Magellan Linux

Contents of /alx-src/tags/kernel26-2.6.12-alx-r9/mm/filemap.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 630 - (show annotations) (download)
Wed Mar 4 11:03:09 2009 UTC (15 years, 3 months ago) by niro
File MIME type: text/plain
File size: 59319 byte(s)
Tag kernel26-2.6.12-alx-r9
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 /*
32 * FIXME: remove all knowledge of the buffer layer from the core VM
33 */
34 #include <linux/buffer_head.h> /* for generic_osync_inode */
35
36 #include <asm/uaccess.h>
37 #include <asm/mman.h>
38
39 /*
40 * Shared mappings implemented 30.11.1994. It's not fully working yet,
41 * though.
42 *
43 * Shared mappings now work. 15.8.1995 Bruno.
44 *
45 * finished 'unifying' the page and buffer cache and SMP-threaded the
46 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
47 *
48 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
49 */
50
51 /*
52 * Lock ordering:
53 *
54 * ->i_mmap_lock (vmtruncate)
55 * ->private_lock (__free_pte->__set_page_dirty_buffers)
56 * ->swap_list_lock
57 * ->swap_device_lock (exclusive_swap_page, others)
58 * ->mapping->tree_lock
59 *
60 * ->i_sem
61 * ->i_mmap_lock (truncate->unmap_mapping_range)
62 *
63 * ->mmap_sem
64 * ->i_mmap_lock
65 * ->page_table_lock (various places, mainly in mmap.c)
66 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
67 *
68 * ->mmap_sem
69 * ->lock_page (access_process_vm)
70 *
71 * ->mmap_sem
72 * ->i_sem (msync)
73 *
74 * ->i_sem
75 * ->i_alloc_sem (various)
76 *
77 * ->inode_lock
78 * ->sb_lock (fs/fs-writeback.c)
79 * ->mapping->tree_lock (__sync_single_inode)
80 *
81 * ->i_mmap_lock
82 * ->anon_vma.lock (vma_adjust)
83 *
84 * ->anon_vma.lock
85 * ->page_table_lock (anon_vma_prepare and various)
86 *
87 * ->page_table_lock
88 * ->swap_device_lock (try_to_unmap_one)
89 * ->private_lock (try_to_unmap_one)
90 * ->tree_lock (try_to_unmap_one)
91 * ->zone.lru_lock (follow_page->mark_page_accessed)
92 * ->private_lock (page_remove_rmap->set_page_dirty)
93 * ->tree_lock (page_remove_rmap->set_page_dirty)
94 * ->inode_lock (page_remove_rmap->set_page_dirty)
95 * ->inode_lock (zap_pte_range->set_page_dirty)
96 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
97 *
98 * ->task->proc_lock
99 * ->dcache_lock (proc_pid_lookup)
100 */
101
102 /*
103 * Remove a page from the page cache and free it. Caller has to make
104 * sure the page is locked and that nobody else uses it - or that usage
105 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
106 */
107 void __remove_from_page_cache(struct page *page)
108 {
109 struct address_space *mapping = page->mapping;
110
111 radix_tree_delete(&mapping->page_tree, page->index);
112 page->mapping = NULL;
113 mapping->nrpages--;
114 pagecache_acct(-1);
115 }
116
117 void remove_from_page_cache(struct page *page)
118 {
119 struct address_space *mapping = page->mapping;
120
121 BUG_ON(!PageLocked(page));
122
123 write_lock_irq(&mapping->tree_lock);
124 __remove_from_page_cache(page);
125 write_unlock_irq(&mapping->tree_lock);
126 }
127
128 static int sync_page(void *word)
129 {
130 struct address_space *mapping;
131 struct page *page;
132
133 page = container_of((page_flags_t *)word, struct page, flags);
134
135 /*
136 * page_mapping() is being called without PG_locked held.
137 * Some knowledge of the state and use of the page is used to
138 * reduce the requirements down to a memory barrier.
139 * The danger here is of a stale page_mapping() return value
140 * indicating a struct address_space different from the one it's
141 * associated with when it is associated with one.
142 * After smp_mb(), it's either the correct page_mapping() for
143 * the page, or an old page_mapping() and the page's own
144 * page_mapping() has gone NULL.
145 * The ->sync_page() address_space operation must tolerate
146 * page_mapping() going NULL. By an amazing coincidence,
147 * this comes about because none of the users of the page
148 * in the ->sync_page() methods make essential use of the
149 * page_mapping(), merely passing the page down to the backing
150 * device's unplug functions when it's non-NULL, which in turn
151 * ignore it for all cases but swap, where only page->private is
152 * of interest. When page_mapping() does go NULL, the entire
153 * call stack gracefully ignores the page and returns.
154 * -- wli
155 */
156 smp_mb();
157 mapping = page_mapping(page);
158 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
159 mapping->a_ops->sync_page(page);
160 io_schedule();
161 return 0;
162 }
163
164 /**
165 * filemap_fdatawrite_range - start writeback against all of a mapping's
166 * dirty pages that lie within the byte offsets <start, end>
167 * @mapping: address space structure to write
168 * @start: offset in bytes where the range starts
169 * @end: offset in bytes where the range ends
170 * @sync_mode: enable synchronous operation
171 *
172 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
173 * opposed to a regular memory * cleansing writeback. The difference between
174 * these two operations is that if a dirty page/buffer is encountered, it must
175 * be waited upon, and not just skipped over.
176 */
177 static int __filemap_fdatawrite_range(struct address_space *mapping,
178 loff_t start, loff_t end, int sync_mode)
179 {
180 int ret;
181 struct writeback_control wbc = {
182 .sync_mode = sync_mode,
183 .nr_to_write = mapping->nrpages * 2,
184 .start = start,
185 .end = end,
186 };
187
188 if (!mapping_cap_writeback_dirty(mapping))
189 return 0;
190
191 ret = do_writepages(mapping, &wbc);
192 return ret;
193 }
194
195 static inline int __filemap_fdatawrite(struct address_space *mapping,
196 int sync_mode)
197 {
198 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
199 }
200
201 int filemap_fdatawrite(struct address_space *mapping)
202 {
203 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
204 }
205 EXPORT_SYMBOL(filemap_fdatawrite);
206
207 static int filemap_fdatawrite_range(struct address_space *mapping,
208 loff_t start, loff_t end)
209 {
210 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
211 }
212
213 /*
214 * This is a mostly non-blocking flush. Not suitable for data-integrity
215 * purposes - I/O may not be started against all dirty pages.
216 */
217 int filemap_flush(struct address_space *mapping)
218 {
219 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
220 }
221 EXPORT_SYMBOL(filemap_flush);
222
223 /*
224 * Wait for writeback to complete against pages indexed by start->end
225 * inclusive
226 */
227 static int wait_on_page_writeback_range(struct address_space *mapping,
228 pgoff_t start, pgoff_t end)
229 {
230 struct pagevec pvec;
231 int nr_pages;
232 int ret = 0;
233 pgoff_t index;
234
235 if (end < start)
236 return 0;
237
238 pagevec_init(&pvec, 0);
239 index = start;
240 while ((index <= end) &&
241 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
242 PAGECACHE_TAG_WRITEBACK,
243 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
244 unsigned i;
245
246 for (i = 0; i < nr_pages; i++) {
247 struct page *page = pvec.pages[i];
248
249 /* until radix tree lookup accepts end_index */
250 if (page->index > end)
251 continue;
252
253 wait_on_page_writeback(page);
254 if (PageError(page))
255 ret = -EIO;
256 }
257 pagevec_release(&pvec);
258 cond_resched();
259 }
260
261 /* Check for outstanding write errors */
262 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
263 ret = -ENOSPC;
264 if (test_and_clear_bit(AS_EIO, &mapping->flags))
265 ret = -EIO;
266
267 return ret;
268 }
269
270 /*
271 * Write and wait upon all the pages in the passed range. This is a "data
272 * integrity" operation. It waits upon in-flight writeout before starting and
273 * waiting upon new writeout. If there was an IO error, return it.
