Magellan Linux

Contents of /alx-src/tags/kernel26-2.6.12-alx-r9/kernel/signal.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 630 - (show annotations) (download)
Wed Mar 4 11:03:09 2009 UTC (15 years, 3 months ago) by niro
File MIME type: text/plain
File size: 70856 byte(s)
Tag kernel26-2.6.12-alx-r9
1 /*
2 * linux/kernel/signal.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
7 *
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
11 */
12
13 #include <linux/config.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/tty.h>
21 #include <linux/binfmts.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/ptrace.h>
25 #include <linux/posix-timers.h>
26 #include <linux/signal.h>
27 #include <asm/param.h>
28 #include <asm/uaccess.h>
29 #include <asm/unistd.h>
30 #include <asm/siginfo.h>
31
32 /*
33 * SLAB caches for signal bits.
34 */
35
36 static kmem_cache_t *sigqueue_cachep;
37
38 /*
39 * In POSIX a signal is sent either to a specific thread (Linux task)
40 * or to the process as a whole (Linux thread group). How the signal
41 * is sent determines whether it's to one thread or the whole group,
42 * which determines which signal mask(s) are involved in blocking it
43 * from being delivered until later. When the signal is delivered,
44 * either it's caught or ignored by a user handler or it has a default
45 * effect that applies to the whole thread group (POSIX process).
46 *
47 * The possible effects an unblocked signal set to SIG_DFL can have are:
48 * ignore - Nothing Happens
49 * terminate - kill the process, i.e. all threads in the group,
50 * similar to exit_group. The group leader (only) reports
51 * WIFSIGNALED status to its parent.
52 * coredump - write a core dump file describing all threads using
53 * the same mm and then kill all those threads
54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
55 *
56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57 * Other signals when not blocked and set to SIG_DFL behaves as follows.
58 * The job control signals also have other special effects.
59 *
60 * +--------------------+------------------+
61 * | POSIX signal | default action |
62 * +--------------------+------------------+
63 * | SIGHUP | terminate |
64 * | SIGINT | terminate |
65 * | SIGQUIT | coredump |
66 * | SIGILL | coredump |
67 * | SIGTRAP | coredump |
68 * | SIGABRT/SIGIOT | coredump |
69 * | SIGBUS | coredump |
70 * | SIGFPE | coredump |
71 * | SIGKILL | terminate(+) |
72 * | SIGUSR1 | terminate |
73 * | SIGSEGV | coredump |
74 * | SIGUSR2 | terminate |
75 * | SIGPIPE | terminate |
76 * | SIGALRM | terminate |
77 * | SIGTERM | terminate |
78 * | SIGCHLD | ignore |
79 * | SIGCONT | ignore(*) |
80 * | SIGSTOP | stop(*)(+) |
81 * | SIGTSTP | stop(*) |
82 * | SIGTTIN | stop(*) |
83 * | SIGTTOU | stop(*) |
84 * | SIGURG | ignore |
85 * | SIGXCPU | coredump |
86 * | SIGXFSZ | coredump |
87 * | SIGVTALRM | terminate |
88 * | SIGPROF | terminate |
89 * | SIGPOLL/SIGIO | terminate |
90 * | SIGSYS/SIGUNUSED | coredump |
91 * | SIGSTKFLT | terminate |
92 * | SIGWINCH | ignore |
93 * | SIGPWR | terminate |
94 * | SIGRTMIN-SIGRTMAX | terminate |
95 * +--------------------+------------------+
96 * | non-POSIX signal | default action |
97 * +--------------------+------------------+
98 * | SIGEMT | coredump |
99 * +--------------------+------------------+
100 *
101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102 * (*) Special job control effects:
103 * When SIGCONT is sent, it resumes the process (all threads in the group)
104 * from TASK_STOPPED state and also clears any pending/queued stop signals
105 * (any of those marked with "stop(*)"). This happens regardless of blocking,
106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
107 * any pending/queued SIGCONT signals; this happens regardless of blocking,
108 * catching, or ignored the stop signal, though (except for SIGSTOP) the
109 * default action of stopping the process may happen later or never.
110 */
111
112 #ifdef SIGEMT
113 #define M_SIGEMT M(SIGEMT)
114 #else
115 #define M_SIGEMT 0
116 #endif
117
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
120 #else
121 #define M(sig) (1UL << ((sig)-1))
122 #endif
123 #define T(sig, mask) (M(sig) & (mask))
124
125 #define SIG_KERNEL_ONLY_MASK (\
126 M(SIGKILL) | M(SIGSTOP) )
127
128 #define SIG_KERNEL_STOP_MASK (\
129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
130
131 #define SIG_KERNEL_COREDUMP_MASK (\
132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
135
136 #define SIG_KERNEL_IGNORE_MASK (\
137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
138
139 #define sig_kernel_only(sig) \
140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
147
148 #define sig_user_defined(t, signr) \
149 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
150 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
151
152 #define sig_fatal(t, signr) \
153 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
154 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
155
156 static int sig_ignored(struct task_struct *t, int sig)
157 {
158 void __user * handler;
159
160 /*
161 * Tracers always want to know about signals..
162 */
163 if (t->ptrace & PT_PTRACED)
164 return 0;
165
166 /*
167 * Blocked signals are never ignored, since the
168 * signal handler may change by the time it is
169 * unblocked.
170 */
171 if (sigismember(&t->blocked, sig))
172 return 0;
173
174 /* Is it explicitly or implicitly ignored? */
175 handler = t->sighand->action[sig-1].sa.sa_handler;
176 return handler == SIG_IGN ||
177 (handler == SIG_DFL && sig_kernel_ignore(sig));
178 }
179
180 /*
181 * Re-calculate pending state from the set of locally pending
182 * signals, globally pending signals, and blocked signals.
183 */
184 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
185 {
186 unsigned long ready;
187 long i;
188
189 switch (_NSIG_WORDS) {
190 default:
191 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
192 ready |= signal->sig[i] &~ blocked->sig[i];
193 break;
194
195 case 4: ready = signal->sig[3] &~ blocked->sig[3];
196 ready |= signal->sig[2] &~ blocked->sig[2];
197 ready |= signal->sig[1] &~ blocked->sig[1];
198 ready |= signal->sig[0] &~ blocked->sig[0];
199 break;
200
201 case 2: ready = signal->sig[1] &~ blocked->sig[1];
202 ready |= signal->sig[0] &~ blocked->sig[0];
203 break;
204
205 case 1: ready = signal->sig[0] &~ blocked->sig[0];
206 }
207 return ready != 0;
208 }
209
210 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
211
212 fastcall void recalc_sigpending_tsk(struct task_struct *t)
213 {
214 if (t->signal->group_stop_count > 0 ||
215 PENDING(&t->pending, &t->blocked) ||
216 PENDING(&t->signal->shared_pending, &t->blocked))
217 set_tsk_thread_flag(t, TIF_SIGPENDING);
218 else
219 clear_tsk_thread_flag(t, TIF_SIGPENDING);
220 }
221
222 void recalc_sigpending(void)
223 {
224 recalc_sigpending_tsk(current);
225 }
226
227 /* Given the mask, find the first available signal that should be serviced. */
228
229 static int
230 next_signal(struct sigpending *pending, sigset_t *mask)
231 {
232 unsigned long i, *s, *m, x;
233 int sig = 0;
234
235 s = pending->signal.sig;
236 m = mask->sig;
237 switch (_NSIG_WORDS) {
238 default:
239 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
240 if ((x = *s &~ *m) != 0) {
241 sig = ffz(~x) + i*_NSIG_BPW + 1;
242 break;
243 }
244 break;
245
246 case 2: if ((x = s[0] &~ m[0]) != 0)
247 sig = 1;
248 else if ((x = s[1] &~ m[1]) != 0)
249 sig = _NSIG_BPW + 1;
250 else
251 break;
252 sig += ffz(~x);
253 break;
254
255 case 1: if ((x = *s &~ *m) != 0)
256 sig = ffz(~x) + 1;
257 break;
258 }
259
260 return sig;
261 }
262
263 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, unsigned int __nocast flags,
264 int override_rlimit)
265 {
266 struct sigqueue *q = NULL;
267
268 atomic_inc(&t->user->sigpending);
269 if (override_rlimit ||
270 atomic_read(&t->user->sigpending) <=
271 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
272 q = kmem_cache_alloc(sigqueue_cachep, flags);
273 if (unlikely(q == NULL)) {
274 atomic_dec(&t->user->sigpending);
275 } else {
276 INIT_LIST_HEAD(&q->list);
277 q->flags = 0;
278 q->lock = NULL;
279 q->user = get_uid(t->user);
280 }
281 return(q);
282 }
283
284 static inline void __sigqueue_free(struct sigqueue *q)
285 {
286 if (q->flags & SIGQUEUE_PREALLOC)
287 return;
288 atomic_dec(&q->user->sigpending);
289 free_uid(q->user);
290 kmem_cache_free(sigqueue_cachep, q);
291 }
292
293 static void flush_sigqueue(struct sigpending *queue)
294 {
295 struct sigqueue *q;
296
297 sigemptyset(&queue->signal);
298 while (!list_empty(&queue->list)) {
299 q = list_entry(queue->list.next, struct sigqueue , list);
300 list_del_init(&q->list);
301 __sigqueue_free(q);
302 }
303 }
304
305 /*
306 * Flush all pending signals for a task.
307 */
308
309 void
310 flush_signals(struct task_struct *t)
311 {
312 unsigned long flags;
313
314 spin_lock_irqsave(&t->sighand->siglock, flags);
315 clear_tsk_thread_flag(t,TIF_SIGPENDING);
316 flush_sigqueue(&t->pending);
317 flush_sigqueue(&t->signal->shared_pending);
318 spin_unlock_irqrestore(&t->sighand->siglock, flags);
319 }
320
321 /*
322 * This function expects the tasklist_lock write-locked.
323 */
324 void __exit_sighand(struct task_struct *tsk)
325 {
326 struct sighand_struct * sighand = tsk->sighand;
327
328 /* Ok, we're done with the signal handlers */
329 tsk->sighand = NULL;
330 if (atomic_dec_and_test(&sighand->count))
331 kmem_cache_free(sighand_cachep, sighand);
332 }
333
334 void exit_sighand(struct task_struct *tsk)
335 {
336 write_lock_irq(&tasklist_lock);
337 __exit_sighand(tsk);
338 write_unlock_irq(&tasklist_lock);
339 }
340
341 /*
342 * This function expects the tasklist_lock write-locked.
