609 int ret;
3610 cpumask_t mask;
3611
3612 if (len < sizeof(cpumask_t))
3613 return -EINVAL;
3614
3615 ret = sched_getaffinity(pid, &mask);
3616 if (ret < 0)
3617 return ret;
3618
3619 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3620 return -EFAULT;
3621
3622 return sizeof(cpumask_t);
3623 }
3624
3625 /**
3626 * sys_sched_yield - yield the current processor to other threads.
3627 * This function yields the current CPU by dropping the priority of current
3628 * to the lowest priority and setting the PF_YIELDED flag.
3629 */
3630 asmlinkage long sys_sched_yield(void)
3631 {
3632 int newprio;
3633 runqueue_t *rq = this_rq_lock();
3634
3635 newprio = current->prio;
3636 schedstat_inc(rq, yld_cnt);
3637 current->slice = slice(current);
3638 current->time_slice = rr_interval(current);
3639 if (likely(!rt_task(current) && !batch_task(current))) {
3640 current->flags |= PF_YIELDED;
3641 newprio = MAX_PRIO - 2;
3642 }
3643
3644 if (newprio != current->prio) {
3645 dequeue_task(current, rq);
3646 current->prio = newprio;
3647 enqueue_task(current, rq);
3648 } else
3649 requeue_task(current, rq);
3650
3651 /*
3652 * Since we are going to call schedule() anyway, there's
3653 * no need to preempt or enable interrupts:
3654 */
3655 __release(rq->lock);
3656 _raw_spin_unlock(&rq->lock);
3657 preempt_enable_no_resched();
3658
3659 schedule();
3660
3661 return 0;
3662 }
3663
3664 static inline void __cond_resched(void)
3665 {
3666 do {
3667 add_preempt_count(PREEMPT_ACTIVE);
3668 schedule();
3669 sub_preempt_count(PREEMPT_ACTIVE);
3670 } while (need_resched());
3671 }
3672
3673 int __sched cond_resched(void)
3674 {
3675 if (need_resched()) {
3676 __cond_resched();
3677 return 1;
3678 }
3679 return 0;
3680 }
3681
3682 EXPORT_SYMBOL(cond_resched);
3683
3684 /*
3685 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3686 * call schedule, and on return reacquire the lock.
3687 *
3688 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3689 * operations here to prevent schedule() from being called twice (once via
3690 * spin_unlock(), once by hand).
3691 */
3692 int cond_resched_lock(spinlock_t * lock)
3693 {
3694 int ret = 0;
3695
3696 if (need_lockbreak(lock)) {
3697 spin_unlock(lock);
3698 cpu_relax();
3699 ret = 1;
3700 spin_lock(lock);
3701 }
3702 if (need_resched()) {
3703 _raw_spin_unlock(lock);
3704 preempt_enable_no_resched();
3705 __cond_resched();
3706 ret = 1;
3707 spin_lock(lock);
3708 }
3709 return ret;
3710 }
3711
3712 EXPORT_SYMBOL(cond_resched_lock);
3713
3714 int __sched cond_resched_softirq(void)
3715 {
3716 BUG_ON(!in_softirq());
3717
3718 if (need_resched()) {
3719 __local_bh_enable();
3720 __cond_resched();
3721 local_bh_disable();
3722 return 1;
3723 }
3724 return 0;
3725 }
3726
3727 EXPORT_SYMBOL(cond_resched_softirq);
3728
3729
3730 /**
3731 * yield - yield the current processor to other threads.
3732 *
3733 * this is a shortcut for kernel-space yielding - it marks the
3734 * thread runnable and calls sys_sched_yield().
3735 */
3736 void __sched yield(void)
3737 {
3738 set_current_state(TASK_RUNNING);
3739 sys_sched_yield();
3740 }
3741
3742 EXPORT_SYMBOL(yield);
3743
3744 /*
3745 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3746 * that process accounting knows that this is a task in IO wait state.
3747 *
3748 * But don't do that if it is a deliberate, throttling IO wait (this task
3749 * has set its backing_dev_info: the queue against which it should throttle)
3750 */
3751 void __sched io_schedule(void)
3752 {
3753 struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id());
3754
3755 atomic_inc(&rq->nr_iowait);
3756 schedule();
3757 atomic_dec(&rq->nr_iowait);
3758 }
3759
3760 EXPORT_SYMBOL(io_schedule);
3761
3762 long __sched io_schedule_timeout(long timeout)
3763 {
3764 struct runqueue *rq = &per_cpu(runqueues, _smp_processor_id());
3765 long ret;
3766
3767 atomic_inc(&rq->nr_iowait);
3768 ret = schedule_timeout(timeout);
3769 atomic_dec(&rq->nr_iowait);
3770 return ret;
3771 }
3772
3773 /**
3774 * sys_sched_get_priority_max - return maximum RT priority.
3775 * @policy: scheduling class.
3776 *
3777 * this syscall returns the maximum rt_priority that can be used
3778 * by a given scheduling class.
3779 */
3780 asmlinkage long sys_sched_get_priority_max(int policy)
3781 {
3782 int ret = -EINVAL;
3783
3784 switch (policy) {
3785 case SCHED_FIFO:
3786 case SCHED_RR:
3787 ret = MAX_USER_RT_PRIO-1;
3788 break;
3789 case SCHED_NORMAL:
3790 case SCHED_BATCH:
3791 ret = 0;
3792 break;
3793 }
3794 return ret;
3795 }
3796
3797 /**
3798 * sys_sched_get_priority_min - return minimum RT priority.