274 *
275 * We need to re-take i_sem during the generic_osync_inode list walk because
276 * it is otherwise livelockable.
277 */
278 int sync_page_range(struct inode *inode, struct address_space *mapping,
279 loff_t pos, size_t count)
280 {
281 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
282 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
283 int ret;
284
285 if (!mapping_cap_writeback_dirty(mapping) || !count)
286 return 0;
287 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
288 if (ret == 0) {
289 down(&inode->i_sem);
290 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
291 up(&inode->i_sem);
292 }
293 if (ret == 0)
294 ret = wait_on_page_writeback_range(mapping, start, end);
295 return ret;
296 }
297 EXPORT_SYMBOL(sync_page_range);
298
299 /*
300 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
301 * as it forces O_SYNC writers to different parts of the same file
302 * to be serialised right until io completion.
303 */
304 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
305 loff_t pos, size_t count)
306 {
307 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
308 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
309 int ret;
310
311 if (!mapping_cap_writeback_dirty(mapping) || !count)
312 return 0;
313 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
314 if (ret == 0)
315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 if (ret == 0)
317 ret = wait_on_page_writeback_range(mapping, start, end);
318 return ret;
319 }
320 EXPORT_SYMBOL(sync_page_range_nolock);
321
322 /**
323 * filemap_fdatawait - walk the list of under-writeback pages of the given
324 * address space and wait for all of them.
325 *
326 * @mapping: address space structure to wait for
327 */
328 int filemap_fdatawait(struct address_space *mapping)
329 {
330 loff_t i_size = i_size_read(mapping->host);
331
332 if (i_size == 0)
333 return 0;
334
335 return wait_on_page_writeback_range(mapping, 0,
336 (i_size - 1) >> PAGE_CACHE_SHIFT);
337 }
338 EXPORT_SYMBOL(filemap_fdatawait);
339
340 int filemap_write_and_wait(struct address_space *mapping)
341 {
342 int retval = 0;
343
344 if (mapping->nrpages) {
345 retval = filemap_fdatawrite(mapping);
346 if (retval == 0)
347 retval = filemap_fdatawait(mapping);
348 }
349 return retval;
350 }
351
352 int filemap_write_and_wait_range(struct address_space *mapping,
353 loff_t lstart, loff_t lend)
354 {
355 int retval = 0;
356
357 if (mapping->nrpages) {
358 retval = __filemap_fdatawrite_range(mapping, lstart, lend,
359 WB_SYNC_ALL);
360 if (retval == 0)
361 retval = wait_on_page_writeback_range(mapping,
362 lstart >> PAGE_CACHE_SHIFT,
363 lend >> PAGE_CACHE_SHIFT);
364 }
365 return retval;
366 }
367
368 /*
369 * This function is used to add newly allocated pagecache pages:
370 * the page is new, so we can just run SetPageLocked() against it.
371 * The other page state flags were set by rmqueue().
372 *
373 * This function does not add the page to the LRU. The caller must do that.
374 */
375 int add_to_page_cache(struct page *page, struct address_space *mapping,
376 pgoff_t offset, int gfp_mask)
377 {
378 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
379
380 if (error == 0) {
381 write_lock_irq(&mapping->tree_lock);
382 error = radix_tree_insert(&mapping->page_tree, offset, page);
383 if (!error) {
384 page_cache_get(page);
385 SetPageLocked(page);
386 page->mapping = mapping;
387 page->index = offset;
388 mapping->nrpages++;
389 pagecache_acct(1);
390 }
391 write_unlock_irq(&mapping->tree_lock);
392 radix_tree_preload_end();
393 }
394 return error;
395 }
396
397 EXPORT_SYMBOL(add_to_page_cache);
398
399 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
400 pgoff_t offset, int gfp_mask)
401 {
402 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
403 if (ret == 0)
404 lru_cache_add(page);
405 return ret;
406 }
407
408 /*
409 * In order to wait for pages to become available there must be
410 * waitqueues associated with pages. By using a hash table of
411 * waitqueues where the bucket discipline is to maintain all
412 * waiters on the same queue and wake all when any of the pages
413 * become available, and for the woken contexts to check to be
414 * sure the appropriate page became available, this saves space
415 * at a cost of "thundering herd" phenomena during rare hash
416 * collisions.
417 */
418 static wait_queue_head_t *page_waitqueue(struct page *page)
419 {
420 const struct zone *zone = page_zone(page);
421
422 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
423 }
424
425 static inline void wake_up_page(struct page *page, int bit)
426 {
427 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
428 }
429
430 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
431 {
432 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
433
434 if (test_bit(bit_nr, &page->flags))
435 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
436 TASK_UNINTERRUPTIBLE);
437 }
438 EXPORT_SYMBOL(wait_on_page_bit);
439
440 /**
441 * unlock_page() - unlock a locked page
442 *
443 * @page: the page
444 *
445 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
446 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
447 * mechananism between PageLocked pages and PageWriteback pages is shared.
448 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
449 *
450 * The first mb is necessary to safely close the critical section opened by the
451 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
452 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
453 * parallel wait_on_page_locked()).
454 */
455 void fastcall unlock_page(struct page *page)
456 {
457 smp_mb__before_clear_bit();
458 if (!TestClearPageLocked(page))
459 BUG();
460 smp_mb__after_clear_bit();
461 wake_up_page(page, PG_locked);
462 }
463 EXPORT_SYMBOL(unlock_page);
464
465 /*
466 * End writeback against a page.
467 */
468 void end_page_writeback(struct page *page)
469 {
470 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
471 if (!test_clear_page_writeback(page))
472 BUG();
473 }
474 smp_mb__after_clear_bit();
475 wake_up_page(page, PG_writeback);
476 }
477 EXPORT_SYMBOL(end_page_writeback);
478
479 /*
480 * Get a lock on the page, assuming we need to sleep to get it.
481 *
482 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
483 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
484 * chances are that on the second loop, the block layer's plug list is empty,
485 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
486 */
487 void fastcall __lock_page(struct page *page)
488 {
489 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
490
491 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
492 TASK_UNINTERRUPTIBLE);
493 }
494 EXPORT_SYMBOL(__lock_page);
495
496 /*
497 * a rather lightweight function, finding and getting a reference to a
498 * hashed page atomically.
499 */
500 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
501 {
502 struct page *page;
503
504 read_lock_irq(&mapping->tree_lock);
505 page = radix_tree_lookup(&mapping->page_tree, offset);
506 if (page)
507 page_cache_get(page);
508 read_unlock_irq(&mapping->tree_lock);
509 return page;
510 }
511
512 EXPORT_SYMBOL(find_get_page);
513
514 /*
515 * Same as above, but trylock it instead of incrementing the count.
516 */
517 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
518 {
519 struct page *page;
520
521 read_lock_irq(&mapping->tree_lock);
522 page = radix_tree_lookup(&mapping->page_tree, offset);
523 if (page && TestSetPageLocked(page))
524 page = NULL;
525 read_unlock_irq(&mapping->tree_lock);
526 return page;
527 }
528
529 EXPORT_SYMBOL(find_trylock_page);
530
531 /**
532 * find_lock_page - locate, pin and lock a pagecache page
533 *
534 * @mapping: the address_space to search
535 * @offset: the page index
536 *
537 * Locates the desired pagecache page, locks it, increments its reference
538 * count and returns its address.
539 *
540 * Returns zero if the page was not present. find_lock_page() may sleep.