343 */
344 void __exit_signal(struct task_struct *tsk)
345 {
346 struct signal_struct * sig = tsk->signal;
347 struct sighand_struct * sighand = tsk->sighand;
348
349 if (!sig)
350 BUG();
351 if (!atomic_read(&sig->count))
352 BUG();
353 spin_lock(&sighand->siglock);
354 posix_cpu_timers_exit(tsk);
355 if (atomic_dec_and_test(&sig->count)) {
356 posix_cpu_timers_exit_group(tsk);
357 if (tsk == sig->curr_target)
358 sig->curr_target = next_thread(tsk);
359 tsk->signal = NULL;
360 spin_unlock(&sighand->siglock);
361 flush_sigqueue(&sig->shared_pending);
362 } else {
363 /*
364 * If there is any task waiting for the group exit
365 * then notify it:
366 */
367 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
368 wake_up_process(sig->group_exit_task);
369 sig->group_exit_task = NULL;
370 }
371 if (tsk == sig->curr_target)
372 sig->curr_target = next_thread(tsk);
373 tsk->signal = NULL;
374 /*
375 * Accumulate here the counters for all threads but the
376 * group leader as they die, so they can be added into
377 * the process-wide totals when those are taken.
378 * The group leader stays around as a zombie as long
379 * as there are other threads. When it gets reaped,
380 * the exit.c code will add its counts into these totals.
381 * We won't ever get here for the group leader, since it
382 * will have been the last reference on the signal_struct.
383 */
384 sig->utime = cputime_add(sig->utime, tsk->utime);
385 sig->stime = cputime_add(sig->stime, tsk->stime);
386 sig->min_flt += tsk->min_flt;
387 sig->maj_flt += tsk->maj_flt;
388 sig->nvcsw += tsk->nvcsw;
389 sig->nivcsw += tsk->nivcsw;
390 sig->sched_time += tsk->sched_time;
391 spin_unlock(&sighand->siglock);
392 sig = NULL; /* Marker for below. */
393 }
394 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
395 flush_sigqueue(&tsk->pending);
396 if (sig) {
397 /*
398 * We are cleaning up the signal_struct here. We delayed
399 * calling exit_itimers until after flush_sigqueue, just in
400 * case our thread-local pending queue contained a queued
401 * timer signal that would have been cleared in
402 * exit_itimers. When that called sigqueue_free, it would
403 * attempt to re-take the tasklist_lock and deadlock. This
404 * can never happen if we ensure that all queues the
405 * timer's signal might be queued on have been flushed
406 * first. The shared_pending queue, and our own pending
407 * queue are the only queues the timer could be on, since
408 * there are no other threads left in the group and timer
409 * signals are constrained to threads inside the group.
410 */
411 exit_itimers(sig);
412 exit_thread_group_keys(sig);
413 kmem_cache_free(signal_cachep, sig);
414 }
415 }
416
417 void exit_signal(struct task_struct *tsk)
418 {
419 write_lock_irq(&tasklist_lock);
420 __exit_signal(tsk);
421 write_unlock_irq(&tasklist_lock);
422 }
423
424 /*
425 * Flush all handlers for a task.
426 */
427
428 void
429 flush_signal_handlers(struct task_struct *t, int force_default)
430 {
431 int i;
432 struct k_sigaction *ka = &t->sighand->action[0];
433 for (i = _NSIG ; i != 0 ; i--) {
434 if (force_default || ka->sa.sa_handler != SIG_IGN)
435 ka->sa.sa_handler = SIG_DFL;
436 ka->sa.sa_flags = 0;
437 sigemptyset(&ka->sa.sa_mask);
438 ka++;
439 }
440 }
441
442
443 /* Notify the system that a driver wants to block all signals for this
444 * process, and wants to be notified if any signals at all were to be
445 * sent/acted upon. If the notifier routine returns non-zero, then the
446 * signal will be acted upon after all. If the notifier routine returns 0,
447 * then then signal will be blocked. Only one block per process is
448 * allowed. priv is a pointer to private data that the notifier routine
449 * can use to determine if the signal should be blocked or not. */
450
451 void
452 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
453 {
454 unsigned long flags;
455
456 spin_lock_irqsave(&current->sighand->siglock, flags);
457 current->notifier_mask = mask;
458 current->notifier_data = priv;
459 current->notifier = notifier;
460 spin_unlock_irqrestore(&current->sighand->siglock, flags);
461 }
462
463 /* Notify the system that blocking has ended. */
464
465 void
466 unblock_all_signals(void)
467 {
468 unsigned long flags;
469
470 spin_lock_irqsave(&current->sighand->siglock, flags);
471 current->notifier = NULL;
472 current->notifier_data = NULL;
473 recalc_sigpending();
474 spin_unlock_irqrestore(&current->sighand->siglock, flags);
475 }
476
477 static inline int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
478 {
479 struct sigqueue *q, *first = NULL;
480 int still_pending = 0;
481
482 if (unlikely(!sigismember(&list->signal, sig)))
483 return 0;
484
485 /*
486 * Collect the siginfo appropriate to this signal. Check if
487 * there is another siginfo for the same signal.
488 */
489 list_for_each_entry(q, &list->list, list) {
490 if (q->info.si_signo == sig) {
491 if (first) {
492 still_pending = 1;
493 break;
494 }
495 first = q;
496 }
497 }
498 if (first) {
499 list_del_init(&first->list);
500 copy_siginfo(info, &first->info);
501 __sigqueue_free(first);
502 if (!still_pending)
503 sigdelset(&list->signal, sig);
504 } else {
505
506 /* Ok, it wasn't in the queue. This must be
507 a fast-pathed signal or we must have been
508 out of queue space. So zero out the info.
509 */
510 sigdelset(&list->signal, sig);
511 info->si_signo = sig;
512 info->si_errno = 0;
513 info->si_code = 0;
514 info->si_pid = 0;
515 info->si_uid = 0;
516 }
517 return 1;
518 }
519
520 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
521 siginfo_t *info)
522 {
523 int sig = 0;
524
525 /* SIGKILL must have priority, otherwise it is quite easy
526 * to create an unkillable process, sending sig < SIGKILL
527 * to self */
528 if (unlikely(sigismember(&pending->signal, SIGKILL))) {
529 if (!sigismember(mask, SIGKILL))
530 sig = SIGKILL;
531 }
532
533 if (likely(!sig))
534 sig = next_signal(pending, mask);
535 if (sig) {
536 if (current->notifier) {
537 if (sigismember(current->notifier_mask, sig)) {
538 if (!(current->notifier)(current->notifier_data)) {
539 clear_thread_flag(TIF_SIGPENDING);
540 return 0;
541 }
542 }
543 }
544
545 if (!collect_signal(sig, pending, info))
546 sig = 0;
547
548 }
549 recalc_sigpending();
550
551 return sig;
552 }
553
554 /*
555 * Dequeue a signal and return the element to the caller, which is
556 * expected to free it.
557 *
558 * All callers have to hold the siglock.
559 */
560 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
561 {
562 int signr = __dequeue_signal(&tsk->pending, mask, info);
563 if (!signr)
564 signr = __dequeue_signal(&tsk->signal->shared_pending,
565 mask, info);
566 if (signr && unlikely(sig_kernel_stop(signr))) {
567 /*
568 * Set a marker that we have dequeued a stop signal. Our
569 * caller might release the siglock and then the pending
570 * stop signal it is about to process is no longer in the
571 * pending bitmasks, but must still be cleared by a SIGCONT
572 * (and overruled by a SIGKILL). So those cases clear this
573 * shared flag after we've set it. Note that this flag may
574 * remain set after the signal we return is ignored or
575 * handled. That doesn't matter because its only purpose
576 * is to alert stop-signal processing code when another
577 * processor has come along and cleared the flag.
578 */
579 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
580 }
581 if ( signr &&
582 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
583 info->si_sys_private){
584 /*
585 * Release the siglock to ensure proper locking order
586 * of timer locks outside of siglocks. Note, we leave
587 * irqs disabled here, since the posix-timers code is
588 * about to disable them again anyway.
589 */
590 spin_unlock(&tsk->sighand->siglock);
591 do_schedule_next_timer(info);
592 spin_lock(&tsk->sighand->siglock);
593 }
594 return signr;
595 }
596
597 /*
598 * Tell a process that it has a new active signal..
599 *
600 * NOTE! we rely on the previous spin_lock to
601 * lock interrupts for us! We can only be called with
602 * "siglock" held, and the local interrupt must
603 * have been disabled when that got acquired!
604 *
605 * No need to set need_resched since signal event passing
606 * goes through ->blocked
607 */
608 void signal_wake_up(struct task_struct *t, int resume)
609 {
610 unsigned int mask;
611
612 set_tsk_thread_flag(t, TIF_SIGPENDING);
613
614 /*
615 * For SIGKILL, we want to wake it up in the stopped/traced case.
616 * We don't check t->state here because there is a race with it
617 * executing another processor and just now entering stopped state.
618 * By using wake_up_state, we ensure the process will wake up and
619 * handle its death signal.
620 */
621 mask = TASK_INTERRUPTIBLE;
622 if (resume)
623 mask |= TASK_STOPPED | TASK_TRACED;
624 if (!wake_up_state(t, mask))
625 kick_process(t);
626 }
627
628 /*
629 * Remove signals in mask from the pending set and queue.
630 * Returns 1 if any signals were found.
631 *
632 * All callers must be holding the siglock.
633 */
634 static int rm_from_queue(unsigned long mask, struct sigpending *s)
635 {
636 struct sigqueue *q, *n;
637
638 if (!sigtestsetmask(&s->signal, mask))
639 return 0;
640
641 sigdelsetmask(&s->signal, mask);
642 list_for_each_entry_safe(q, n, &s->list, list) {
643 if (q->info.si_signo < SIGRTMIN &&
644 (mask & sigmask(q->info.si_signo))) {
645 list_del_init(&q->list);
646 __sigqueue_free(q);
647 }
648 }
649 return 1;
650 }
651
652 /*
653 * Bad permissions for sending the signal
654 */
655 static int check_kill_permission(int sig, struct siginfo *info,
656 struct task_struct *t)
657 {
658 int error = -EINVAL;
659 if (!valid_signal(sig))
660 return error;
661 error = -EPERM;
662 if ((!info || ((unsigned long)info != 1 &&
663 (unsigned long)info != 2 && SI_FROMUSER(info)))
664 && ((sig != SIGCONT) ||
665 (current->signal->session != t->signal->session))
666 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
667 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
668 && !capable(CAP_KILL))
669 return error;
670 return security_task_kill(t, info, sig);
671 }
672
673 /* forward decl */
674 static void do_notify_parent_cldstop(struct task_struct *tsk,
675 struct task_struct *parent,
676 int why);
677
678 /*
679 * Handle magic process-wide effects of stop/continue signals.