3799 * @policy: scheduling class.
3800 *
3801 * this syscall returns the minimum rt_priority that can be used
3802 * by a given scheduling class.
3803 */
3804 asmlinkage long sys_sched_get_priority_min(int policy)
3805 {
3806 int ret = -EINVAL;
3807
3808 switch (policy) {
3809 case SCHED_FIFO:
3810 case SCHED_RR:
3811 ret = 1;
3812 break;
3813 case SCHED_NORMAL:
3814 case SCHED_BATCH:
3815 ret = 0;
3816 }
3817 return ret;
3818 }
3819
3820 /**
3821 * sys_sched_rr_get_interval - return the default timeslice of a process.
3822 * @pid: pid of the process.
3823 * @interval: userspace pointer to the timeslice value.
3824 *
3825 * this syscall writes the default timeslice value of a given process
3826 * into the user-space timespec buffer. A value of '0' means infinity.
3827 */
3828 asmlinkage
3829 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
3830 {
3831 int retval = -EINVAL;
3832 struct timespec t;
3833 task_t *p;
3834
3835 if (pid < 0)
3836 goto out_nounlock;
3837
3838 retval = -ESRCH;
3839 read_lock(&tasklist_lock);
3840 p = find_process_by_pid(pid);
3841 if (!p)
3842 goto out_unlock;
3843
3844 retval = security_task_getscheduler(p);
3845 if (retval)
3846 goto out_unlock;
3847
3848 jiffies_to_timespec(p->policy & SCHED_FIFO ?
3849 0 : slice(p), &t);
3850 read_unlock(&tasklist_lock);
3851 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
3852 out_nounlock:
3853 return retval;
3854 out_unlock:
3855 read_unlock(&tasklist_lock);
3856 return retval;
3857 }
3858
3859 static inline struct task_struct *eldest_child(struct task_struct *p)
3860 {
3861 if (list_empty(&p->children)) return NULL;
3862 return list_entry(p->children.next,struct task_struct,sibling);
3863 }
3864
3865 static inline struct task_struct *older_sibling(struct task_struct *p)
3866 {
3867 if (p->sibling.prev==&p->parent->children) return NULL;
3868 return list_entry(p->sibling.prev,struct task_struct,sibling);
3869 }
3870
3871 static inline struct task_struct *younger_sibling(struct task_struct *p)
3872 {
3873 if (p->sibling.next==&p->parent->children) return NULL;
3874 return list_entry(p->sibling.next,struct task_struct,sibling);
3875 }
3876
3877 static inline void show_task(task_t * p)
3878 {
3879 task_t *relative;
3880 unsigned state;
3881 unsigned long free = 0;
3882 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
3883
3884 printk("%-13.13s ", p->comm);
3885 state = p->state ? __ffs(p->state) + 1 : 0;
3886 if (state < ARRAY_SIZE(stat_nam))
3887 printk(stat_nam[state]);
3888 else
3889 printk("?");
3890 #if (BITS_PER_LONG == 32)
3891 if (state == TASK_RUNNING)
3892 printk(" running ");
3893 else
3894 printk(" %08lX ", thread_saved_pc(p));
3895 #else
3896 if (state == TASK_RUNNING)
3897 printk(" running task ");
3898 else
3899 printk(" %016lx ", thread_saved_pc(p));
3900 #endif
3901 #ifdef CONFIG_DEBUG_STACK_USAGE
3902 {
3903 unsigned long * n = (unsigned long *) (p->thread_info+1);
3904 while (!*n)
3905 n++;
3906 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
3907 }
3908 #endif
3909 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
3910 if ((relative = eldest_child(p)))
3911 printk("%5d ", relative->pid);
3912 else
3913 printk(" ");
3914 if ((relative = younger_sibling(p)))
3915 printk("%7d", relative->pid);
3916 else
3917 printk(" ");
3918 if ((relative = older_sibling(p)))
3919 printk(" %5d", relative->pid);
3920 else
3921 printk(" ");
3922 if (!p->mm)
3923 printk(" (L-TLB)\n");
3924 else
3925 printk(" (NOTLB)\n");
3926
3927 if (state != TASK_RUNNING)
3928 show_stack(p, NULL);
3929 }
3930
3931 void show_state(void)
3932 {
3933 task_t *g, *p;
3934
3935 #if (BITS_PER_LONG == 32)
3936 printk("\n"
3937 " sibling\n");
3938 printk(" task PC pid father child younger older\n");
3939 #else
3940 printk("\n"
3941 " sibling\n");
3942 printk(" task PC pid father child younger older\n");
3943 #endif
3944 read_lock(&tasklist_lock);
3945 do_each_thread(g, p) {
3946 /*
3947 * reset the NMI-timeout, listing all files on a slow
3948 * console might take alot of time:
3949 */
3950 touch_nmi_watchdog();
3951 show_task(p);
3952 } while_each_thread(g, p);
3953
3954 read_unlock(&tasklist_lock);
3955 }
3956
3957 void __devinit init_idle(task_t *idle, int cpu)
3958 {
3959 runqueue_t *rq = cpu_rq(cpu);
3960 unsigned long flags;
3961
3962 idle->prio = MAX_PRIO;
3963 idle->state = TASK_RUNNING;
3964 idle->cpus_allowed = cpumask_of_cpu(cpu);
3965 set_task_cpu(idle, cpu);
3966
3967 spin_lock_irqsave(&rq->lock, flags);
3968 rq->curr = rq->idle = idle;
3969 set_tsk_need_resched(idle);
3970 spin_unlock_irqrestore(&rq->lock, flags);
3971
3972 /* Set the preempt count _outside_ the spinlocks! */
3973 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
3974 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
3975 #else
3976 idle->thread_info->preempt_count = 0;
3977 #endif
3978 }
3979
3980 /*
3981 * In a system that switches off the HZ timer nohz_cpu_mask
3982 * indicates which cpus entered this state. This is used
3983 * in the rcu update to wait only for active cpus. For system
3984 * which do not switch off the HZ timer nohz_cpu_mask should
3985 * always be CPU_MASK_NONE.