541 */
542 struct page *find_lock_page(struct address_space *mapping,
543 unsigned long offset)
544 {
545 struct page *page;
546
547 read_lock_irq(&mapping->tree_lock);
548 repeat:
549 page = radix_tree_lookup(&mapping->page_tree, offset);
550 if (page) {
551 page_cache_get(page);
552 if (TestSetPageLocked(page)) {
553 read_unlock_irq(&mapping->tree_lock);
554 lock_page(page);
555 read_lock_irq(&mapping->tree_lock);
556
557 /* Has the page been truncated while we slept? */
558 if (page->mapping != mapping || page->index != offset) {
559 unlock_page(page);
560 page_cache_release(page);
561 goto repeat;
562 }
563 }
564 }
565 read_unlock_irq(&mapping->tree_lock);
566 return page;
567 }
568
569 EXPORT_SYMBOL(find_lock_page);
570
571 /**
572 * find_or_create_page - locate or add a pagecache page
573 *
574 * @mapping: the page's address_space
575 * @index: the page's index into the mapping
576 * @gfp_mask: page allocation mode
577 *
578 * Locates a page in the pagecache. If the page is not present, a new page
579 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
580 * LRU list. The returned page is locked and has its reference count
581 * incremented.
582 *
583 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
584 * allocation!
585 *
586 * find_or_create_page() returns the desired page's address, or zero on
587 * memory exhaustion.
588 */
589 struct page *find_or_create_page(struct address_space *mapping,
590 unsigned long index, unsigned int gfp_mask)
591 {
592 struct page *page, *cached_page = NULL;
593 int err;
594 repeat:
595 page = find_lock_page(mapping, index);
596 if (!page) {
597 if (!cached_page) {
598 cached_page = alloc_page(gfp_mask);
599 if (!cached_page)
600 return NULL;
601 }
602 err = add_to_page_cache_lru(cached_page, mapping,
603 index, gfp_mask);
604 if (!err) {
605 page = cached_page;
606 cached_page = NULL;
607 } else if (err == -EEXIST)
608 goto repeat;
609 }
610 if (cached_page)
611 page_cache_release(cached_page);
612 return page;
613 }
614
615 EXPORT_SYMBOL(find_or_create_page);
616
617 /**
618 * find_get_pages - gang pagecache lookup
619 * @mapping: The address_space to search
620 * @start: The starting page index
621 * @nr_pages: The maximum number of pages
622 * @pages: Where the resulting pages are placed
623 *
624 * find_get_pages() will search for and return a group of up to
625 * @nr_pages pages in the mapping. The pages are placed at @pages.
626 * find_get_pages() takes a reference against the returned pages.
627 *
628 * The search returns a group of mapping-contiguous pages with ascending
629 * indexes. There may be holes in the indices due to not-present pages.
630 *
631 * find_get_pages() returns the number of pages which were found.
632 */
633 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
634 unsigned int nr_pages, struct page **pages)
635 {
636 unsigned int i;
637 unsigned int ret;
638
639 read_lock_irq(&mapping->tree_lock);
640 ret = radix_tree_gang_lookup(&mapping->page_tree,
641 (void **)pages, start, nr_pages);
642 for (i = 0; i < ret; i++)
643 page_cache_get(pages[i]);
644 read_unlock_irq(&mapping->tree_lock);
645 return ret;
646 }
647
648 /*
649 * Like find_get_pages, except we only return pages which are tagged with
650 * `tag'. We update *index to index the next page for the traversal.
651 */
652 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
653 int tag, unsigned int nr_pages, struct page **pages)
654 {
655 unsigned int i;
656 unsigned int ret;
657
658 read_lock_irq(&mapping->tree_lock);
659 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
660 (void **)pages, *index, nr_pages, tag);
661 for (i = 0; i < ret; i++)
662 page_cache_get(pages[i]);
663 if (ret)
664 *index = pages[ret - 1]->index + 1;
665 read_unlock_irq(&mapping->tree_lock);
666 return ret;
667 }
668
669 /*
670 * Same as grab_cache_page, but do not wait if the page is unavailable.
671 * This is intended for speculative data generators, where the data can
672 * be regenerated if the page couldn't be grabbed. This routine should
673 * be safe to call while holding the lock for another page.
674 *
675 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
676 * and deadlock against the caller's locked page.
677 */
678 struct page *
679 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
680 {
681 struct page *page = find_get_page(mapping, index);
682 unsigned int gfp_mask;
683
684 if (page) {
685 if (!TestSetPageLocked(page))
686 return page;
687 page_cache_release(page);
688 return NULL;
689 }
690 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
691 page = alloc_pages(gfp_mask, 0);
692 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
693 page_cache_release(page);
694 page = NULL;
695 }
696 return page;
697 }
698
699 EXPORT_SYMBOL(grab_cache_page_nowait);
700
701 /*
702 * This is a generic file read routine, and uses the
703 * mapping->a_ops->readpage() function for the actual low-level
704 * stuff.
705 *
706 * This is really ugly. But the goto's actually try to clarify some
707 * of the logic when it comes to error handling etc.
708 *
709 * Note the struct file* is only passed for the use of readpage. It may be
710 * NULL.
711 */
712 void do_generic_mapping_read(struct address_space *mapping,
713 struct file_ra_state *_ra,
714 struct file *filp,
715 loff_t *ppos,
716 read_descriptor_t *desc,
717 read_actor_t actor)
718 {
719 struct inode *inode = mapping->host;
720 unsigned long index;
721 unsigned long end_index;
722 unsigned long offset;
723 unsigned long last_index;
724 unsigned long next_index;
725 unsigned long prev_index;
726 loff_t isize;
727 struct page *cached_page;
728 int error;
729 struct file_ra_state ra = *_ra;
730
731 cached_page = NULL;
732 index = *ppos >> PAGE_CACHE_SHIFT;
733 next_index = index;
734 prev_index = ra.prev_page;
735 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
736 offset = *ppos & ~PAGE_CACHE_MASK;
737
738 isize = i_size_read(inode);
739 if (!isize)
740 goto out;
741
742 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
743 for (;;) {
744 struct page *page;
745 unsigned long nr, ret;
746
747 /* nr is the maximum number of bytes to copy from this page */
748 nr = PAGE_CACHE_SIZE;
749 if (index >= end_index) {
750 if (index > end_index)
751 goto out;
752 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
753 if (nr <= offset) {
754 goto out;
755 }
756 }
757 nr = nr - offset;
758
759 cond_resched();
760 if (index == next_index)
761 next_index = page_cache_readahead(mapping, &ra, filp,
762 index, last_index - index);
763
764 find_page:
765 page = find_get_page(mapping, index);
766 if (unlikely(page == NULL)) {
767 handle_ra_miss(mapping, &ra, index);
768 goto no_cached_page;
769 }
770 if (!PageUptodate(page))
771 goto page_not_up_to_date;
772 page_ok:
773
774 /* If users can be writing to this page using arbitrary
775 * virtual addresses, take care about potential aliasing
776 * before reading the page on the kernel side.
777 */
778 if (mapping_writably_mapped(mapping))
779 flush_dcache_page(page);
780
781 /*
782 * When (part of) the same page is read multiple times
783 * in succession, only mark it as accessed the first time.
784 */
785 if (prev_index != index)
786 mark_page_accessed(page);
787 prev_index = index;
788
789 /*
790 * Ok, we have the page, and it's up-to-date, so
791 * now we can copy it to user space...
792 *
793 * The actor routine returns how many bytes were actually used..
794 * NOTE! This may not be the same as how much of a user buffer
795 * we filled up (we may be padding etc), so we can only update
796 * "pos" here (the actor routine has to update the user buffer
797 * pointers and the remaining count).