680 * Unlike the signal actions, these happen immediately at signal-generation
681 * time regardless of blocking, ignoring, or handling. This does the
682 * actual continuing for SIGCONT, but not the actual stopping for stop
683 * signals. The process stop is done as a signal action for SIG_DFL.
684 */
685 static void handle_stop_signal(int sig, struct task_struct *p)
686 {
687 struct task_struct *t;
688
689 if (p->signal->flags & SIGNAL_GROUP_EXIT)
690 /*
691 * The process is in the middle of dying already.
692 */
693 return;
694
695 if (sig_kernel_stop(sig)) {
696 /*
697 * This is a stop signal. Remove SIGCONT from all queues.
698 */
699 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
700 t = p;
701 do {
702 rm_from_queue(sigmask(SIGCONT), &t->pending);
703 t = next_thread(t);
704 } while (t != p);
705 } else if (sig == SIGCONT) {
706 /*
707 * Remove all stop signals from all queues,
708 * and wake all threads.
709 */
710 if (unlikely(p->signal->group_stop_count > 0)) {
711 /*
712 * There was a group stop in progress. We'll
713 * pretend it finished before we got here. We are
714 * obliged to report it to the parent: if the
715 * SIGSTOP happened "after" this SIGCONT, then it
716 * would have cleared this pending SIGCONT. If it
717 * happened "before" this SIGCONT, then the parent
718 * got the SIGCHLD about the stop finishing before
719 * the continue happened. We do the notification
720 * now, and it's as if the stop had finished and
721 * the SIGCHLD was pending on entry to this kill.
722 */
723 p->signal->group_stop_count = 0;
724 p->signal->flags = SIGNAL_STOP_CONTINUED;
725 spin_unlock(&p->sighand->siglock);
726 if (p->ptrace & PT_PTRACED)
727 do_notify_parent_cldstop(p, p->parent,
728 CLD_STOPPED);
729 else
730 do_notify_parent_cldstop(
731 p->group_leader,
732 p->group_leader->real_parent,
733 CLD_STOPPED);
734 spin_lock(&p->sighand->siglock);
735 }
736 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
737 t = p;
738 do {
739 unsigned int state;
740 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
741
742 /*
743 * If there is a handler for SIGCONT, we must make
744 * sure that no thread returns to user mode before
745 * we post the signal, in case it was the only
746 * thread eligible to run the signal handler--then
747 * it must not do anything between resuming and
748 * running the handler. With the TIF_SIGPENDING
749 * flag set, the thread will pause and acquire the
750 * siglock that we hold now and until we've queued
751 * the pending signal.
752 *
753 * Wake up the stopped thread _after_ setting
754 * TIF_SIGPENDING
755 */
756 state = TASK_STOPPED;
757 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
758 set_tsk_thread_flag(t, TIF_SIGPENDING);
759 state |= TASK_INTERRUPTIBLE;
760 }
761 wake_up_state(t, state);
762
763 t = next_thread(t);
764 } while (t != p);
765
766 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
767 /*
768 * We were in fact stopped, and are now continued.
769 * Notify the parent with CLD_CONTINUED.
770 */
771 p->signal->flags = SIGNAL_STOP_CONTINUED;
772 p->signal->group_exit_code = 0;
773 spin_unlock(&p->sighand->siglock);
774 if (p->ptrace & PT_PTRACED)
775 do_notify_parent_cldstop(p, p->parent,
776 CLD_CONTINUED);
777 else
778 do_notify_parent_cldstop(
779 p->group_leader,
780 p->group_leader->real_parent,
781 CLD_CONTINUED);
782 spin_lock(&p->sighand->siglock);
783 } else {
784 /*
785 * We are not stopped, but there could be a stop
786 * signal in the middle of being processed after
787 * being removed from the queue. Clear that too.
788 */
789 p->signal->flags = 0;
790 }
791 } else if (sig == SIGKILL) {
792 /*
793 * Make sure that any pending stop signal already dequeued
794 * is undone by the wakeup for SIGKILL.
795 */
796 p->signal->flags = 0;
797 }
798 }
799
800 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
801 struct sigpending *signals)
802 {
803 struct sigqueue * q = NULL;
804 int ret = 0;
805
806 /*
807 * fast-pathed signals for kernel-internal things like SIGSTOP
808 * or SIGKILL.
809 */
810 if ((unsigned long)info == 2)
811 goto out_set;
812
813 /* Real-time signals must be queued if sent by sigqueue, or
814 some other real-time mechanism. It is implementation
815 defined whether kill() does so. We attempt to do so, on
816 the principle of least surprise, but since kill is not
817 allowed to fail with EAGAIN when low on memory we just
818 make sure at least one signal gets delivered and don't
819 pass on the info struct. */
820
821 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
822 ((unsigned long) info < 2 ||
823 info->si_code >= 0)));
824 if (q) {
825 list_add_tail(&q->list, &signals->list);
826 switch ((unsigned long) info) {
827 case 0:
828 q->info.si_signo = sig;
829 q->info.si_errno = 0;
830 q->info.si_code = SI_USER;
831 q->info.si_pid = current->pid;
832 q->info.si_uid = current->uid;
833 break;
834 case 1:
835 q->info.si_signo = sig;
836 q->info.si_errno = 0;
837 q->info.si_code = SI_KERNEL;
838 q->info.si_pid = 0;
839 q->info.si_uid = 0;
840 break;
841 default:
842 copy_siginfo(&q->info, info);
843 break;
844 }
845 } else {
846 if (sig >= SIGRTMIN && info && (unsigned long)info != 1
847 && info->si_code != SI_USER)
848 /*
849 * Queue overflow, abort. We may abort if the signal was rt
850 * and sent by user using something other than kill().
851 */
852 return -EAGAIN;
853 if (((unsigned long)info > 1) && (info->si_code == SI_TIMER))
854 /*
855 * Set up a return to indicate that we dropped
856 * the signal.
857 */
858 ret = info->si_sys_private;
859 }
860
861 out_set:
862 sigaddset(&signals->signal, sig);
863 return ret;
864 }
865
866 #define LEGACY_QUEUE(sigptr, sig) \
867 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
868
869
870 static int
871 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
872 {
873 int ret = 0;
874
875 if (!irqs_disabled())
876 BUG();
877 assert_spin_locked(&t->sighand->siglock);
878
879 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
880 /*
881 * Set up a return to indicate that we dropped the signal.
882 */
883 ret = info->si_sys_private;
884
885 /* Short-circuit ignored signals. */
886 if (sig_ignored(t, sig))
887 goto out;
888
889 /* Support queueing exactly one non-rt signal, so that we
890 can get more detailed information about the cause of
891 the signal. */
892 if (LEGACY_QUEUE(&t->pending, sig))
893 goto out;
894
895 ret = send_signal(sig, info, t, &t->pending);
896 if (!ret && !sigismember(&t->blocked, sig))
897 signal_wake_up(t, sig == SIGKILL);
898 out:
899 return ret;
900 }
901
902 /*
903 * Force a signal that the process can't ignore: if necessary
904 * we unblock the signal and change any SIG_IGN to SIG_DFL.
905 */
906
907 int
908 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
909 {
910 unsigned long int flags;
911 int ret;
912
913 spin_lock_irqsave(&t->sighand->siglock, flags);
914 if (sigismember(&t->blocked, sig) || t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
915 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
916 sigdelset(&t->blocked, sig);
917 recalc_sigpending_tsk(t);
918 }
919 ret = specific_send_sig_info(sig, info, t);
920 spin_unlock_irqrestore(&t->sighand->siglock, flags);
921
922 return ret;
923 }
924
925 void
926 force_sig_specific(int sig, struct task_struct *t)
927 {
928 unsigned long int flags;
929
930 spin_lock_irqsave(&t->sighand->siglock, flags);
931 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN)
932 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
933 sigdelset(&t->blocked, sig);
934 recalc_sigpending_tsk(t);
935 specific_send_sig_info(sig, (void *)2, t);
936 spin_unlock_irqrestore(&t->sighand->siglock, flags);
937 }
938
939 /*
940 * Test if P wants to take SIG. After we've checked all threads with this,
941 * it's equivalent to finding no threads not blocking SIG. Any threads not
942 * blocking SIG were ruled out because they are not running and already
943 * have pending signals. Such threads will dequeue from the shared queue
944 * as soon as they're available, so putting the signal on the shared queue
945 * will be equivalent to sending it to one such thread.
946 */
947 #define wants_signal(sig, p, mask) \
948 (!sigismember(&(p)->blocked, sig) \
949 && !((p)->state & mask) \
950 && !((p)->flags & PF_EXITING) \
951 && (task_curr(p) || !signal_pending(p)))
952
953
954 static void
955 __group_complete_signal(int sig, struct task_struct *p)
956 {
957 unsigned int mask;
958 struct task_struct *t;
959
960 /*
961 * Don't bother traced and stopped tasks (but
962 * SIGKILL will punch through that).
963 */
964 mask = TASK_STOPPED | TASK_TRACED;
965 if (sig == SIGKILL)
966 mask = 0;
967
968 /*
969 * Now find a thread we can wake up to take the signal off the queue.
970 *
971 * If the main thread wants the signal, it gets first crack.
972 * Probably the least surprising to the average bear.
973 */
974 if (wants_signal(sig, p, mask))
975 t = p;
976 else if (thread_group_empty(p))
977 /*
978 * There is just one thread and it does not need to be woken.
979 * It will dequeue unblocked signals before it runs again.
980 */
981 return;
982 else {
983 /*
984 * Otherwise try to find a suitable thread.
985 */
986 t = p->signal->curr_target;
987 if (t == NULL)
988 /* restart balancing at this thread */
989 t = p->signal->curr_target = p;
990 BUG_ON(t->tgid != p->tgid);
991
992 while (!wants_signal(sig, t, mask)) {
993 t = next_thread(t);
994 if (t == p->signal->curr_target)
995 /*
996 * No thread needs to be woken.
997 * Any eligible threads will see
998 * the signal in the queue soon.