3986 */
3987 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
3988
3989 #ifdef CONFIG_SMP
3990 /*
3991 * This is how migration works:
3992 *
3993 * 1) we queue a migration_req_t structure in the source CPU's
3994 * runqueue and wake up that CPU's migration thread.
3995 * 2) we down() the locked semaphore => thread blocks.
3996 * 3) migration thread wakes up (implicitly it forces the migrated
3997 * thread off the CPU)
3998 * 4) it gets the migration request and checks whether the migrated
3999 * task is still in the wrong runqueue.
4000 * 5) if it's in the wrong runqueue then the migration thread removes
4001 * it and puts it into the right queue.
4002 * 6) migration thread up()s the semaphore.
4003 * 7) we wake up and the migration is done.
4004 */
4005
4006 /*
4007 * Change a given task's CPU affinity. Migrate the thread to a
4008 * proper CPU and schedule it away if the CPU it's executing on
4009 * is removed from the allowed bitmask.
4010 *
4011 * NOTE: the caller must have a valid reference to the task, the
4012 * task must not exit() & deallocate itself prematurely. The
4013 * call is not atomic; no spinlocks may be held.
4014 */
4015 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4016 {
4017 unsigned long flags;
4018 int ret = 0;
4019 migration_req_t req;
4020 runqueue_t *rq;
4021
4022 rq = task_rq_lock(p, &flags);
4023 if (!cpus_intersects(new_mask, cpu_online_map)) {
4024 ret = -EINVAL;
4025 goto out;
4026 }
4027
4028 p->cpus_allowed = new_mask;
4029 /* Can the task run on the task's current CPU? If so, we're done */
4030 if (cpu_isset(task_cpu(p), new_mask))
4031 goto out;
4032
4033 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4034 /* Need help from migration thread: drop lock and wait. */
4035 task_rq_unlock(rq, &flags);
4036 wake_up_process(rq->migration_thread);
4037 wait_for_completion(&req.done);
4038 tlb_migrate_finish(p->mm);
4039 return 0;
4040 }
4041 out:
4042 task_rq_unlock(rq, &flags);
4043 return ret;
4044 }
4045
4046 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4047
4048 /*
4049 * Move (not current) task off this cpu, onto dest cpu. We're doing
4050 * this because either it can't run here any more (set_cpus_allowed()
4051 * away from this CPU, or CPU going down), or because we're
4052 * attempting to rebalance this task on exec (sched_exec).
4053 *
4054 * So we race with normal scheduler movements, but that's OK, as long
4055 * as the task is no longer on this CPU.
4056 */
4057 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4058 {
4059 runqueue_t *rq_dest, *rq_src;
4060
4061 if (unlikely(cpu_is_offline(dest_cpu)))
4062 return;
4063
4064 rq_src = cpu_rq(src_cpu);
4065 rq_dest = cpu_rq(dest_cpu);
4066
4067 double_rq_lock(rq_src, rq_dest);
4068 /* Already moved. */
4069 if (task_cpu(p) != src_cpu)
4070 goto out;
4071 /* Affinity changed (again). */
4072 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4073 goto out;
4074
4075 set_task_cpu(p, dest_cpu);
4076 if (task_queued(p)) {
4077 /*
4078 * Sync timestamp with rq_dest's before activating.
4079 * The same thing could be achieved by doing this step
4080 * afterwards, and pretending it was a local activate.
4081 * This way is cleaner and logically correct.
4082 */
4083 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4084 + rq_dest->timestamp_last_tick;
4085 deactivate_task(p, rq_src);
4086 activate_task(p, rq_dest, 0);
4087 preempt(p, rq_dest);
4088 }
4089
4090 out:
4091 double_rq_unlock(rq_src, rq_dest);
4092 }
4093
4094 /*
4095 * migration_thread - this is a highprio system thread that performs
4096 * thread migration by bumping thread off CPU then 'pushing' onto
4097 * another runqueue.