798 */
799 ret = actor(desc, page, offset, nr);
800 offset += ret;
801 index += offset >> PAGE_CACHE_SHIFT;
802 offset &= ~PAGE_CACHE_MASK;
803
804 page_cache_release(page);
805 if (ret == nr && desc->count)
806 continue;
807 goto out;
808
809 page_not_up_to_date:
810 /* Get exclusive access to the page ... */
811 lock_page(page);
812
813 /* Did it get unhashed before we got the lock? */
814 if (!page->mapping) {
815 unlock_page(page);
816 page_cache_release(page);
817 continue;
818 }
819
820 /* Did somebody else fill it already? */
821 if (PageUptodate(page)) {
822 unlock_page(page);
823 goto page_ok;
824 }
825
826 readpage:
827 /* Start the actual read. The read will unlock the page. */
828 error = mapping->a_ops->readpage(filp, page);
829
830 if (unlikely(error))
831 goto readpage_error;
832
833 if (!PageUptodate(page)) {
834 lock_page(page);
835 if (!PageUptodate(page)) {
836 if (page->mapping == NULL) {
837 /*
838 * invalidate_inode_pages got it
839 */
840 unlock_page(page);
841 page_cache_release(page);
842 goto find_page;
843 }
844 unlock_page(page);
845 error = -EIO;
846 goto readpage_error;
847 }
848 unlock_page(page);
849 }
850
851 /*
852 * i_size must be checked after we have done ->readpage.
853 *
854 * Checking i_size after the readpage allows us to calculate
855 * the correct value for "nr", which means the zero-filled
856 * part of the page is not copied back to userspace (unless
857 * another truncate extends the file - this is desired though).
858 */
859 isize = i_size_read(inode);
860 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
861 if (unlikely(!isize || index > end_index)) {
862 page_cache_release(page);
863 goto out;
864 }
865
866 /* nr is the maximum number of bytes to copy from this page */
867 nr = PAGE_CACHE_SIZE;
868 if (index == end_index) {
869 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
870 if (nr <= offset) {
871 page_cache_release(page);
872 goto out;
873 }
874 }
875 nr = nr - offset;
876 goto page_ok;
877
878 readpage_error:
879 /* UHHUH! A synchronous read error occurred. Report it */
880 desc->error = error;
881 page_cache_release(page);
882 goto out;
883
884 no_cached_page:
885 /*
886 * Ok, it wasn't cached, so we need to create a new
887 * page..
888 */
889 if (!cached_page) {
890 cached_page = page_cache_alloc_cold(mapping);
891 if (!cached_page) {
892 desc->error = -ENOMEM;
893 goto out;
894 }
895 }
896 error = add_to_page_cache_lru(cached_page, mapping,
897 index, GFP_KERNEL);
898 if (error) {
899 if (error == -EEXIST)
900 goto find_page;
901 desc->error = error;
902 goto out;
903 }
904 page = cached_page;
905 cached_page = NULL;
906 goto readpage;
907 }
908
909 out:
910 *_ra = ra;
911
912 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
913 if (cached_page)
914 page_cache_release(cached_page);
915 if (filp)
916 file_accessed(filp);
917 }
918
919 EXPORT_SYMBOL(do_generic_mapping_read);
920
921 int file_read_actor(read_descriptor_t *desc, struct page *page,
922 unsigned long offset, unsigned long size)
923 {
924 char *kaddr;
925 unsigned long left, count = desc->count;
926
927 if (size > count)
928 size = count;
929
930 /*
931 * Faults on the destination of a read are common, so do it before
932 * taking the kmap.
933 */
934 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
935 kaddr = kmap_atomic(page, KM_USER0);
936 left = __copy_to_user_inatomic(desc->arg.buf,
937 kaddr + offset, size);
938 kunmap_atomic(kaddr, KM_USER0);
939 if (left == 0)
940 goto success;
941 }
942
943 /* Do it the slow way */
944 kaddr = kmap(page);
945 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
946 kunmap(page);
947
948 if (left) {
949 size -= left;
950 desc->error = -EFAULT;
951 }
952 success:
953 desc->count = count - size;
954 desc->written += size;
955 desc->arg.buf += size;
956 return size;
957 }
958
959 /*
960 * This is the "read()" routine for all filesystems
961 * that can use the page cache directly.
962 */
963 ssize_t
964 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
965 unsigned long nr_segs, loff_t *ppos)
966 {
967 struct file *filp = iocb->ki_filp;
968 ssize_t retval;
969 unsigned long seg;
970 size_t count;
971
972 count = 0;
973 for (seg = 0; seg < nr_segs; seg++) {
974 const struct iovec *iv = &iov[seg];
975
976 /*
977 * If any segment has a negative length, or the cumulative
978 * length ever wraps negative then return -EINVAL.
979 */
980 count += iv->iov_len;
981 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
982 return -EINVAL;
983 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
984 continue;
985 if (seg == 0)
986 return -EFAULT;
987 nr_segs = seg;
988 count -= iv->iov_len; /* This segment is no good */
989 break;
990 }
991
992 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
993 if (filp->f_flags & O_DIRECT) {
994 loff_t pos = *ppos, size;
995 struct address_space *mapping;
996 struct inode *inode;
997
998 mapping = filp->f_mapping;
999 inode = mapping->host;
1000 retval = 0;
1001 if (!count)
1002 goto out; /* skip atime */
1003 size = i_size_read(inode);
1004 if (pos < size) {
1005 retval = generic_file_direct_IO(READ, iocb,
1006 iov, pos, nr_segs);
1007 if (retval > 0 && !is_sync_kiocb(iocb))
1008 retval = -EIOCBQUEUED;
1009 if (retval > 0)
1010 *ppos = pos + retval;
1011 }
1012 file_accessed(filp);
1013 goto out;
1014 }
1015
1016 retval = 0;
1017 if (count) {
1018 for (seg = 0; seg < nr_segs; seg++) {
1019 read_descriptor_t desc;
1020
1021 desc.written = 0;
1022 desc.arg.buf = iov[seg].iov_base;
1023 desc.count = iov[seg].iov_len;
1024 if (desc.count == 0)
1025 continue;
1026 desc.error = 0;
1027 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1028 retval += desc.written;
1029 if (!retval) {
1030 retval = desc.error;
1031 break;
1032 }
1033 }
1034 }
1035 out:
1036 return retval;
1037 }
1038
1039 EXPORT_SYMBOL(__generic_file_aio_read);
1040
1041 ssize_t
1042 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1043 {
1044 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1045
1046 BUG_ON(iocb->ki_pos != pos);
1047 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1048 }
1049
1050 EXPORT_SYMBOL(generic_file_aio_read);
1051
1052 ssize_t
1053 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1054 {
1055 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1056 struct kiocb kiocb;
1057 ssize_t ret;
1058
1059 init_sync_kiocb(&kiocb, filp);
1060 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1061 if (-EIOCBQUEUED == ret)
1062 ret = wait_on_sync_kiocb(&kiocb);
1063 return ret;
1064 }
1065
1066 EXPORT_SYMBOL(generic_file_read);
1067
1068 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1069 {
1070 ssize_t written;
1071 unsigned long count = desc->count;
1072 struct file *file = desc->arg.data;
1073
1074 if (size > count)
1075 size = count;
1076
1077 written = file->f_op->sendpage(file, page, offset,
1078 size, &file->f_pos, size<count);
1079 if (written < 0) {
1080 desc->error = written;
1081 written = 0;
1082 }
1083 desc->count = count - written;
1084 desc->written += written;
1085 return written;
1086 }
1087
1088 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1089 size_t count, read_actor_t actor, void *target)
1090 {
1091 read_descriptor_t desc;
1092
1093 if (!count)
1094 return 0;
1095
1096 desc.written = 0;
1097 desc.count = count;
1098 desc.arg.data = target;
1099 desc.error = 0;
1100
1101 do_generic_file_read(in_file, ppos, &desc, actor);
1102 if (desc.written)
1103 return desc.written;
1104 return desc.error;
1105 }
1106
1107 EXPORT_SYMBOL(generic_file_sendfile);
1108
1109 static ssize_t
1110 do_readahead(struct address_space *mapping, struct file *filp,
1111 unsigned long index, unsigned long nr)
1112 {
1113 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1114 return -EINVAL;
1115
1116 force_page_cache_readahead(mapping, filp, index,
1117 max_sane_readahead(nr));
1118 return 0;
1119 }
1120
1121 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1122 {
1123 ssize_t ret;
1124 struct file *file;
1125
1126 ret = -EBADF;
1127 file = fget(fd);
1128 if (file) {
1129 if (file->f_mode & FMODE_READ) {
1130 struct address_space *mapping = file->f_mapping;
1131 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1132 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1133 unsigned long len = end - start + 1;
1134 ret = do_readahead(mapping, file, start, len);
1135 }
1136 fput(file);
1137 }
1138 return ret;
1139 }
1140
1141 #ifdef CONFIG_MMU
1142 /*
1143 * This adds the requested page to the page cache if it isn't already there,
1144 * and schedules an I/O to read in its contents from disk.