999 */
1000 return;
1001 }
1002 p->signal->curr_target = t;
1003 }
1004
1005 /*
1006 * Found a killable thread. If the signal will be fatal,
1007 * then start taking the whole group down immediately.
1008 */
1009 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
1010 !sigismember(&t->real_blocked, sig) &&
1011 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
1012 /*
1013 * This signal will be fatal to the whole group.
1014 */
1015 if (!sig_kernel_coredump(sig)) {
1016 /*
1017 * Start a group exit and wake everybody up.
1018 * This way we don't have other threads
1019 * running and doing things after a slower
1020 * thread has the fatal signal pending.
1021 */
1022 p->signal->flags = SIGNAL_GROUP_EXIT;
1023 p->signal->group_exit_code = sig;
1024 p->signal->group_stop_count = 0;
1025 t = p;
1026 do {
1027 sigaddset(&t->pending.signal, SIGKILL);
1028 signal_wake_up(t, 1);
1029 t = next_thread(t);
1030 } while (t != p);
1031 return;
1032 }
1033
1034 /*
1035 * There will be a core dump. We make all threads other
1036 * than the chosen one go into a group stop so that nothing
1037 * happens until it gets scheduled, takes the signal off
1038 * the shared queue, and does the core dump. This is a
1039 * little more complicated than strictly necessary, but it
1040 * keeps the signal state that winds up in the core dump
1041 * unchanged from the death state, e.g. which thread had
1042 * the core-dump signal unblocked.
1043 */
1044 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1045 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
1046 p->signal->group_stop_count = 0;
1047 p->signal->group_exit_task = t;
1048 t = p;
1049 do {
1050 p->signal->group_stop_count++;
1051 signal_wake_up(t, 0);
1052 t = next_thread(t);
1053 } while (t != p);
1054 wake_up_process(p->signal->group_exit_task);
1055 return;
1056 }
1057
1058 /*
1059 * The signal is already in the shared-pending queue.
1060 * Tell the chosen thread to wake up and dequeue it.
1061 */
1062 signal_wake_up(t, sig == SIGKILL);
1063 return;
1064 }
1065
1066 int
1067 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1068 {
1069 int ret = 0;
1070
1071 assert_spin_locked(&p->sighand->siglock);
1072 handle_stop_signal(sig, p);
1073
1074 if (((unsigned long)info > 2) && (info->si_code == SI_TIMER))
1075 /*
1076 * Set up a return to indicate that we dropped the signal.
1077 */
1078 ret = info->si_sys_private;
1079
1080 /* Short-circuit ignored signals. */
1081 if (sig_ignored(p, sig))
1082 return ret;
1083
1084 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
1085 /* This is a non-RT signal and we already have one queued. */
1086 return ret;
1087
1088 /*
1089 * Put this signal on the shared-pending queue, or fail with EAGAIN.
1090 * We always use the shared queue for process-wide signals,
1091 * to avoid several races.
1092 */
1093 ret = send_signal(sig, info, p, &p->signal->shared_pending);
1094 if (unlikely(ret))
1095 return ret;
1096
1097 __group_complete_signal(sig, p);
1098 return 0;
1099 }
1100
1101 /*
1102 * Nuke all other threads in the group.
1103 */
1104 void zap_other_threads(struct task_struct *p)
1105 {
1106 struct task_struct *t;
1107
1108 p->signal->flags = SIGNAL_GROUP_EXIT;
1109 p->signal->group_stop_count = 0;
1110
1111 if (thread_group_empty(p))
1112 return;
1113
1114 for (t = next_thread(p); t != p; t = next_thread(t)) {
1115 /*
1116 * Don't bother with already dead threads
1117 */
1118 if (t->exit_state)
1119 continue;
1120
1121 /*
1122 * We don't want to notify the parent, since we are
1123 * killed as part of a thread group due to another
1124 * thread doing an execve() or similar. So set the
1125 * exit signal to -1 to allow immediate reaping of
1126 * the process. But don't detach the thread group
1127 * leader.
1128 */
1129 if (t != p->group_leader)
1130 t->exit_signal = -1;
1131
1132 sigaddset(&t->pending.signal, SIGKILL);
1133 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
1134 signal_wake_up(t, 1);
1135 }
1136 }
1137
1138 /*
1139 * Must be called with the tasklist_lock held for reading!
1140 */
1141 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1142 {
1143 unsigned long flags;
1144 int ret;
1145
1146 ret = check_kill_permission(sig, info, p);
1147 if (!ret && sig && p->sighand) {
1148 spin_lock_irqsave(&p->sighand->siglock, flags);
1149 ret = __group_send_sig_info(sig, info, p);
1150 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1151 }
1152
1153 return ret;
1154 }
1155
1156 /*
1157 * kill_pg_info() sends a signal to a process group: this is what the tty
1158 * control characters do (^C, ^Z etc)
1159 */
1160
1161 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1162 {
1163 struct task_struct *p = NULL;
1164 int retval, success;
1165
1166 if (pgrp <= 0)
1167 return -EINVAL;
1168
1169 success = 0;
1170 retval = -ESRCH;
1171 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1172 int err = group_send_sig_info(sig, info, p);
1173 success |= !err;
1174 retval = err;
1175 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1176 return success ? 0 : retval;
1177 }
1178
1179 int
1180 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1181 {
1182 int retval;
1183
1184 read_lock(&tasklist_lock);
1185 retval = __kill_pg_info(sig, info, pgrp);
1186 read_unlock(&tasklist_lock);
1187
1188 return retval;
1189 }
1190
1191 int
1192 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1193 {
1194 int error;
1195 struct task_struct *p;
1196
1197 read_lock(&tasklist_lock);
1198 p = find_task_by_pid(pid);
1199 error = -ESRCH;
1200 if (p)
1201 error = group_send_sig_info(sig, info, p);
1202 read_unlock(&tasklist_lock);
1203 return error;
1204 }
1205
1206
1207 /*
1208 * kill_something_info() interprets pid in interesting ways just like kill(2).
1209 *
1210 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1211 * is probably wrong. Should make it like BSD or SYSV.
1212 */
1213
1214 static int kill_something_info(int sig, struct siginfo *info, int pid)
1215 {
1216 if (!pid) {
1217 return kill_pg_info(sig, info, process_group(current));
1218 } else if (pid == -1) {
1219 int retval = 0, count = 0;
1220 struct task_struct * p;
1221
1222 read_lock(&tasklist_lock);
1223 for_each_process(p) {
1224 if (p->pid > 1 && p->tgid != current->tgid) {
1225 int err = group_send_sig_info(sig, info, p);
1226 ++count;
1227 if (err != -EPERM)
1228 retval = err;
1229 }
1230 }
1231 read_unlock(&tasklist_lock);
1232 return count ? retval : -ESRCH;
1233 } else if (pid < 0) {
1234 return kill_pg_info(sig, info, -pid);
1235 } else {
1236 return kill_proc_info(sig, info, pid);
1237 }
1238 }
1239
1240 /*
1241 * These are for backward compatibility with the rest of the kernel source.
1242 */
1243
1244 /*
1245 * These two are the most common entry points. They send a signal
1246 * just to the specific thread.
1247 */
1248 int
1249 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1250 {
1251 int ret;
1252 unsigned long flags;
1253
1254 /*
1255 * Make sure legacy kernel users don't send in bad values
1256 * (normal paths check this in check_kill_permission).
1257 */
1258 if (!valid_signal(sig))
1259 return -EINVAL;
1260
1261 /*
1262 * We need the tasklist lock even for the specific
1263 * thread case (when we don't need to follow the group
1264 * lists) in order to avoid races with "p->sighand"
1265 * going away or changing from under us.
1266 */
1267 read_lock(&tasklist_lock);
1268 spin_lock_irqsave(&p->sighand->siglock, flags);
1269 ret = specific_send_sig_info(sig, info, p);
1270 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1271 read_unlock(&tasklist_lock);
1272 return ret;
1273 }
1274
1275 int
1276 send_sig(int sig, struct task_struct *p, int priv)
1277 {
1278 return send_sig_info(sig, (void*)(long)(priv != 0), p);
1279 }
1280
1281 /*
1282 * This is the entry point for "process-wide" signals.
1283 * They will go to an appropriate thread in the thread group.
1284 */
1285 int
1286 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1287 {
1288 int ret;
1289 read_lock(&tasklist_lock);
1290 ret = group_send_sig_info(sig, info, p);
1291 read_unlock(&tasklist_lock);
1292 return ret;
1293 }
1294
1295 void
1296 force_sig(int sig, struct task_struct *p)
1297 {
1298 force_sig_info(sig, (void*)1L, p);
1299 }
1300
1301 /*
1302 * When things go south during signal handling, we
1303 * will force a SIGSEGV. And if the signal that caused
1304 * the problem was already a SIGSEGV, we'll want to
1305 * make sure we don't even try to deliver the signal..
1306 */
1307 int
1308 force_sigsegv(int sig, struct task_struct *p)
1309 {
1310 if (sig == SIGSEGV) {
1311 unsigned long flags;
1312 spin_lock_irqsave(&p->sighand->siglock, flags);
1313 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1314 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1315 }
1316 force_sig(SIGSEGV, p);
1317 return 0;
1318 }
1319
1320 int
1321 kill_pg(pid_t pgrp, int sig, int priv)
1322 {
1323 return kill_pg_info(sig, (void *)(long)(priv != 0), pgrp);
1324 }
1325
1326 int
1327 kill_proc(pid_t pid, int sig, int priv)
1328 {
1329 return kill_proc_info(sig, (void *)(long)(priv != 0), pid);
1330 }
1331
1332 /*
1333 * These functions support sending signals using preallocated sigqueue
1334 * structures. This is needed "because realtime applications cannot
1335 * afford to lose notifications of asynchronous events, like timer
1336 * expirations or I/O completions". In the case of Posix Timers
1337 * we allocate the sigqueue structure from the timer_create. If this
1338 * allocation fails we are able to report the failure to the application
1339 * with an EAGAIN error.
1340 */
1341
1342 struct sigqueue *sigqueue_alloc(void)
1343 {
1344 struct sigqueue *q;
1345
1346 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1347 q->flags |= SIGQUEUE_PREALLOC;
1348 return(q);
1349 }
1350
1351 void sigqueue_free(struct sigqueue *q)
1352 {
1353 unsigned long flags;
1354 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1355 /*
1356 * If the signal is still pending remove it from the
1357 * pending queue.