4098 */
4099 static int migration_thread(void * data)
4100 {
4101 runqueue_t *rq;
4102 int cpu = (long)data;
4103
4104 rq = cpu_rq(cpu);
4105 BUG_ON(rq->migration_thread != current);
4106
4107 set_current_state(TASK_INTERRUPTIBLE);
4108 while (!kthread_should_stop()) {
4109 struct list_head *head;
4110 migration_req_t *req;
4111
4112 if (current->flags & PF_FREEZE)
4113 refrigerator(PF_FREEZE);
4114
4115 spin_lock_irq(&rq->lock);
4116
4117 if (cpu_is_offline(cpu)) {
4118 spin_unlock_irq(&rq->lock);
4119 goto wait_to_die;
4120 }
4121
4122 if (rq->active_balance) {
4123 active_load_balance(rq, cpu);
4124 rq->active_balance = 0;
4125 }
4126
4127 head = &rq->migration_queue;
4128
4129 if (list_empty(head)) {
4130 spin_unlock_irq(&rq->lock);
4131 schedule();
4132 set_current_state(TASK_INTERRUPTIBLE);
4133 continue;
4134 }
4135 req = list_entry(head->next, migration_req_t, list);
4136 list_del_init(head->next);
4137
4138 if (req->type == REQ_MOVE_TASK) {
4139 spin_unlock(&rq->lock);
4140 __migrate_task(req->task, cpu, req->dest_cpu);
4141 local_irq_enable();
4142 } else if (req->type == REQ_SET_DOMAIN) {
4143 rq->sd = req->sd;
4144 spin_unlock_irq(&rq->lock);
4145 } else {
4146 spin_unlock_irq(&rq->lock);
4147 WARN_ON(1);
4148 }
4149
4150 complete(&req->done);
4151 }
4152 __set_current_state(TASK_RUNNING);
4153 return 0;
4154
4155 wait_to_die:
4156 /* Wait for kthread_stop */
4157 set_current_state(TASK_INTERRUPTIBLE);
4158 while (!kthread_should_stop()) {
4159 schedule();
4160 set_current_state(TASK_INTERRUPTIBLE);
4161 }
4162 __set_current_state(TASK_RUNNING);
4163 return 0;
4164 }
4165
4166 #ifdef CONFIG_HOTPLUG_CPU
4167 /* Figure out where task on dead CPU should go, use force if neccessary. */
4168 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4169 {
4170 int dest_cpu;
4171 cpumask_t mask;
4172
4173 /* On same node? */
4174 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4175 cpus_and(mask, mask, tsk->cpus_allowed);
4176 dest_cpu = any_online_cpu(mask);
4177
4178 /* On any allowed CPU? */
4179 if (dest_cpu == NR_CPUS)
4180 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4181
4182 /* No more Mr. Nice Guy. */
4183 if (dest_cpu == NR_CPUS) {
4184 cpus_setall(tsk->cpus_allowed);
4185 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4186
4187 /*
4188 * Don't tell them about moving exiting tasks or
4189 * kernel threads (both mm NULL), since they never
4190 * leave kernel.
4191 */
4192 if (tsk->mm && printk_ratelimit())
4193 printk(KERN_INFO "process %d (%s) no "
4194 "longer affine to cpu%d\n",
4195 tsk->pid, tsk->comm, dead_cpu);
4196 }
4197 __migrate_task(tsk, dead_cpu, dest_cpu);
4198 }
4199
4200 /*
4201 * While a dead CPU has no uninterruptible tasks queued at this point,
4202 * it might still have a nonzero ->nr_uninterruptible counter, because
4203 * for performance reasons the counter is not stricly tracking tasks to
4204 * their home CPUs. So we just add the counter to another CPU's counter,
4205 * to keep the global sum constant after CPU-down:
4206 */
4207 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4208 {
4209 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4210 unsigned long flags;
4211
4212 local_irq_save(flags);
4213 double_rq_lock(rq_src, rq_dest);
4214 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4215 rq_src->nr_uninterruptible = 0;
4216 double_rq_unlock(rq_src, rq_dest);
4217 local_irq_restore(flags);
4218 }
4219
4220 /* Run through task list and migrate tasks from the dead cpu. */
4221 static void migrate_live_tasks(int src_cpu)
4222 {
4223 struct task_struct *tsk, *t;
4224
4225 write_lock_irq(&tasklist_lock);
4226
4227 do_each_thread(t, tsk) {
4228 if (tsk == current)
4229 continue;
4230
4231 if (task_cpu(tsk) == src_cpu)
4232 move_task_off_dead_cpu(src_cpu, tsk);
4233 } while_each_thread(t, tsk);
4234
4235 write_unlock_irq(&tasklist_lock);
4236 }
4237
4238 /* Schedules idle task to be the next runnable task on current CPU.
4239 * It does so by boosting its priority to highest possible and adding it to
4240 * the _front_ of runqueue. Used by CPU offline code.
4241 */
4242 void sched_idle_next(void)
4243 {
4244 int cpu = smp_processor_id();
4245 runqueue_t *rq = this_rq();
4246 struct task_struct *p = rq->idle;
4247 unsigned long flags;
4248
4249 /* cpu has to be offline */
4250 BUG_ON(cpu_online(cpu));
4251
4252 /* Strictly not necessary since rest of the CPUs are stopped by now
4253 * and interrupts disabled on current cpu.
4254 */
4255 spin_lock_irqsave(&rq->lock, flags);
4256
4257 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4258 /* Add idle task to _front_ of it's priority queue */
4259 __activate_idle_task(p, rq);
4260
4261 spin_unlock_irqrestore(&rq->lock, flags);
4262 }
4263
4264 /* Ensures that the idle task is using init_mm right before its cpu goes
4265 * offline.
4266 */
4267 void idle_task_exit(void)
4268 {
4269 struct mm_struct *mm = current->active_mm;
4270
4271 BUG_ON(cpu_online(smp_processor_id()));
4272
4273 if (mm != &init_mm)
4274 switch_mm(mm, &init_mm, current);
4275 mmdrop(mm);
4276 }
4277
4278 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4279 {
4280 struct runqueue *rq = cpu_rq(dead_cpu);
4281
4282 /* Must be exiting, otherwise would be on tasklist. */
4283 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4284
4285 /* Cannot have done final schedule yet: would have vanished. */
4286 BUG_ON(tsk->flags & PF_DEAD);
4287
4288 get_task_struct(tsk);
4289
4290 /*
4291 * Drop lock around migration; if someone else moves it,
4292 * that's OK. No task can be added to this CPU, so iteration is
4293 * fine.