1145 */
1146 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1147 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1148 {
1149 struct address_space *mapping = file->f_mapping;
1150 struct page *page;
1151 int error;
1152
1153 page = page_cache_alloc_cold(mapping);
1154 if (!page)
1155 return -ENOMEM;
1156
1157 error = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1158 if (!error) {
1159 error = mapping->a_ops->readpage(file, page);
1160 page_cache_release(page);
1161 return error;
1162 }
1163
1164 /*
1165 * We arrive here in the unlikely event that someone
1166 * raced with us and added our page to the cache first
1167 * or we are out of memory for radix-tree nodes.
1168 */
1169 page_cache_release(page);
1170 return error == -EEXIST ? 0 : error;
1171 }
1172
1173 #define MMAP_LOTSAMISS (100)
1174
1175 /*
1176 * filemap_nopage() is invoked via the vma operations vector for a
1177 * mapped memory region to read in file data during a page fault.
1178 *
1179 * The goto's are kind of ugly, but this streamlines the normal case of having
1180 * it in the page cache, and handles the special cases reasonably without
1181 * having a lot of duplicated code.
1182 */
1183 struct page *filemap_nopage(struct vm_area_struct *area,
1184 unsigned long address, int *type)
1185 {
1186 int error;
1187 struct file *file = area->vm_file;
1188 struct address_space *mapping = file->f_mapping;
1189 struct file_ra_state *ra = &file->f_ra;
1190 struct inode *inode = mapping->host;
1191 struct page *page;
1192 unsigned long size, pgoff;
1193 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1194
1195 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1196
1197 retry_all:
1198 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1199 if (pgoff >= size)
1200 goto outside_data_content;
1201
1202 /* If we don't want any read-ahead, don't bother */
1203 if (VM_RandomReadHint(area))
1204 goto no_cached_page;
1205
1206 /*
1207 * The readahead code wants to be told about each and every page
1208 * so it can build and shrink its windows appropriately
1209 *
1210 * For sequential accesses, we use the generic readahead logic.
1211 */
1212 if (VM_SequentialReadHint(area))
1213 page_cache_readahead(mapping, ra, file, pgoff, 1);
1214
1215 /*
1216 * Do we have something in the page cache already?
1217 */
1218 retry_find:
1219 page = find_get_page(mapping, pgoff);
1220 if (!page) {
1221 unsigned long ra_pages;
1222
1223 if (VM_SequentialReadHint(area)) {
1224 handle_ra_miss(mapping, ra, pgoff);
1225 goto no_cached_page;
1226 }
1227 ra->mmap_miss++;
1228
1229 /*
1230 * Do we miss much more than hit in this file? If so,
1231 * stop bothering with read-ahead. It will only hurt.
1232 */
1233 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1234 goto no_cached_page;
1235
1236 /*
1237 * To keep the pgmajfault counter straight, we need to
1238 * check did_readaround, as this is an inner loop.
1239 */
1240 if (!did_readaround) {
1241 majmin = VM_FAULT_MAJOR;
1242 inc_page_state(pgmajfault);
1243 }
1244 did_readaround = 1;
1245 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1246 if (ra_pages) {
1247 pgoff_t start = 0;
1248
1249 if (pgoff > ra_pages / 2)
1250 start = pgoff - ra_pages / 2;
1251 do_page_cache_readahead(mapping, file, start, ra_pages);
1252 }
1253 page = find_get_page(mapping, pgoff);
1254 if (!page)
1255 goto no_cached_page;
1256 }
1257
1258 if (!did_readaround)
1259 ra->mmap_hit++;
1260
1261 /*
1262 * Ok, found a page in the page cache, now we need to check
1263 * that it's up-to-date.
1264 */
1265 if (!PageUptodate(page))
1266 goto page_not_uptodate;
1267
1268 success:
1269 /*
1270 * Found the page and have a reference on it.
1271 */
1272 mark_page_accessed(page);
1273 if (type)
1274 *type = majmin;
1275 return page;
1276
1277 outside_data_content:
1278 /*
1279 * An external ptracer can access pages that normally aren't
1280 * accessible..
1281 */
1282 if (area->vm_mm == current->mm)
1283 return NULL;
1284 /* Fall through to the non-read-ahead case */
1285 no_cached_page:
1286 /*
1287 * We're only likely to ever get here if MADV_RANDOM is in
1288 * effect.
1289 */
1290 error = page_cache_read(file, pgoff);
1291 grab_swap_token();
1292
1293 /*
1294 * The page we want has now been added to the page cache.
1295 * In the unlikely event that someone removed it in the
1296 * meantime, we'll just come back here and read it again.
1297 */
1298 if (error >= 0)
1299 goto retry_find;
1300
1301 /*
1302 * An error return from page_cache_read can result if the
1303 * system is low on memory, or a problem occurs while trying
1304 * to schedule I/O.
1305 */
1306 if (error == -ENOMEM)
1307 return NOPAGE_OOM;
1308 return NULL;
1309
1310 page_not_uptodate:
1311 if (!did_readaround) {
1312 majmin = VM_FAULT_MAJOR;
1313 inc_page_state(pgmajfault);
1314 }
1315 lock_page(page);
1316
1317 /* Did it get unhashed while we waited for it? */
1318 if (!page->mapping) {
1319 unlock_page(page);
1320 page_cache_release(page);
1321 goto retry_all;
1322 }
1323
1324 /* Did somebody else get it up-to-date? */
1325 if (PageUptodate(page)) {
1326 unlock_page(page);
1327 goto success;
1328 }
1329
1330 if (!mapping->a_ops->readpage(file, page)) {
1331 wait_on_page_locked(page);
1332 if (PageUptodate(page))
1333 goto success;
1334 }
1335
1336 /*
1337 * Umm, take care of errors if the page isn't up-to-date.
1338 * Try to re-read it _once_. We do this synchronously,
1339 * because there really aren't any performance issues here
1340 * and we need to check for errors.
1341 */
1342 lock_page(page);
1343
1344 /* Somebody truncated the page on us? */
1345 if (!page->mapping) {
1346 unlock_page(page);
1347 page_cache_release(page);
1348 goto retry_all;
1349 }
1350
1351 /* Somebody else successfully read it in? */
1352 if (PageUptodate(page)) {
1353 unlock_page(page);
1354 goto success;
1355 }
1356 ClearPageError(page);
1357 if (!mapping->a_ops->readpage(file, page)) {
1358 wait_on_page_locked(page);
1359 if (PageUptodate(page))
1360 goto success;
1361 }
1362
1363 /*
1364 * Things didn't work out. Return zero to tell the
1365 * mm layer so, possibly freeing the page cache page first.