1358 */
1359 if (unlikely(!list_empty(&q->list))) {
1360 read_lock(&tasklist_lock);
1361 spin_lock_irqsave(q->lock, flags);
1362 if (!list_empty(&q->list))
1363 list_del_init(&q->list);
1364 spin_unlock_irqrestore(q->lock, flags);
1365 read_unlock(&tasklist_lock);
1366 }
1367 q->flags &= ~SIGQUEUE_PREALLOC;
1368 __sigqueue_free(q);
1369 }
1370
1371 int
1372 send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1373 {
1374 unsigned long flags;
1375 int ret = 0;
1376
1377 /*
1378 * We need the tasklist lock even for the specific
1379 * thread case (when we don't need to follow the group
1380 * lists) in order to avoid races with "p->sighand"
1381 * going away or changing from under us.
1382 */
1383 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1384 read_lock(&tasklist_lock);
1385 spin_lock_irqsave(&p->sighand->siglock, flags);
1386
1387 if (unlikely(!list_empty(&q->list))) {
1388 /*
1389 * If an SI_TIMER entry is already queue just increment
1390 * the overrun count.
1391 */
1392 if (q->info.si_code != SI_TIMER)
1393 BUG();
1394 q->info.si_overrun++;
1395 goto out;
1396 }
1397 /* Short-circuit ignored signals. */
1398 if (sig_ignored(p, sig)) {
1399 ret = 1;
1400 goto out;
1401 }
1402
1403 q->lock = &p->sighand->siglock;
1404 list_add_tail(&q->list, &p->pending.list);
1405 sigaddset(&p->pending.signal, sig);
1406 if (!sigismember(&p->blocked, sig))
1407 signal_wake_up(p, sig == SIGKILL);
1408
1409 out:
1410 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1411 read_unlock(&tasklist_lock);
1412 return(ret);
1413 }
1414
1415 int
1416 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1417 {
1418 unsigned long flags;
1419 int ret = 0;
1420
1421 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1422 read_lock(&tasklist_lock);
1423 spin_lock_irqsave(&p->sighand->siglock, flags);
1424 handle_stop_signal(sig, p);
1425
1426 /* Short-circuit ignored signals. */
1427 if (sig_ignored(p, sig)) {
1428 ret = 1;
1429 goto out;
1430 }
1431
1432 if (unlikely(!list_empty(&q->list))) {
1433 /*
1434 * If an SI_TIMER entry is already queue just increment
1435 * the overrun count. Other uses should not try to
1436 * send the signal multiple times.
1437 */
1438 if (q->info.si_code != SI_TIMER)
1439 BUG();
1440 q->info.si_overrun++;
1441 goto out;
1442 }
1443
1444 /*
1445 * Put this signal on the shared-pending queue.
1446 * We always use the shared queue for process-wide signals,
1447 * to avoid several races.
1448 */
1449 q->lock = &p->sighand->siglock;
1450 list_add_tail(&q->list, &p->signal->shared_pending.list);
1451 sigaddset(&p->signal->shared_pending.signal, sig);
1452
1453 __group_complete_signal(sig, p);
1454 out:
1455 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1456 read_unlock(&tasklist_lock);
1457 return(ret);
1458 }
1459
1460 /*
1461 * Wake up any threads in the parent blocked in wait* syscalls.
1462 */
1463 static inline void __wake_up_parent(struct task_struct *p,
1464 struct task_struct *parent)
1465 {
1466 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1467 }
1468
1469 /*
1470 * Let a parent know about the death of a child.
1471 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1472 */
1473
1474 void do_notify_parent(struct task_struct *tsk, int sig)
1475 {
1476 struct siginfo info;
1477 unsigned long flags;
1478 struct sighand_struct *psig;
1479
1480 BUG_ON(sig == -1);
1481
1482 /* do_notify_parent_cldstop should have been called instead. */
1483 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1484
1485 BUG_ON(!tsk->ptrace &&
1486 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1487
1488 info.si_signo = sig;
1489 info.si_errno = 0;
1490 info.si_pid = tsk->pid;
1491 info.si_uid = tsk->uid;
1492
1493 /* FIXME: find out whether or not this is supposed to be c*time. */
1494 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1495 tsk->signal->utime));
1496 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1497 tsk->signal->stime));
1498
1499 info.si_status = tsk->exit_code & 0x7f;
1500 if (tsk->exit_code & 0x80)
1501 info.si_code = CLD_DUMPED;
1502 else if (tsk->exit_code & 0x7f)
1503 info.si_code = CLD_KILLED;
1504 else {
1505 info.si_code = CLD_EXITED;
1506 info.si_status = tsk->exit_code >> 8;
1507 }
1508
1509 psig = tsk->parent->sighand;
1510 spin_lock_irqsave(&psig->siglock, flags);
1511 if (sig == SIGCHLD &&
1512 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1513 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1514 /*
1515 * We are exiting and our parent doesn't care. POSIX.1
1516 * defines special semantics for setting SIGCHLD to SIG_IGN
1517 * or setting the SA_NOCLDWAIT flag: we should be reaped
1518 * automatically and not left for our parent's wait4 call.
1519 * Rather than having the parent do it as a magic kind of
1520 * signal handler, we just set this to tell do_exit that we
1521 * can be cleaned up without becoming a zombie. Note that
1522 * we still call __wake_up_parent in this case, because a
1523 * blocked sys_wait4 might now return -ECHILD.
1524 *
1525 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1526 * is implementation-defined: we do (if you don't want
1527 * it, just use SIG_IGN instead).
1528 */
1529 tsk->exit_signal = -1;
1530 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1531 sig = 0;
1532 }
1533 if (valid_signal(sig) && sig > 0)
1534 __group_send_sig_info(sig, &info, tsk->parent);
1535 __wake_up_parent(tsk, tsk->parent);
1536 spin_unlock_irqrestore(&psig->siglock, flags);
1537 }
1538
1539 static void
1540 do_notify_parent_cldstop(struct task_struct *tsk, struct task_struct *parent,
1541 int why)
1542 {
1543 struct siginfo info;
1544 unsigned long flags;
1545 struct sighand_struct *sighand;
1546
1547 info.si_signo = SIGCHLD;
1548 info.si_errno = 0;
1549 info.si_pid = tsk->pid;
1550 info.si_uid = tsk->uid;
1551
1552 /* FIXME: find out whether or not this is supposed to be c*time. */
1553 info.si_utime = cputime_to_jiffies(tsk->utime);
1554 info.si_stime = cputime_to_jiffies(tsk->stime);
1555
1556 info.si_code = why;
1557 switch (why) {
1558 case CLD_CONTINUED:
1559 info.si_status = SIGCONT;
1560 break;
1561 case CLD_STOPPED:
1562 info.si_status = tsk->signal->group_exit_code & 0x7f;
1563 break;
1564 case CLD_TRAPPED:
1565 info.si_status = tsk->exit_code & 0x7f;
1566 break;
1567 default:
1568 BUG();
1569 }
1570
1571 sighand = parent->sighand;
1572 spin_lock_irqsave(&sighand->siglock, flags);
1573 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1574 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1575 __group_send_sig_info(SIGCHLD, &info, parent);
1576 /*
1577 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1578 */
1579 __wake_up_parent(tsk, parent);
1580 spin_unlock_irqrestore(&sighand->siglock, flags);
1581 }
1582
1583 /*
1584 * This must be called with current->sighand->siglock held.
1585 *
1586 * This should be the path for all ptrace stops.
1587 * We always set current->last_siginfo while stopped here.
1588 * That makes it a way to test a stopped process for
1589 * being ptrace-stopped vs being job-control-stopped.
1590 *
1591 * If we actually decide not to stop at all because the tracer is gone,
1592 * we leave nostop_code in current->exit_code.
1593 */
1594 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1595 {
1596 /*
1597 * If there is a group stop in progress,
1598 * we must participate in the bookkeeping.
1599 */
1600 if (current->signal->group_stop_count > 0)
1601 --current->signal->group_stop_count;
1602
1603 current->last_siginfo = info;
1604 current->exit_code = exit_code;
1605
1606 /* Let the debugger run. */
1607 set_current_state(TASK_TRACED);
1608 spin_unlock_irq(&current->sighand->siglock);
1609 read_lock(&tasklist_lock);
1610 if (likely(current->ptrace & PT_PTRACED) &&
1611 likely(current->parent != current->real_parent ||
1612 !(current->ptrace & PT_ATTACHED)) &&
1613 (likely(current->parent->signal != current->signal) ||
1614 !unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))) {
1615 do_notify_parent_cldstop(current, current->parent,
1616 CLD_TRAPPED);
1617 read_unlock(&tasklist_lock);
1618 schedule();
1619 } else {
1620 /*
1621 * By the time we got the lock, our tracer went away.
1622 * Don't stop here.
1623 */
1624 read_unlock(&tasklist_lock);
1625 set_current_state(TASK_RUNNING);
1626 current->exit_code = nostop_code;
1627 }
1628
1629 /*
1630 * We are back. Now reacquire the siglock before touching
1631 * last_siginfo, so that we are sure to have synchronized with
1632 * any signal-sending on another CPU that wants to examine it.
1633 */
1634 spin_lock_irq(&current->sighand->siglock);
1635 current->last_siginfo = NULL;
1636
1637 /*
1638 * Queued signals ignored us while we were stopped for tracing.
1639 * So check for any that we should take before resuming user mode.
1640 */
1641 recalc_sigpending();
1642 }
1643
1644 void ptrace_notify(int exit_code)
1645 {
1646 siginfo_t info;
1647
1648 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1649
1650 memset(&info, 0, sizeof info);
1651 info.si_signo = SIGTRAP;
1652 info.si_code = exit_code;
1653 info.si_pid = current->pid;
1654 info.si_uid = current->uid;
1655
1656 /* Let the debugger run. */
1657 spin_lock_irq(&current->sighand->siglock);
1658 ptrace_stop(exit_code, 0, &info);
1659 spin_unlock_irq(&current->sighand->siglock);
1660 }
1661
1662 static void
1663 finish_stop(int stop_count)
1664 {
1665 /*
1666 * If there are no other threads in the group, or if there is
1667 * a group stop in progress and we are the last to stop,
1668 * report to the parent. When ptraced, every thread reports itself.
1669 */
1670 if (stop_count < 0 || (current->ptrace & PT_PTRACED)) {
1671 read_lock(&tasklist_lock);
1672 do_notify_parent_cldstop(current, current->parent,
1673 CLD_STOPPED);
1674 read_unlock(&tasklist_lock);
1675 }
1676 else if (stop_count == 0) {
1677 read_lock(&tasklist_lock);
1678 do_notify_parent_cldstop(current->group_leader,
1679 current->group_leader->real_parent,
1680 CLD_STOPPED);
1681 read_unlock(&tasklist_lock);
1682 }
1683
1684 schedule();
1685 /*
1686 * Now we don't run again until continued.