4294 */
4295 spin_unlock_irq(&rq->lock);
4296 move_task_off_dead_cpu(dead_cpu, tsk);
4297 spin_lock_irq(&rq->lock);
4298
4299 put_task_struct(tsk);
4300 }
4301
4302 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4303 static void migrate_dead_tasks(unsigned int dead_cpu)
4304 {
4305 unsigned arr, i;
4306 struct runqueue *rq = cpu_rq(dead_cpu);
4307
4308 for (arr = 0; arr < 2; arr++) {
4309 for (i = 0; i < MAX_PRIO; i++) {
4310 struct list_head *list = &rq->queue[i];
4311 while (!list_empty(list))
4312 migrate_dead(dead_cpu,
4313 list_entry(list->next, task_t,
4314 run_list));
4315 }
4316 }
4317 }
4318 #endif /* CONFIG_HOTPLUG_CPU */
4319
4320 /*
4321 * migration_call - callback that gets triggered when a CPU is added.
4322 * Here we can start up the necessary migration thread for the new CPU.
4323 */
4324 static int migration_call(struct notifier_block *nfb, unsigned long action,
4325 void *hcpu)
4326 {
4327 int cpu = (long)hcpu;
4328 struct task_struct *p;
4329 struct runqueue *rq;
4330 unsigned long flags;
4331
4332 switch (action) {
4333 case CPU_UP_PREPARE:
4334 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4335 if (IS_ERR(p))
4336 return NOTIFY_BAD;
4337 p->flags |= PF_NOFREEZE;
4338 kthread_bind(p, cpu);
4339 /* Must be high prio: stop_machine expects to yield to it. */
4340 rq = task_rq_lock(p, &flags);
4341 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4342 task_rq_unlock(rq, &flags);
4343 cpu_rq(cpu)->migration_thread = p;
4344 break;
4345 case CPU_ONLINE:
4346 /* Strictly unneccessary, as first user will wake it. */
4347 wake_up_process(cpu_rq(cpu)->migration_thread);
4348 break;
4349 #ifdef CONFIG_HOTPLUG_CPU
4350 case CPU_UP_CANCELED:
4351 /* Unbind it from offline cpu so it can run. Fall thru. */
4352 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4353 kthread_stop(cpu_rq(cpu)->migration_thread);
4354 cpu_rq(cpu)->migration_thread = NULL;
4355 break;
4356 case CPU_DEAD:
4357 migrate_live_tasks(cpu);
4358 rq = cpu_rq(cpu);
4359 kthread_stop(rq->migration_thread);
4360 rq->migration_thread = NULL;
4361 /* Idle task back to normal (off runqueue, low prio) */
4362 rq = task_rq_lock(rq->idle, &flags);
4363 deactivate_task(rq->idle, rq);
4364 rq->idle->static_prio = MAX_PRIO;
4365 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4366 migrate_dead_tasks(cpu);
4367 task_rq_unlock(rq, &flags);
4368 migrate_nr_uninterruptible(rq);
4369 BUG_ON(rq->nr_running != 0);
4370
4371 /* No need to migrate the tasks: it was best-effort if
4372 * they didn't do lock_cpu_hotplug(). Just wake up
4373 * the requestors. */
4374 spin_lock_irq(&rq->lock);
4375 while (!list_empty(&rq->migration_queue)) {
4376 migration_req_t *req;
4377 req = list_entry(rq->migration_queue.next,
4378 migration_req_t, list);
4379 BUG_ON(req->type != REQ_MOVE_TASK);
4380 list_del_init(&req->list);
4381 complete(&req->done);
4382 }
4383 spin_unlock_irq(&rq->lock);
4384 break;
4385 #endif
4386 }
4387 return NOTIFY_OK;
4388 }
4389
4390 /* Register at highest priority so that task migration (migrate_all_tasks)
4391 * happens before everything else.
4392 */
4393 static struct notifier_block __devinitdata migration_notifier = {
4394 .notifier_call = migration_call,
4395 .priority = 10
4396 };
4397
4398 int __init migration_init(void)
4399 {
4400 void *cpu = (void *)(long)smp_processor_id();
4401 /* Start one for boot CPU. */
4402 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4403 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4404 register_cpu_notifier(&migration_notifier);
4405 return 0;
4406 }
4407 #endif
4408
4409 #ifdef CONFIG_SMP
4410 #define SCHED_DOMAIN_DEBUG
4411 #ifdef SCHED_DOMAIN_DEBUG
4412 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4413 {
4414 int level = 0;
4415
4416 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4417
4418 do {
4419 int i;
4420 char str[NR_CPUS];
4421 struct sched_group *group = sd->groups;
4422 cpumask_t groupmask;
4423
4424 cpumask_scnprintf(str, NR_CPUS, sd->span);
4425 cpus_clear(groupmask);
4426
4427 printk(KERN_DEBUG);
4428 for (i = 0; i < level + 1; i++)
4429 printk(" ");
4430 printk("domain %d: ", level);
4431
4432 if (!(sd->flags & SD_LOAD_BALANCE)) {
4433 printk("does not load-balance\n");
4434 if (sd->parent)
4435 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4436 break;
4437 }
4438
4439 printk("span %s\n", str);
4440
4441 if (!cpu_isset(cpu, sd->span))
4442 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4443 if (!cpu_isset(cpu, group->cpumask))
4444 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4445
4446 printk(KERN_DEBUG);
4447 for (i = 0; i < level + 2; i++)
4448 printk(" ");
4449 printk("groups:");
4450 do {
4451 if (!group) {
4452 printk("\n");
4453 printk(KERN_ERR "ERROR: group is NULL\n");
4454 break;
4455 }
4456
4457 if (!group->cpu_power) {
4458 printk("\n");
4459 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4460 }
4461
4462 if (!cpus_weight(group->cpumask)) {
4463 printk("\n");
4464 printk(KERN_ERR "ERROR: empty group\n");
4465 }
4466
4467 if (cpus_intersects(groupmask, group->cpumask)) {
4468 printk("\n");
4469 printk(KERN_ERR "ERROR: repeated CPUs\n");
4470 }
4471
4472 cpus_or(groupmask, groupmask, group->cpumask);
4473
4474 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4475 printk(" %s", str);
4476
4477 group = group->next;
4478 } while (group != sd->groups);
4479 printk("\n");
4480
4481 if (!cpus_equal(sd->span, groupmask))
4482 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4483
4484 level++;
4485 sd = sd->parent;
4486
4487 if (sd) {
4488 if (!cpus_subset(groupmask, sd->span))
4489 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4490 }
4491
4492 } while (sd);
4493 }
4494 #else
4495 #define sched_domain_debug(sd, cpu) {}
4496 #endif
4497
4498 /*
4499 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4500 * hold the hotplug lock.