1366 */
1367 page_cache_release(page);
1368 return NULL;
1369 }
1370
1371 EXPORT_SYMBOL(filemap_nopage);
1372
1373 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1374 int nonblock)
1375 {
1376 struct address_space *mapping = file->f_mapping;
1377 struct page *page;
1378 int error;
1379
1380 /*
1381 * Do we have something in the page cache already?
1382 */
1383 retry_find:
1384 page = find_get_page(mapping, pgoff);
1385 if (!page) {
1386 if (nonblock)
1387 return NULL;
1388 goto no_cached_page;
1389 }
1390
1391 /*
1392 * Ok, found a page in the page cache, now we need to check
1393 * that it's up-to-date.
1394 */
1395 if (!PageUptodate(page)) {
1396 if (nonblock) {
1397 page_cache_release(page);
1398 return NULL;
1399 }
1400 goto page_not_uptodate;
1401 }
1402
1403 success:
1404 /*
1405 * Found the page and have a reference on it.
1406 */
1407 mark_page_accessed(page);
1408 return page;
1409
1410 no_cached_page:
1411 error = page_cache_read(file, pgoff);
1412
1413 /*
1414 * The page we want has now been added to the page cache.
1415 * In the unlikely event that someone removed it in the
1416 * meantime, we'll just come back here and read it again.
1417 */
1418 if (error >= 0)
1419 goto retry_find;
1420
1421 /*
1422 * An error return from page_cache_read can result if the
1423 * system is low on memory, or a problem occurs while trying
1424 * to schedule I/O.
1425 */
1426 return NULL;
1427
1428 page_not_uptodate:
1429 lock_page(page);
1430
1431 /* Did it get unhashed while we waited for it? */
1432 if (!page->mapping) {
1433 unlock_page(page);
1434 goto err;
1435 }
1436
1437 /* Did somebody else get it up-to-date? */
1438 if (PageUptodate(page)) {
1439 unlock_page(page);
1440 goto success;
1441 }
1442
1443 if (!mapping->a_ops->readpage(file, page)) {
1444 wait_on_page_locked(page);
1445 if (PageUptodate(page))
1446 goto success;
1447 }
1448
1449 /*
1450 * Umm, take care of errors if the page isn't up-to-date.
1451 * Try to re-read it _once_. We do this synchronously,
1452 * because there really aren't any performance issues here
1453 * and we need to check for errors.
1454 */
1455 lock_page(page);
1456
1457 /* Somebody truncated the page on us? */
1458 if (!page->mapping) {
1459 unlock_page(page);
1460 goto err;
1461 }
1462 /* Somebody else successfully read it in? */
1463 if (PageUptodate(page)) {
1464 unlock_page(page);
1465 goto success;
1466 }
1467
1468 ClearPageError(page);
1469 if (!mapping->a_ops->readpage(file, page)) {
1470 wait_on_page_locked(page);
1471 if (PageUptodate(page))
1472 goto success;
1473 }
1474
1475 /*
1476 * Things didn't work out. Return zero to tell the
1477 * mm layer so, possibly freeing the page cache page first.
1478 */
1479 err:
1480 page_cache_release(page);
1481
1482 return NULL;
1483 }
1484
1485 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1486 unsigned long len, pgprot_t prot, unsigned long pgoff,
1487 int nonblock)
1488 {
1489 struct file *file = vma->vm_file;
1490 struct address_space *mapping = file->f_mapping;
1491 struct inode *inode = mapping->host;
1492 unsigned long size;
1493 struct mm_struct *mm = vma->vm_mm;
1494 struct page *page;
1495 int err;
1496
1497 if (!nonblock)
1498 force_page_cache_readahead(mapping, vma->vm_file,
1499 pgoff, len >> PAGE_CACHE_SHIFT);
1500
1501 repeat:
1502 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1503 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1504 return -EINVAL;
1505
1506 page = filemap_getpage(file, pgoff, nonblock);
1507 if (!page && !nonblock)
1508 return -ENOMEM;
1509 if (page) {
1510 err = install_page(mm, vma, addr, page, prot);
1511 if (err) {
1512 page_cache_release(page);
1513 return err;
1514 }
1515 } else {
1516 err = install_file_pte(mm, vma, addr, pgoff, prot);
1517 if (err)
1518 return err;
1519 }
1520
1521 len -= PAGE_SIZE;
1522 addr += PAGE_SIZE;
1523 pgoff++;
1524 if (len)
1525 goto repeat;
1526
1527 return 0;
1528 }
1529
1530 struct vm_operations_struct generic_file_vm_ops = {
1531 .nopage = filemap_nopage,
1532 .populate = filemap_populate,
1533 };
1534
1535 /* This is used for a general mmap of a disk file */
1536
1537 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1538 {
1539 struct address_space *mapping = file->f_mapping;
1540
1541 if (!mapping->a_ops->readpage)
1542 return -ENOEXEC;
1543 file_accessed(file);
1544 vma->vm_ops = &generic_file_vm_ops;
1545 return 0;
1546 }
1547 EXPORT_SYMBOL(filemap_populate);
1548
1549 /*
1550 * This is for filesystems which do not implement ->writepage.
1551 */
1552 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1553 {
1554 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1555 return -EINVAL;
1556 return generic_file_mmap(file, vma);
1557 }
1558 #else
1559 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1560 {
1561 return -ENOSYS;
1562 }
1563 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1564 {
1565 return -ENOSYS;
1566 }
1567 #endif /* CONFIG_MMU */
1568
1569 EXPORT_SYMBOL(generic_file_mmap);
1570 EXPORT_SYMBOL(generic_file_readonly_mmap);
1571
1572 static inline struct page *__read_cache_page(struct address_space *mapping,
1573 unsigned long index,
1574 int (*filler)(void *,struct page*),
1575 void *data)
1576 {
1577 struct page *page, *cached_page = NULL;
1578 int err;
1579 repeat:
1580 page = find_get_page(mapping, index);
1581 if (!page) {
1582 if (!cached_page) {
1583 cached_page = page_cache_alloc_cold(mapping);
1584 if (!cached_page)
1585 return ERR_PTR(-ENOMEM);
1586 }
1587 err = add_to_page_cache_lru(cached_page, mapping,
1588 index, GFP_KERNEL);
1589 if (err == -EEXIST)
1590 goto repeat;
1591 if (err < 0) {
1592 /* Presumably ENOMEM for radix tree node */
1593 page_cache_release(cached_page);
1594 return ERR_PTR(err);
1595 }
1596 page = cached_page;
1597 cached_page = NULL;
1598 err = filler(data, page);
1599 if (err < 0) {
1600 page_cache_release(page);
1601 page = ERR_PTR(err);
1602 }
1603 }
1604 if (cached_page)
1605 page_cache_release(cached_page);
1606 return page;
1607 }
1608
1609 /*
1610 * Read into the page cache. If a page already exists,
1611 * and PageUptodate() is not set, try to fill the page.
1612 */
1613 struct page *read_cache_page(struct address_space *mapping,
1614 unsigned long index,
1615 int (*filler)(void *,struct page*),
1616 void *data)
1617 {
1618 struct page *page;
1619 int err;
1620
1621 retry:
1622 page = __read_cache_page(mapping, index, filler, data);
1623 if (IS_ERR(page))
1624 goto out;
1625 mark_page_accessed(page);
1626 if (PageUptodate(page))
1627 goto out;
1628
1629 lock_page(page);
1630 if (!page->mapping) {
1631 unlock_page(page);
1632 page_cache_release(page);
1633 goto retry;
1634 }
1635 if (PageUptodate(page)) {
1636 unlock_page(page);
1637 goto out;
1638 }
1639 err = filler(data, page);
1640 if (err < 0) {
1641 page_cache_release(page);
1642 page = ERR_PTR(err);
1643 }
1644 out:
1645 return page;
1646 }
1647
1648 EXPORT_SYMBOL(read_cache_page);
1649
1650 /*
1651 * If the page was newly created, increment its refcount and add it to the
1652 * caller's lru-buffering pagevec. This function is specifically for
1653 * generic_file_write().