1687 */
1688 current->exit_code = 0;
1689 }
1690
1691 /*
1692 * This performs the stopping for SIGSTOP and other stop signals.
1693 * We have to stop all threads in the thread group.
1694 * Returns nonzero if we've actually stopped and released the siglock.
1695 * Returns zero if we didn't stop and still hold the siglock.
1696 */
1697 static int
1698 do_signal_stop(int signr)
1699 {
1700 struct signal_struct *sig = current->signal;
1701 struct sighand_struct *sighand = current->sighand;
1702 int stop_count = -1;
1703
1704 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1705 return 0;
1706
1707 if (sig->group_stop_count > 0) {
1708 /*
1709 * There is a group stop in progress. We don't need to
1710 * start another one.
1711 */
1712 signr = sig->group_exit_code;
1713 stop_count = --sig->group_stop_count;
1714 current->exit_code = signr;
1715 set_current_state(TASK_STOPPED);
1716 if (stop_count == 0)
1717 sig->flags = SIGNAL_STOP_STOPPED;
1718 spin_unlock_irq(&sighand->siglock);
1719 }
1720 else if (thread_group_empty(current)) {
1721 /*
1722 * Lock must be held through transition to stopped state.
1723 */
1724 current->exit_code = current->signal->group_exit_code = signr;
1725 set_current_state(TASK_STOPPED);
1726 sig->flags = SIGNAL_STOP_STOPPED;
1727 spin_unlock_irq(&sighand->siglock);
1728 }
1729 else {
1730 /*
1731 * There is no group stop already in progress.
1732 * We must initiate one now, but that requires
1733 * dropping siglock to get both the tasklist lock
1734 * and siglock again in the proper order. Note that
1735 * this allows an intervening SIGCONT to be posted.
1736 * We need to check for that and bail out if necessary.
1737 */
1738 struct task_struct *t;
1739
1740 spin_unlock_irq(&sighand->siglock);
1741
1742 /* signals can be posted during this window */
1743
1744 read_lock(&tasklist_lock);
1745 spin_lock_irq(&sighand->siglock);
1746
1747 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED)) {
1748 /*
1749 * Another stop or continue happened while we
1750 * didn't have the lock. We can just swallow this
1751 * signal now. If we raced with a SIGCONT, that
1752 * should have just cleared it now. If we raced
1753 * with another processor delivering a stop signal,
1754 * then the SIGCONT that wakes us up should clear it.
1755 */
1756 read_unlock(&tasklist_lock);
1757 return 0;
1758 }
1759
1760 if (sig->group_stop_count == 0) {
1761 sig->group_exit_code = signr;
1762 stop_count = 0;
1763 for (t = next_thread(current); t != current;
1764 t = next_thread(t))
1765 /*
1766 * Setting state to TASK_STOPPED for a group
1767 * stop is always done with the siglock held,
1768 * so this check has no races.
1769 */
1770 if (t->state < TASK_STOPPED) {
1771 stop_count++;
1772 signal_wake_up(t, 0);
1773 }
1774 sig->group_stop_count = stop_count;
1775 }
1776 else {
1777 /* A race with another thread while unlocked. */
1778 signr = sig->group_exit_code;
1779 stop_count = --sig->group_stop_count;
1780 }
1781
1782 current->exit_code = signr;
1783 set_current_state(TASK_STOPPED);
1784 if (stop_count == 0)
1785 sig->flags = SIGNAL_STOP_STOPPED;
1786
1787 spin_unlock_irq(&sighand->siglock);
1788 read_unlock(&tasklist_lock);
1789 }
1790
1791 finish_stop(stop_count);
1792 return 1;
1793 }
1794
1795 /*
1796 * Do appropriate magic when group_stop_count > 0.
1797 * We return nonzero if we stopped, after releasing the siglock.
1798 * We return zero if we still hold the siglock and should look
1799 * for another signal without checking group_stop_count again.
1800 */
1801 static inline int handle_group_stop(void)
1802 {
1803 int stop_count;
1804
1805 if (current->signal->group_exit_task == current) {
1806 /*
1807 * Group stop is so we can do a core dump,
1808 * We are the initiating thread, so get on with it.
1809 */
1810 current->signal->group_exit_task = NULL;
1811 return 0;
1812 }
1813
1814 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1815 /*
1816 * Group stop is so another thread can do a core dump,
1817 * or else we are racing against a death signal.
1818 * Just punt the stop so we can get the next signal.
1819 */
1820 return 0;
1821
1822 /*
1823 * There is a group stop in progress. We stop
1824 * without any associated signal being in our queue.
1825 */
1826 stop_count = --current->signal->group_stop_count;
1827 if (stop_count == 0)
1828 current->signal->flags = SIGNAL_STOP_STOPPED;
1829 current->exit_code = current->signal->group_exit_code;
1830 set_current_state(TASK_STOPPED);
1831 spin_unlock_irq(&current->sighand->siglock);
1832 finish_stop(stop_count);
1833 return 1;
1834 }
1835
1836 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1837 struct pt_regs *regs, void *cookie)
1838 {
1839 sigset_t *mask = &current->blocked;
1840 int signr = 0;
1841
1842 relock:
1843 spin_lock_irq(&current->sighand->siglock);
1844 for (;;) {
1845 struct k_sigaction *ka;
1846
1847 if (unlikely(current->signal->group_stop_count > 0) &&
1848 handle_group_stop())
1849 goto relock;
1850
1851 signr = dequeue_signal(current, mask, info);
1852
1853 if (!signr)
1854 break; /* will return 0 */
1855
1856 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1857 ptrace_signal_deliver(regs, cookie);
1858
1859 /* Let the debugger run. */
1860 ptrace_stop(signr, signr, info);
1861
1862 /* We're back. Did the debugger cancel the sig? */
1863 signr = current->exit_code;
1864 if (signr == 0)
1865 continue;
1866
1867 current->exit_code = 0;
1868
1869 /* Update the siginfo structure if the signal has
1870 changed. If the debugger wanted something
1871 specific in the siginfo structure then it should
1872 have updated *info via PTRACE_SETSIGINFO. */
1873 if (signr != info->si_signo) {
1874 info->si_signo = signr;
1875 info->si_errno = 0;
1876 info->si_code = SI_USER;
1877 info->si_pid = current->parent->pid;
1878 info->si_uid = current->parent->uid;
1879 }
1880
1881 /* If the (new) signal is now blocked, requeue it. */
1882 if (sigismember(&current->blocked, signr)) {
1883 specific_send_sig_info(signr, info, current);
1884 continue;
1885 }
1886 }
1887
1888 ka = &current->sighand->action[signr-1];
1889 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1890 continue;
1891 if (ka->sa.sa_handler != SIG_DFL) {
1892 /* Run the handler. */
1893 *return_ka = *ka;
1894
1895 if (ka->sa.sa_flags & SA_ONESHOT)
1896 ka->sa.sa_handler = SIG_DFL;
1897
1898 break; /* will return non-zero "signr" value */
1899 }
1900
1901 /*
1902 * Now we are doing the default action for this signal.
1903 */
1904 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1905 continue;
1906
1907 /* Init gets no signals it doesn't want. */
1908 if (current->pid == 1)
1909 continue;
1910
1911 if (sig_kernel_stop(signr)) {
1912 /*
1913 * The default action is to stop all threads in
1914 * the thread group. The job control signals
1915 * do nothing in an orphaned pgrp, but SIGSTOP
1916 * always works. Note that siglock needs to be
1917 * dropped during the call to is_orphaned_pgrp()
1918 * because of lock ordering with tasklist_lock.
1919 * This allows an intervening SIGCONT to be posted.
1920 * We need to check for that and bail out if necessary.
1921 */
1922 if (signr != SIGSTOP) {
1923 spin_unlock_irq(&current->sighand->siglock);
1924
1925 /* signals can be posted during this window */
1926
1927 if (is_orphaned_pgrp(process_group(current)))
1928 goto relock;
1929
1930 spin_lock_irq(&current->sighand->siglock);
1931 }
1932
1933 if (likely(do_signal_stop(signr))) {
1934 /* It released the siglock. */
1935 goto relock;
1936 }
1937
1938 /*
1939 * We didn't actually stop, due to a race
1940 * with SIGCONT or something like that.
1941 */
1942 continue;
1943 }
1944
1945 spin_unlock_irq(&current->sighand->siglock);
1946
1947 /*
1948 * Anything else is fatal, maybe with a core dump.
1949 */
1950 current->flags |= PF_SIGNALED;
1951 if (sig_kernel_coredump(signr)) {
1952 /*
1953 * If it was able to dump core, this kills all
1954 * other threads in the group and synchronizes with
1955 * their demise. If we lost the race with another
1956 * thread getting here, it set group_exit_code
1957 * first and our do_group_exit call below will use
1958 * that value and ignore the one we pass it.
1959 */
1960 do_coredump((long)signr, signr, regs);
1961 }
1962
1963 /*
1964 * Death signals, no core dump.
1965 */
1966 do_group_exit(signr);
1967 /* NOTREACHED */
1968 }
1969 spin_unlock_irq(&current->sighand->siglock);
1970 return signr;
1971 }
1972
1973 EXPORT_SYMBOL(recalc_sigpending);
1974 EXPORT_SYMBOL_GPL(dequeue_signal);
1975 EXPORT_SYMBOL(flush_signals);
1976 EXPORT_SYMBOL(force_sig);
1977 EXPORT_SYMBOL(kill_pg);
1978 EXPORT_SYMBOL(kill_proc);
1979 EXPORT_SYMBOL(ptrace_notify);
1980 EXPORT_SYMBOL(send_sig);
1981 EXPORT_SYMBOL(send_sig_info);
1982 EXPORT_SYMBOL(sigprocmask);
1983 EXPORT_SYMBOL(block_all_signals);
1984 EXPORT_SYMBOL(unblock_all_signals);
1985
1986
1987 /*
1988 * System call entry points.