4501 */
4502 void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4503 {
4504 migration_req_t req;
4505 unsigned long flags;
4506 runqueue_t *rq = cpu_rq(cpu);
4507 int local = 1;
4508
4509 sched_domain_debug(sd, cpu);
4510
4511 spin_lock_irqsave(&rq->lock, flags);
4512
4513 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
4514 rq->sd = sd;
4515 } else {
4516 init_completion(&req.done);
4517 req.type = REQ_SET_DOMAIN;
4518 req.sd = sd;
4519 list_add(&req.list, &rq->migration_queue);
4520 local = 0;
4521 }
4522
4523 spin_unlock_irqrestore(&rq->lock, flags);
4524
4525 if (!local) {
4526 wake_up_process(rq->migration_thread);
4527 wait_for_completion(&req.done);
4528 }
4529 }
4530
4531 /* cpus with isolated domains */
4532 cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4533
4534 /* Setup the mask of cpus configured for isolated domains */
4535 static int __init isolated_cpu_setup(char *str)
4536 {
4537 int ints[NR_CPUS], i;
4538
4539 str = get_options(str, ARRAY_SIZE(ints), ints);
4540 cpus_clear(cpu_isolated_map);
4541 for (i = 1; i <= ints[0]; i++)
4542 if (ints[i] < NR_CPUS)
4543 cpu_set(ints[i], cpu_isolated_map);
4544 return 1;
4545 }
4546
4547 __setup ("isolcpus=", isolated_cpu_setup);
4548
4549 /*
4550 * init_sched_build_groups takes an array of groups, the cpumask we wish
4551 * to span, and a pointer to a function which identifies what group a CPU
4552 * belongs to. The return value of group_fn must be a valid index into the
4553 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4554 * keep track of groups covered with a cpumask_t).
4555 *
4556 * init_sched_build_groups will build a circular linked list of the groups
4557 * covered by the given span, and will set each group's ->cpumask correctly,
4558 * and ->cpu_power to 0.
4559 */
4560 void __devinit init_sched_build_groups(struct sched_group groups[],
4561 cpumask_t span, int (*group_fn)(int cpu))
4562 {
4563 struct sched_group *first = NULL, *last = NULL;
4564 cpumask_t covered = CPU_MASK_NONE;
4565 int i;
4566
4567 for_each_cpu_mask(i, span) {
4568 int group = group_fn(i);
4569 struct sched_group *sg = &groups[group];
4570 int j;
4571
4572 if (cpu_isset(i, covered))
4573 continue;
4574
4575 sg->cpumask = CPU_MASK_NONE;
4576 sg->cpu_power = 0;
4577
4578 for_each_cpu_mask(j, span) {
4579 if (group_fn(j) != group)
4580 continue;
4581
4582 cpu_set(j, covered);
4583 cpu_set(j, sg->cpumask);
4584 }
4585 if (!first)
4586 first = sg;
4587 if (last)
4588 last->next = sg;
4589 last = sg;
4590 }
4591 last->next = first;
4592 }
4593
4594
4595 #ifdef ARCH_HAS_SCHED_DOMAIN
4596 extern void __devinit arch_init_sched_domains(void);
4597 extern void __devinit arch_destroy_sched_domains(void);
4598 #else
4599 #ifdef CONFIG_SCHED_SMT
4600 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4601 static struct sched_group sched_group_cpus[NR_CPUS];
4602 static int __devinit cpu_to_cpu_group(int cpu)
4603 {
4604 return cpu;
4605 }
4606 #endif
4607
4608 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4609 static struct sched_group sched_group_phys[NR_CPUS];
4610 static int __devinit cpu_to_phys_group(int cpu)
4611 {
4612 #ifdef CONFIG_SCHED_SMT
4613 return first_cpu(cpu_sibling_map[cpu]);
4614 #else
4615 return cpu;
4616 #endif
4617 }
4618
4619 #ifdef CONFIG_NUMA
4620
4621 static DEFINE_PER_CPU(struct sched_domain, node_domains);
4622 static struct sched_group sched_group_nodes[MAX_NUMNODES];
4623 static int __devinit cpu_to_node_group(int cpu)
4624 {
4625 return cpu_to_node(cpu);
4626 }
4627 #endif
4628
4629 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4630 /*
4631 * The domains setup code relies on siblings not spanning
4632 * multiple nodes. Make sure the architecture has a proper
4633 * siblings map:
4634 */
4635 static void check_sibling_maps(void)
4636 {
4637 int i, j;
4638
4639 for_each_online_cpu(i) {
4640 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4641 if (cpu_to_node(i) != cpu_to_node(j)) {
4642 printk(KERN_INFO "warning: CPU %d siblings map "
4643 "to different node - isolating "
4644 "them.\n", i);
4645 cpu_sibling_map[i] = cpumask_of_cpu(i);
4646 break;
4647 }
4648 }
4649 }
4650 }
4651 #endif
4652
4653 /*
4654 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
4655 */
4656 static void __devinit arch_init_sched_domains(void)
4657 {
4658 int i;
4659 cpumask_t cpu_default_map;
4660
4661 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4662 check_sibling_maps();
4663 #endif
4664 /*
4665 * Setup mask for cpus without special case scheduling requirements.