1654 */
1655 static inline struct page *
1656 __grab_cache_page(struct address_space *mapping, unsigned long index,
1657 struct page **cached_page, struct pagevec *lru_pvec)
1658 {
1659 int err;
1660 struct page *page;
1661 repeat:
1662 page = find_lock_page(mapping, index);
1663 if (!page) {
1664 if (!*cached_page) {
1665 *cached_page = page_cache_alloc(mapping);
1666 if (!*cached_page)
1667 return NULL;
1668 }
1669 err = add_to_page_cache(*cached_page, mapping,
1670 index, GFP_KERNEL);
1671 if (err == -EEXIST)
1672 goto repeat;
1673 if (err == 0) {
1674 page = *cached_page;
1675 page_cache_get(page);
1676 if (!pagevec_add(lru_pvec, page))
1677 __pagevec_lru_add(lru_pvec);
1678 *cached_page = NULL;
1679 }
1680 }
1681 return page;
1682 }
1683
1684 /*
1685 * The logic we want is
1686 *
1687 * if suid or (sgid and xgrp)
1688 * remove privs
1689 */
1690 int remove_suid(struct dentry *dentry)
1691 {
1692 mode_t mode = dentry->d_inode->i_mode;
1693 int kill = 0;
1694 int result = 0;
1695
1696 /* suid always must be killed */
1697 if (unlikely(mode & S_ISUID))
1698 kill = ATTR_KILL_SUID;
1699
1700 /*
1701 * sgid without any exec bits is just a mandatory locking mark; leave
1702 * it alone. If some exec bits are set, it's a real sgid; kill it.
1703 */
1704 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1705 kill |= ATTR_KILL_SGID;
1706
1707 if (unlikely(kill && !capable(CAP_FSETID))) {
1708 struct iattr newattrs;
1709
1710 newattrs.ia_valid = ATTR_FORCE | kill;
1711 result = notify_change(dentry, &newattrs);
1712 }
1713 return result;
1714 }
1715 EXPORT_SYMBOL(remove_suid);
1716
1717 /*
1718 * Copy as much as we can into the page and return the number of bytes which
1719 * were sucessfully copied. If a fault is encountered then clear the page
1720 * out to (offset+bytes) and return the number of bytes which were copied.
1721 */
1722 static inline size_t
1723 filemap_copy_from_user(struct page *page, unsigned long offset,
1724 const char __user *buf, unsigned bytes)
1725 {
1726 char *kaddr;
1727 int left;
1728
1729 kaddr = kmap_atomic(page, KM_USER0);
1730 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1731 kunmap_atomic(kaddr, KM_USER0);
1732
1733 if (left != 0) {
1734 /* Do it the slow way */
1735 kaddr = kmap(page);
1736 left = __copy_from_user(kaddr + offset, buf, bytes);
1737 kunmap(page);
1738 }
1739 return bytes - left;
1740 }
1741
1742 static size_t
1743 __filemap_copy_from_user_iovec(char *vaddr,
1744 const struct iovec *iov, size_t base, size_t bytes)
1745 {
1746 size_t copied = 0, left = 0;
1747
1748 while (bytes) {
1749 char __user *buf = iov->iov_base + base;
1750 int copy = min(bytes, iov->iov_len - base);
1751
1752 base = 0;
1753 left = __copy_from_user_inatomic(vaddr, buf, copy);
1754 copied += copy;
1755 bytes -= copy;
1756 vaddr += copy;
1757 iov++;
1758
1759 if (unlikely(left)) {
1760 /* zero the rest of the target like __copy_from_user */
1761 if (bytes)
1762 memset(vaddr, 0, bytes);
1763 break;
1764 }
1765 }
1766 return copied - left;
1767 }
1768
1769 /*
1770 * This has the same sideeffects and return value as filemap_copy_from_user().
1771 * The difference is that on a fault we need to memset the remainder of the
1772 * page (out to offset+bytes), to emulate filemap_copy_from_user()'s
1773 * single-segment behaviour.
1774 */
1775 static inline size_t
1776 filemap_copy_from_user_iovec(struct page *page, unsigned long offset,
1777 const struct iovec *iov, size_t base, size_t bytes)
1778 {
1779 char *kaddr;
1780 size_t copied;
1781
1782 kaddr = kmap_atomic(page, KM_USER0);
1783 copied = __filemap_copy_from_user_iovec(kaddr + offset, iov,
1784 base, bytes);
1785 kunmap_atomic(kaddr, KM_USER0);
1786 if (copied != bytes) {
1787 kaddr = kmap(page);
1788 copied = __filemap_copy_from_user_iovec(kaddr + offset, iov,
1789 base, bytes);
1790 kunmap(page);
1791 }
1792 return copied;
1793 }
1794
1795 static inline void
1796 filemap_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes)
1797 {
1798 const struct iovec *iov = *iovp;
1799 size_t base = *basep;
1800
1801 while (bytes) {
1802 int copy = min(bytes, iov->iov_len - base);
1803
1804 bytes -= copy;
1805 base += copy;
1806 if (iov->iov_len == base) {
1807 iov++;
1808 base = 0;
1809 }
1810 }
1811 *iovp = iov;
1812 *basep = base;
1813 }
1814
1815 /*
1816 * Performs necessary checks before doing a write
1817 *
1818 * Can adjust writing position aor amount of bytes to write.
1819 * Returns appropriate error code that caller should return or
1820 * zero in case that write should be allowed.
1821 */
1822 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1823 {
1824 struct inode *inode = file->f_mapping->host;
1825 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1826
1827 if (unlikely(*pos < 0))
1828 return -EINVAL;
1829
1830 if (unlikely(file->f_error)) {
1831 int err = file->f_error;
1832 file->f_error = 0;
1833 return err;
1834 }
1835
1836 if (!isblk) {
1837 /* FIXME: this is for backwards compatibility with 2.4 */
1838 if (file->f_flags & O_APPEND)
1839 *pos = i_size_read(inode);
1840
1841 if (limit != RLIM_INFINITY) {
1842 if (*pos >= limit) {
1843 send_sig(SIGXFSZ, current, 0);
1844 return -EFBIG;
1845 }
1846 if (*count > limit - (typeof(limit))*pos) {
1847 *count = limit - (typeof(limit))*pos;
1848 }
1849 }
1850 }
1851
1852 /*
1853 * LFS rule
1854 */
1855 if (unlikely(*pos + *count > MAX_NON_LFS &&
1856 !(file->f_flags & O_LARGEFILE))) {
1857 if (*pos >= MAX_NON_LFS) {
1858 send_sig(SIGXFSZ, current, 0);
1859 return -EFBIG;
1860 }
1861 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1862 *count = MAX_NON_LFS - (unsigned long)*pos;
1863 }
1864 }
1865
1866 /*
1867 * Are we about to exceed the fs block limit ?
1868 *
1869 * If we have written data it becomes a short write. If we have
1870 * exceeded without writing data we send a signal and return EFBIG.
1871 * Linus frestrict idea will clean these up nicely..