1989 */
1990
1991 asmlinkage long sys_restart_syscall(void)
1992 {
1993 struct restart_block *restart = &current_thread_info()->restart_block;
1994 return restart->fn(restart);
1995 }
1996
1997 long do_no_restart_syscall(struct restart_block *param)
1998 {
1999 return -EINTR;
2000 }
2001
2002 /*
2003 * We don't need to get the kernel lock - this is all local to this
2004 * particular thread.. (and that's good, because this is _heavily_
2005 * used by various programs)
2006 */
2007
2008 /*
2009 * This is also useful for kernel threads that want to temporarily
2010 * (or permanently) block certain signals.
2011 *
2012 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2013 * interface happily blocks "unblockable" signals like SIGKILL
2014 * and friends.
2015 */
2016 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2017 {
2018 int error;
2019 sigset_t old_block;
2020
2021 spin_lock_irq(&current->sighand->siglock);
2022 old_block = current->blocked;
2023 error = 0;
2024 switch (how) {
2025 case SIG_BLOCK:
2026 sigorsets(&current->blocked, &current->blocked, set);
2027 break;
2028 case SIG_UNBLOCK:
2029 signandsets(&current->blocked, &current->blocked, set);
2030 break;
2031 case SIG_SETMASK:
2032 current->blocked = *set;
2033 break;
2034 default:
2035 error = -EINVAL;
2036 }
2037 recalc_sigpending();
2038 spin_unlock_irq(&current->sighand->siglock);
2039 if (oldset)
2040 *oldset = old_block;
2041 return error;
2042 }
2043
2044 asmlinkage long
2045 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2046 {
2047 int error = -EINVAL;
2048 sigset_t old_set, new_set;
2049
2050 /* XXX: Don't preclude handling different sized sigset_t's. */
2051 if (sigsetsize != sizeof(sigset_t))
2052 goto out;
2053
2054 if (set) {
2055 error = -EFAULT;
2056 if (copy_from_user(&new_set, set, sizeof(*set)))
2057 goto out;
2058 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2059
2060 error = sigprocmask(how, &new_set, &old_set);
2061 if (error)
2062 goto out;
2063 if (oset)
2064 goto set_old;
2065 } else if (oset) {
2066 spin_lock_irq(&current->sighand->siglock);
2067 old_set = current->blocked;
2068 spin_unlock_irq(&current->sighand->siglock);
2069
2070 set_old:
2071 error = -EFAULT;
2072 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2073 goto out;
2074 }
2075 error = 0;
2076 out:
2077 return error;
2078 }
2079
2080 long do_sigpending(void __user *set, unsigned long sigsetsize)
2081 {
2082 long error = -EINVAL;
2083 sigset_t pending;
2084
2085 if (sigsetsize > sizeof(sigset_t))
2086 goto out;
2087
2088 spin_lock_irq(&current->sighand->siglock);
2089 sigorsets(&pending, &current->pending.signal,
2090 &current->signal->shared_pending.signal);
2091 spin_unlock_irq(&current->sighand->siglock);
2092
2093 /* Outside the lock because only this thread touches it. */
2094 sigandsets(&pending, &current->blocked, &pending);
2095
2096 error = -EFAULT;
2097 if (!copy_to_user(set, &pending, sigsetsize))
2098 error = 0;
2099
2100 out:
2101 return error;
2102 }
2103
2104 asmlinkage long
2105 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2106 {
2107 return do_sigpending(set, sigsetsize);
2108 }
2109
2110 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2111
2112 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2113 {
2114 int err;
2115
2116 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2117 return -EFAULT;
2118 if (from->si_code < 0)
2119 return __copy_to_user(to, from, sizeof(siginfo_t))
2120 ? -EFAULT : 0;
2121 /*
2122 * If you change siginfo_t structure, please be sure
2123 * this code is fixed accordingly.
2124 * It should never copy any pad contained in the structure
2125 * to avoid security leaks, but must copy the generic
2126 * 3 ints plus the relevant union member.
2127 */
2128 err = __put_user(from->si_signo, &to->si_signo);
2129 err |= __put_user(from->si_errno, &to->si_errno);
2130 err |= __put_user((short)from->si_code, &to->si_code);
2131 switch (from->si_code & __SI_MASK) {
2132 case __SI_KILL:
2133 err |= __put_user(from->si_pid, &to->si_pid);
2134 err |= __put_user(from->si_uid, &to->si_uid);
2135 break;
2136 case __SI_TIMER:
2137 err |= __put_user(from->si_tid, &to->si_tid);
2138 err |= __put_user(from->si_overrun, &to->si_overrun);
2139 err |= __put_user(from->si_ptr, &to->si_ptr);
2140 break;
2141 case __SI_POLL:
2142 err |= __put_user(from->si_band, &to->si_band);
2143 err |= __put_user(from->si_fd, &to->si_fd);
2144 break;
2145 case __SI_FAULT:
2146 err |= __put_user(from->si_addr, &to->si_addr);
2147 #ifdef __ARCH_SI_TRAPNO
2148 err |= __put_user(from->si_trapno, &to->si_trapno);
2149 #endif
2150 break;
2151 case __SI_CHLD:
2152 err |= __put_user(from->si_pid, &to->si_pid);
2153 err |= __put_user(from->si_uid, &to->si_uid);
2154 err |= __put_user(from->si_status, &to->si_status);
2155 err |= __put_user(from->si_utime, &to->si_utime);
2156 err |= __put_user(from->si_stime, &to->si_stime);
2157 break;
2158 case __SI_RT: /* This is not generated by the kernel as of now. */
2159 case __SI_MESGQ: /* But this is */
2160 err |= __put_user(from->si_pid, &to->si_pid);
2161 err |= __put_user(from->si_uid, &to->si_uid);
2162 err |= __put_user(from->si_ptr, &to->si_ptr);
2163 break;
2164 default: /* this is just in case for now ... */
2165 err |= __put_user(from->si_pid, &to->si_pid);
2166 err |= __put_user(from->si_uid, &to->si_uid);
2167 break;
2168 }
2169 return err;
2170 }
2171
2172 #endif
2173
2174 asmlinkage long
2175 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2176 siginfo_t __user *uinfo,
2177 const struct timespec __user *uts,
2178 size_t sigsetsize)
2179 {
2180 int ret, sig;
2181 sigset_t these;
2182 struct timespec ts;
2183 siginfo_t info;
2184 long timeout = 0;
2185
2186 /* XXX: Don't preclude handling different sized sigset_t's. */
2187 if (sigsetsize != sizeof(sigset_t))
2188 return -EINVAL;
2189
2190 if (copy_from_user(&these, uthese, sizeof(these)))
2191 return -EFAULT;
2192
2193 /*
2194 * Invert the set of allowed signals to get those we
2195 * want to block.
2196 */
2197 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2198 signotset(&these);
2199
2200 if (uts) {
2201 if (copy_from_user(&ts, uts, sizeof(ts)))
2202 return -EFAULT;
2203 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2204 || ts.tv_sec < 0)
2205 return -EINVAL;
2206 }
2207
2208 spin_lock_irq(&current->sighand->siglock);
2209 sig = dequeue_signal(current, &these, &info);
2210 if (!sig) {
2211 timeout = MAX_SCHEDULE_TIMEOUT;
2212 if (uts)
2213 timeout = (timespec_to_jiffies(&ts)
2214 + (ts.tv_sec || ts.tv_nsec));
2215
2216 if (timeout) {
2217 /* None ready -- temporarily unblock those we're
2218 * interested while we are sleeping in so that we'll
2219 * be awakened when they arrive. */
2220 current->real_blocked = current->blocked;
2221 sigandsets(&current->blocked, &current->blocked, &these);
2222 recalc_sigpending();
2223 spin_unlock_irq(&current->sighand->siglock);
2224
2225 current->state = TASK_INTERRUPTIBLE;
2226 timeout = schedule_timeout(timeout);
2227
2228 if (current->flags & PF_FREEZE)
2229 refrigerator(PF_FREEZE);
2230 spin_lock_irq(&current->sighand->siglock);
2231 sig = dequeue_signal(current, &these, &info);
2232 current->blocked = current->real_blocked;
2233 siginitset(&current->real_blocked, 0);
2234 recalc_sigpending();
2235 }
2236 }
2237 spin_unlock_irq(&current->sighand->siglock);
2238
2239 if (sig) {
2240 ret = sig;
2241 if (uinfo) {
2242 if (copy_siginfo_to_user(uinfo, &info))
2243 ret = -EFAULT;
2244 }
2245 } else {
2246 ret = -EAGAIN;
2247 if (timeout)
2248 ret = -EINTR;
2249 }
2250
2251 return ret;
2252 }
2253
2254 asmlinkage long
2255 sys_kill(int pid, int sig)
2256 {
2257 struct siginfo info;
2258
2259 info.si_signo = sig;
2260 info.si_errno = 0;
2261 info.si_code = SI_USER;
2262 info.si_pid = current->tgid;
2263 info.si_uid = current->uid;
2264
2265 return kill_something_info(sig, &info, pid);
2266 }
2267
2268 /**
2269 * sys_tgkill - send signal to one specific thread
2270 * @tgid: the thread group ID of the thread
2271 * @pid: the PID of the thread
2272 * @sig: signal to be sent
2273 *
2274 * This syscall also checks the tgid and returns -ESRCH even if the PID
2275 * exists but it's not belonging to the target process anymore. This
2276 * method solves the problem of threads exiting and PIDs getting reused.
2277 */
2278 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2279 {
2280 struct siginfo info;
2281 int error;
2282 struct task_struct *p;
2283
2284 /* This is only valid for single tasks */
2285 if (pid <= 0 || tgid <= 0)
2286 return -EINVAL;
2287
2288 info.si_signo = sig;
2289 info.si_errno = 0;
2290 info.si_code = SI_TKILL;
2291 info.si_pid = current->tgid;
2292 info.si_uid = current->uid;
2293
2294 read_lock(&tasklist_lock);
2295 p = find_task_by_pid(pid);
2296 error = -ESRCH;
2297 if (p && (p->tgid == tgid)) {
2298 error = check_kill_permission(sig, &info, p);
2299 /*
2300 * The null signal is a permissions and process existence
2301 * probe. No signal is actually delivered.