4666 * For now this just excludes isolated cpus, but could be used to
4667 * exclude other special cases in the future.
4668 */
4669 cpus_complement(cpu_default_map, cpu_isolated_map);
4670 cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4671
4672 /*
4673 * Set up domains. Isolated domains just stay on the dummy domain.
4674 */
4675 for_each_cpu_mask(i, cpu_default_map) {
4676 int group;
4677 struct sched_domain *sd = NULL, *p;
4678 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4679
4680 cpus_and(nodemask, nodemask, cpu_default_map);
4681
4682 #ifdef CONFIG_NUMA
4683 sd = &per_cpu(node_domains, i);
4684 group = cpu_to_node_group(i);
4685 *sd = SD_NODE_INIT;
4686 sd->span = cpu_default_map;
4687 sd->groups = &sched_group_nodes[group];
4688 #endif
4689
4690 p = sd;
4691 sd = &per_cpu(phys_domains, i);
4692 group = cpu_to_phys_group(i);
4693 *sd = SD_CPU_INIT;
4694 sd->span = nodemask;
4695 sd->parent = p;
4696 sd->groups = &sched_group_phys[group];
4697
4698 #ifdef CONFIG_SCHED_SMT
4699 p = sd;
4700 sd = &per_cpu(cpu_domains, i);
4701 group = cpu_to_cpu_group(i);
4702 *sd = SD_SIBLING_INIT;
4703 sd->span = cpu_sibling_map[i];
4704 cpus_and(sd->span, sd->span, cpu_default_map);
4705 sd->parent = p;
4706 sd->groups = &sched_group_cpus[group];
4707 #endif
4708 }
4709
4710 #ifdef CONFIG_SCHED_SMT
4711 /* Set up CPU (sibling) groups */
4712 for_each_online_cpu(i) {
4713 cpumask_t this_sibling_map = cpu_sibling_map[i];
4714 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4715 if (i != first_cpu(this_sibling_map))
4716 continue;
4717
4718 init_sched_build_groups(sched_group_cpus, this_sibling_map,
4719 &cpu_to_cpu_group);
4720 }
4721 #endif
4722
4723 /* Set up physical groups */
4724 for (i = 0; i < MAX_NUMNODES; i++) {
4725 cpumask_t nodemask = node_to_cpumask(i);
4726
4727 cpus_and(nodemask, nodemask, cpu_default_map);
4728 if (cpus_empty(nodemask))
4729 continue;
4730
4731 init_sched_build_groups(sched_group_phys, nodemask,
4732 &cpu_to_phys_group);
4733 }
4734
4735 #ifdef CONFIG_NUMA
4736 /* Set up node groups */
4737 init_sched_build_groups(sched_group_nodes, cpu_default_map,
4738 &cpu_to_node_group);
4739 #endif
4740
4741 /* Calculate CPU power for physical packages and nodes */
4742 for_each_cpu_mask(i, cpu_default_map) {
4743 int power;
4744 struct sched_domain *sd;
4745 #ifdef CONFIG_SCHED_SMT
4746 sd = &per_cpu(cpu_domains, i);
4747 power = SCHED_LOAD_SCALE;
4748 sd->groups->cpu_power = power;
4749 #endif
4750
4751 sd = &per_cpu(phys_domains, i);
4752 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
4753 (cpus_weight(sd->groups->cpumask)-1) / 10;
4754 sd->groups->cpu_power = power;
4755
4756 #ifdef CONFIG_NUMA
4757 if (i == first_cpu(sd->groups->cpumask)) {
4758 /* Only add "power" once for each physical package. */
4759 sd = &per_cpu(node_domains, i);
4760 sd->groups->cpu_power += power;
4761 }
4762 #endif
4763 }
4764
4765 /* Attach the domains */
4766 for_each_online_cpu(i) {
4767 struct sched_domain *sd;
4768 #ifdef CONFIG_SCHED_SMT
4769 sd = &per_cpu(cpu_domains, i);
4770 #else
4771 sd = &per_cpu(phys_domains, i);
4772 #endif
4773 cpu_attach_domain(sd, i);
4774 }
4775 }
4776
4777 #ifdef CONFIG_HOTPLUG_CPU
4778 static void __devinit arch_destroy_sched_domains(void)
4779 {
4780 /* Do nothing: everything is statically allocated. */
4781 }
4782 #endif
4783
4784 #endif /* ARCH_HAS_SCHED_DOMAIN */
4785
4786 /*
4787 * Initial dummy domain for early boot and for hotplug cpu. Being static,
4788 * it is initialized to zero, so all balancing flags are cleared which is
4789 * what we want.
4790 */
4791 static struct sched_domain sched_domain_dummy;
4792
4793 #ifdef CONFIG_HOTPLUG_CPU
4794 /*
4795 * Force a reinitialization of the sched domains hierarchy. The domains
4796 * and groups cannot be updated in place without racing with the balancing
4797 * code, so we temporarily attach all running cpus to a "dummy" domain
4798 * which will prevent rebalancing while the sched domains are recalculated.
4799 */
4800 static int update_sched_domains(struct notifier_block *nfb,
4801 unsigned long action, void *hcpu)
4802 {
4803 int i;
4804
4805 switch (action) {
4806 case CPU_UP_PREPARE:
4807 case CPU_DOWN_PREPARE:
4808 for_each_online_cpu(i)
4809 cpu_attach_domain(&sched_domain_dummy, i);
4810 arch_destroy_sched_domains();
4811 return NOTIFY_OK;
4812
4813 case CPU_UP_CANCELED:
4814 case CPU_DOWN_FAILED:
4815 case CPU_ONLINE:
4816 case CPU_DEAD:
4817 /*
4818 * Fall through and re-initialise the domains.
4819 */
4820 break;
4821 default:
4822 return NOTIFY_DONE;
4823 }
4824
4825 /* The hotplug lock is already held by cpu_up/cpu_down */
4826 arch_init_sched_domains();
4827
4828 return NOTIFY_OK;
4829 }
4830 #endif
4831
4832 void __init sched_init_smp(void)
4833 {
4834 lock_cpu_hotplug();
4835 arch_init_sched_domains();
4836 unlock_cpu_hotplug();
4837 /* XXX: Theoretical race here - CPU may be hotplugged now */
4838 hotcpu_notifier(update_sched_domains, 0);
4839 }
4840 #else
4841 void __init sched_init_smp(void)
4842 {
4843 }
4844 #endif /* CONFIG_SMP */
4845
4846 int in_sched_functions(unsigned long addr)
4847 {
4848 /* Linker adds these: start and end of __sched functions */
4849 extern char __sched_text_start[], __sched_text_end[];
4850 return in_lock_functions(addr) ||
4851 (addr >= (unsigned long)__sched_text_start
4852 && addr < (unsigned long)__sched_text_end);
4853 }
4854
4855 void __init sched_init(void)
4856 {
4857 runqueue_t *rq;
4858 int i, j;
4859
4860 for (i = 0; i < NR_CPUS; i++) {
4861
4862 rq = cpu_rq(i);
4863 spin_lock_init(&rq->lock);
4864 rq->cache_ticks = 0;
4865 rq->preempted = 0;
4866
4867 #ifdef CONFIG_SMP
4868 rq->sd = &sched_domain_dummy;
4869 rq->cpu_load = 0;
4870 rq->active_balance = 0;
4871 rq->push_cpu = 0;
4872 rq->migration_thread = NULL;
4873 INIT_LIST_HEAD(&rq->migration_queue);
4874 #endif
4875 atomic_set(&rq->nr_iowait, 0);
4876 for (j = 0; j < MAX_PRIO; j++)
4877 INIT_LIST_HEAD(&rq->queue[j]);
4878 memset(rq->bitmap, 0, BITS_TO_LONGS(MAX_PRIO)*sizeof(long));
4879 /*
4880 * delimiter for bitsearch
4881 */
4882 __set_bit(MAX_PRIO, rq->bitmap);
4883 }
4884
4885 /*
4886 * The boot idle thread does lazy MMU switching as well:
4887 */
4888 atomic_inc(&init_mm.mm_count);
4889 enter_lazy_tlb(&init_mm, current);
4890
4891 /*
4892 * Make us the idle thread. Technically, schedule() should not be
4893 * called from this thread, however somewhere below it might be,
4894 * but because we are the idle thread, we just pick up running again
4895 * when this runqueue becomes "idle".
4896 */
4897 init_idle(current, smp_processor_id());
4898 }
4899
4900 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4901 void __might_sleep(char *file, int line)
4902 {
4903 #if defined(in_atomic)
4904 static unsigned long prev_jiffy; /* ratelimiting */
4905
4906 if ((in_atomic() || irqs_disabled()) &&
4907 system_state == SYSTEM_RUNNING && !oops_in_progress) {
4908 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
4909 return;
4910 prev_jiffy = jiffies;
4911 printk(KERN_ERR "Debug: sleeping function called from invalid"
4912 " context at %s:%d\n", file, line);
4913 printk("in_atomic():%d, irqs_disabled():%d\n",
4914 in_atomic(), irqs_disabled());
4915 dump_stack();
4916 }
4917 #endif
4918 }
4919 EXPORT_SYMBOL(__might_sleep);
4920 #endif
4921
4922 #ifdef CONFIG_MAGIC_SYSRQ
4923 void normalize_rt_tasks(void)
4924 {
4925 struct task_struct *p;
4926 unsigned long flags;
4927 runqueue_t *rq;
4928 int queued;
4929
4930 read_lock_irq(&tasklist_lock);
4931 for_each_process (p) {
4932 if (!rt_task(p))
4933 continue;
4934
4935 rq = task_rq_lock(p, &flags);
4936
4937 if ((queued = task_queued(p)))
4938 deactivate_task(p, task_rq(p));
4939 __setscheduler(p, SCHED_NORMAL, 0);
4940 if (queued) {
4941 __activate_task(p, task_rq(p));
4942 resched_task(rq->curr);
4943 }
4944
4945 task_rq_unlock(rq, &flags);
4946 }
4947 read_unlock_irq(&tasklist_lock);
4948 }
4949
4950 #endif /* CONFIG_MAGIC_SYSRQ */