2302 */
2303 if (!error && sig && p->sighand) {
2304 spin_lock_irq(&p->sighand->siglock);
2305 handle_stop_signal(sig, p);
2306 error = specific_send_sig_info(sig, &info, p);
2307 spin_unlock_irq(&p->sighand->siglock);
2308 }
2309 }
2310 read_unlock(&tasklist_lock);
2311 return error;
2312 }
2313
2314 /*
2315 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2316 */
2317 asmlinkage long
2318 sys_tkill(int pid, int sig)
2319 {
2320 struct siginfo info;
2321 int error;
2322 struct task_struct *p;
2323
2324 /* This is only valid for single tasks */
2325 if (pid <= 0)
2326 return -EINVAL;
2327
2328 info.si_signo = sig;
2329 info.si_errno = 0;
2330 info.si_code = SI_TKILL;
2331 info.si_pid = current->tgid;
2332 info.si_uid = current->uid;
2333
2334 read_lock(&tasklist_lock);
2335 p = find_task_by_pid(pid);
2336 error = -ESRCH;
2337 if (p) {
2338 error = check_kill_permission(sig, &info, p);
2339 /*
2340 * The null signal is a permissions and process existence
2341 * probe. No signal is actually delivered.
2342 */
2343 if (!error && sig && p->sighand) {
2344 spin_lock_irq(&p->sighand->siglock);
2345 handle_stop_signal(sig, p);
2346 error = specific_send_sig_info(sig, &info, p);
2347 spin_unlock_irq(&p->sighand->siglock);
2348 }
2349 }
2350 read_unlock(&tasklist_lock);
2351 return error;
2352 }
2353
2354 asmlinkage long
2355 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2356 {
2357 siginfo_t info;
2358
2359 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2360 return -EFAULT;
2361
2362 /* Not even root can pretend to send signals from the kernel.
2363 Nor can they impersonate a kill(), which adds source info. */
2364 if (info.si_code >= 0)
2365 return -EPERM;
2366 info.si_signo = sig;
2367
2368 /* POSIX.1b doesn't mention process groups. */
2369 return kill_proc_info(sig, &info, pid);
2370 }
2371
2372 int
2373 do_sigaction(int sig, const struct k_sigaction *act, struct k_sigaction *oact)
2374 {
2375 struct k_sigaction *k;
2376
2377 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2378 return -EINVAL;
2379
2380 k = &current->sighand->action[sig-1];
2381
2382 spin_lock_irq(&current->sighand->siglock);
2383 if (signal_pending(current)) {
2384 /*
2385 * If there might be a fatal signal pending on multiple
2386 * threads, make sure we take it before changing the action.
2387 */
2388 spin_unlock_irq(&current->sighand->siglock);
2389 return -ERESTARTNOINTR;
2390 }
2391
2392 if (oact)
2393 *oact = *k;
2394
2395 if (act) {
2396 /*
2397 * POSIX 3.3.1.3:
2398 * "Setting a signal action to SIG_IGN for a signal that is
2399 * pending shall cause the pending signal to be discarded,
2400 * whether or not it is blocked."
2401 *
2402 * "Setting a signal action to SIG_DFL for a signal that is
2403 * pending and whose default action is to ignore the signal
2404 * (for example, SIGCHLD), shall cause the pending signal to
2405 * be discarded, whether or not it is blocked"
2406 */
2407 if (act->sa.sa_handler == SIG_IGN ||
2408 (act->sa.sa_handler == SIG_DFL &&
2409 sig_kernel_ignore(sig))) {
2410 /*
2411 * This is a fairly rare case, so we only take the
2412 * tasklist_lock once we're sure we'll need it.
2413 * Now we must do this little unlock and relock
2414 * dance to maintain the lock hierarchy.
2415 */
2416 struct task_struct *t = current;
2417 spin_unlock_irq(&t->sighand->siglock);
2418 read_lock(&tasklist_lock);
2419 spin_lock_irq(&t->sighand->siglock);
2420 *k = *act;
2421 sigdelsetmask(&k->sa.sa_mask,
2422 sigmask(SIGKILL) | sigmask(SIGSTOP));
2423 rm_from_queue(sigmask(sig), &t->signal->shared_pending);
2424 do {
2425 rm_from_queue(sigmask(sig), &t->pending);
2426 recalc_sigpending_tsk(t);
2427 t = next_thread(t);
2428 } while (t != current);
2429 spin_unlock_irq(&current->sighand->siglock);
2430 read_unlock(&tasklist_lock);
2431 return 0;
2432 }
2433
2434 *k = *act;
2435 sigdelsetmask(&k->sa.sa_mask,
2436 sigmask(SIGKILL) | sigmask(SIGSTOP));
2437 }
2438
2439 spin_unlock_irq(&current->sighand->siglock);
2440 return 0;
2441 }
2442
2443 int
2444 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2445 {
2446 stack_t oss;
2447 int error;
2448
2449 if (uoss) {
2450 oss.ss_sp = (void __user *) current->sas_ss_sp;
2451 oss.ss_size = current->sas_ss_size;
2452 oss.ss_flags = sas_ss_flags(sp);
2453 }
2454
2455 if (uss) {
2456 void __user *ss_sp;
2457 size_t ss_size;
2458 int ss_flags;
2459
2460 error = -EFAULT;
2461 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2462 || __get_user(ss_sp, &uss->ss_sp)
2463 || __get_user(ss_flags, &uss->ss_flags)
2464 || __get_user(ss_size, &uss->ss_size))
2465 goto out;
2466
2467 error = -EPERM;
2468 if (on_sig_stack(sp))
2469 goto out;
2470
2471 error = -EINVAL;
2472 /*
2473 *
2474 * Note - this code used to test ss_flags incorrectly
2475 * old code may have been written using ss_flags==0
2476 * to mean ss_flags==SS_ONSTACK (as this was the only
2477 * way that worked) - this fix preserves that older
2478 * mechanism
2479 */
2480 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2481 goto out;
2482
2483 if (ss_flags == SS_DISABLE) {
2484 ss_size = 0;
2485 ss_sp = NULL;
2486 } else {
2487 error = -ENOMEM;
2488 if (ss_size < MINSIGSTKSZ)
2489 goto out;
2490 }
2491
2492 current->sas_ss_sp = (unsigned long) ss_sp;
2493 current->sas_ss_size = ss_size;
2494 }
2495
2496 if (uoss) {
2497 error = -EFAULT;
2498 if (copy_to_user(uoss, &oss, sizeof(oss)))
2499 goto out;
2500 }
2501
2502 error = 0;
2503 out:
2504 return error;
2505 }
2506
2507 #ifdef __ARCH_WANT_SYS_SIGPENDING
2508
2509 asmlinkage long
2510 sys_sigpending(old_sigset_t __user *set)
2511 {
2512 return do_sigpending(set, sizeof(*set));
2513 }
2514
2515 #endif
2516
2517 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2518 /* Some platforms have their own version with special arguments others
2519 support only sys_rt_sigprocmask. */
2520
2521 asmlinkage long
2522 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2523 {
2524 int error;
2525 old_sigset_t old_set, new_set;
2526
2527 if (set) {
2528 error = -EFAULT;
2529 if (copy_from_user(&new_set, set, sizeof(*set)))
2530 goto out;
2531 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2532
2533 spin_lock_irq(&current->sighand->siglock);
2534 old_set = current->blocked.sig[0];
2535
2536 error = 0;
2537 switch (how) {
2538 default:
2539 error = -EINVAL;
2540 break;
2541 case SIG_BLOCK:
2542 sigaddsetmask(&current->blocked, new_set);
2543 break;
2544 case SIG_UNBLOCK:
2545 sigdelsetmask(&current->blocked, new_set);
2546 break;
2547 case SIG_SETMASK:
2548 current->blocked.sig[0] = new_set;
2549 break;
2550 }
2551
2552 recalc_sigpending();
2553 spin_unlock_irq(&current->sighand->siglock);
2554 if (error)
2555 goto out;
2556 if (oset)
2557 goto set_old;
2558 } else if (oset) {
2559 old_set = current->blocked.sig[0];
2560 set_old:
2561 error = -EFAULT;
2562 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2563 goto out;
2564 }
2565 error = 0;
2566 out:
2567 return error;
2568 }
2569 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2570
2571 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2572 asmlinkage long
2573 sys_rt_sigaction(int sig,
2574 const struct sigaction __user *act,
2575 struct sigaction __user *oact,
2576 size_t sigsetsize)
2577 {
2578 struct k_sigaction new_sa, old_sa;
2579 int ret = -EINVAL;
2580
2581 /* XXX: Don't preclude handling different sized sigset_t's. */
2582 if (sigsetsize != sizeof(sigset_t))
2583 goto out;
2584
2585 if (act) {
2586 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2587 return -EFAULT;
2588 }
2589
2590 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2591
2592 if (!ret && oact) {
2593 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2594 return -EFAULT;
2595 }
2596 out:
2597 return ret;
2598 }
2599 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2600
2601 #ifdef __ARCH_WANT_SYS_SGETMASK
2602
2603 /*
2604 * For backwards compatibility. Functionality superseded by sigprocmask.
2605 */
2606 asmlinkage long
2607 sys_sgetmask(void)
2608 {
2609 /* SMP safe */
2610 return current->blocked.sig[0];
2611 }
2612
2613 asmlinkage long
2614 sys_ssetmask(int newmask)
2615 {
2616 int old;
2617
2618 spin_lock_irq(&current->sighand->siglock);
2619 old = current->blocked.sig[0];
2620
2621 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2622 sigmask(SIGSTOP)));
2623 recalc_sigpending();
2624 spin_unlock_irq(&current->sighand->siglock);
2625
2626 return old;
2627 }
2628 #endif /* __ARCH_WANT_SGETMASK */
2629
2630 #ifdef __ARCH_WANT_SYS_SIGNAL
2631 /*
2632 * For backwards compatibility. Functionality superseded by sigaction.
2633 */
2634 asmlinkage unsigned long
2635 sys_signal(int sig, __sighandler_t handler)
2636 {
2637 struct k_sigaction new_sa, old_sa;
2638 int ret;
2639
2640 new_sa.sa.sa_handler = handler;
2641 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2642
2643 ret = do_sigaction(sig, &new_sa, &old_sa);
2644
2645 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2646 }
2647 #endif /* __ARCH_WANT_SYS_SIGNAL */
2648
2649 #ifdef __ARCH_WANT_SYS_PAUSE
2650
2651 asmlinkage long
2652 sys_pause(void)
2653 {
2654 current->state = TASK_INTERRUPTIBLE;
2655 schedule();
2656 return -ERESTARTNOHAND;
2657 }
2658
2659 #endif
2660
2661 void __init signals_init(void)
2662 {
2663 sigqueue_cachep =
2664 kmem_cache_create("sigqueue",
2665 sizeof(struct sigqueue),
2666 __alignof__(struct sigqueue),
2667 SLAB_PANIC, NULL, NULL);
2668 }