1872 */
1873 if (likely(!isblk)) {
1874 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1875 if (*count || *pos > inode->i_sb->s_maxbytes) {
1876 send_sig(SIGXFSZ, current, 0);
1877 return -EFBIG;
1878 }
1879 /* zero-length writes at ->s_maxbytes are OK */
1880 }
1881
1882 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1883 *count = inode->i_sb->s_maxbytes - *pos;
1884 } else {
1885 loff_t isize;
1886 if (bdev_read_only(I_BDEV(inode)))
1887 return -EPERM;
1888 isize = i_size_read(inode);
1889 if (*pos >= isize) {
1890 if (*count || *pos > isize)
1891 return -ENOSPC;
1892 }
1893
1894 if (*pos + *count > isize)
1895 *count = isize - *pos;
1896 }
1897 return 0;
1898 }
1899 EXPORT_SYMBOL(generic_write_checks);
1900
1901 ssize_t
1902 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1903 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1904 size_t count, size_t ocount)
1905 {
1906 struct file *file = iocb->ki_filp;
1907 struct address_space *mapping = file->f_mapping;
1908 struct inode *inode = mapping->host;
1909 ssize_t written;
1910
1911 if (count != ocount)
1912 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1913
1914 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1915 if (written > 0) {
1916 loff_t end = pos + written;
1917 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1918 i_size_write(inode, end);
1919 mark_inode_dirty(inode);
1920 }
1921 *ppos = end;
1922 }
1923
1924 /*
1925 * Sync the fs metadata but not the minor inode changes and
1926 * of course not the data as we did direct DMA for the IO.
1927 * i_sem is held, which protects generic_osync_inode() from
1928 * livelocking.
1929 */
1930 if (written >= 0 && file->f_flags & O_SYNC)
1931 generic_osync_inode(inode, mapping, OSYNC_METADATA);
1932 if (written == count && !is_sync_kiocb(iocb))
1933 written = -EIOCBQUEUED;
1934 return written;
1935 }
1936 EXPORT_SYMBOL(generic_file_direct_write);
1937
1938 ssize_t
1939 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1940 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1941 size_t count, ssize_t written)
1942 {
1943 struct file *file = iocb->ki_filp;
1944 struct address_space * mapping = file->f_mapping;
1945 struct address_space_operations *a_ops = mapping->a_ops;
1946 struct inode *inode = mapping->host;
1947 long status = 0;
1948 struct page *page;
1949 struct page *cached_page = NULL;
1950 size_t bytes;
1951 struct pagevec lru_pvec;
1952 const struct iovec *cur_iov = iov; /* current iovec */
1953 size_t iov_base = 0; /* offset in the current iovec */
1954 char __user *buf;
1955
1956 pagevec_init(&lru_pvec, 0);
1957
1958 /*
1959 * handle partial DIO write. Adjust cur_iov if needed.
1960 */
1961 if (likely(nr_segs == 1))
1962 buf = iov->iov_base + written;
1963 else {
1964 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1965 buf = cur_iov->iov_base + iov_base;
1966 }
1967
1968 do {
1969 unsigned long index;
1970 unsigned long offset;
1971 unsigned long maxlen;
1972 size_t copied;
1973
1974 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1975 index = pos >> PAGE_CACHE_SHIFT;
1976 bytes = PAGE_CACHE_SIZE - offset;
1977 if (bytes > count)
1978 bytes = count;
1979
1980 /*
1981 * Bring in the user page that we will copy from _first_.
1982 * Otherwise there's a nasty deadlock on copying from the
1983 * same page as we're writing to, without it being marked
1984 * up-to-date.
1985 */
1986 maxlen = cur_iov->iov_len - iov_base;
1987 if (maxlen > bytes)
1988 maxlen = bytes;
1989 fault_in_pages_readable(buf, maxlen);
1990
1991 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1992 if (!page) {
1993 status = -ENOMEM;
1994 break;
1995 }
1996
1997 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1998 if (unlikely(status)) {
1999 loff_t isize = i_size_read(inode);
2000 /*
2001 * prepare_write() may have instantiated a few blocks
2002 * outside i_size. Trim these off again.
2003 */
2004 unlock_page(page);
2005 page_cache_release(page);
2006 if (pos + bytes > isize)
2007 vmtruncate(inode, isize);
2008 break;
2009 }
2010 if (likely(nr_segs == 1))
2011 copied = filemap_copy_from_user(page, offset,
2012 buf, bytes);
2013 else
2014 copied = filemap_copy_from_user_iovec(page, offset,
2015 cur_iov, iov_base, bytes);
2016 flush_dcache_page(page);
2017 status = a_ops->commit_write(file, page, offset, offset+bytes);
2018 if (likely(copied > 0)) {
2019 if (!status)
2020 status = copied;
2021
2022 if (status >= 0) {
2023 written += status;
2024 count -= status;
2025 pos += status;
2026 buf += status;
2027 if (unlikely(nr_segs > 1)) {
2028 filemap_set_next_iovec(&cur_iov,
2029 &iov_base, status);
2030 buf = cur_iov->iov_base + iov_base;
2031 } else {
2032 iov_base += status;
2033 }
2034 }
2035 }
2036 if (unlikely(copied != bytes))
2037 if (status >= 0)
2038 status = -EFAULT;
2039 unlock_page(page);
2040 mark_page_accessed(page);
2041 page_cache_release(page);
2042 if (status < 0)
2043 break;
2044 balance_dirty_pages_ratelimited(mapping);
2045 cond_resched();
2046 } while (count);
2047 *ppos = pos;
2048
2049 if (cached_page)
2050 page_cache_release(cached_page);
2051
2052 /*
2053 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2054 */
2055 if (likely(status >= 0)) {
2056 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2057 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2058 status = generic_osync_inode(inode, mapping,
2059 OSYNC_METADATA|OSYNC_DATA);
2060 }
2061 }
2062
2063 /*
2064 * If we get here for O_DIRECT writes then we must have fallen through
2065 * to buffered writes (block instantiation inside i_size). So we sync
2066 * the file data here, to try to honour O_DIRECT expectations.
2067 */
2068 if (unlikely(file->f_flags & O_DIRECT) && written)
2069 status = filemap_write_and_wait(mapping);
2070
2071 pagevec_lru_add(&lru_pvec);
2072 return written ? written : status;
2073 }
2074 EXPORT_SYMBOL(generic_file_buffered_write);
2075
2076 ssize_t
2077 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2078 unsigned long nr_segs, loff_t *ppos)
2079 {
2080 struct file *file = iocb->ki_filp;
2081 struct address_space * mapping = file->f_mapping;
2082 size_t ocount; /* original count */
2083 size_t count; /* after file limit checks */
2084 struct inode *inode = mapping->host;
2085 unsigned long seg;
2086 loff_t pos;
2087 ssize_t written;
2088 ssize_t err;
2089
2090 ocount = 0;
2091 for (seg = 0; seg < nr_segs; seg++) {
2092 const struct iovec *iv = &iov[seg];
2093
2094 /*
2095 * If any segment has a negative length, or the cumulative
2096 * length ever wraps negative then return -EINVAL.
2097 */
2098 ocount += iv->iov_len;
2099 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2100 return -EINVAL;
2101 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2102 continue;
2103 if (seg == 0)
2104 return -EFAULT;
2105 nr_segs = seg;
2106 ocount -= iv->iov_len; /* This segment is no good */
2107 break;
2108 }
2109
2110 count = ocount;
2111 pos = *ppos;
2112
2113 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2114
2115 /* We can write back this queue in page reclaim */
2116 current->backing_dev_info = mapping->backing_dev_info;
2117 written = 0;
2118
2119 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2120 if (err)
2121 goto out;
2122
2123 if (count == 0)
2124 goto out;
2125
2126 err = remove_suid(file->f_dentry);
2127 if (err)
2128 goto out;
2129
2130 inode_update_time(inode, 1);
2131
2132 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2133 if (unlikely(file->f_flags & O_DIRECT)) {
2134 written = generic_file_direct_write(iocb, iov,
2135 &nr_segs, pos, ppos, count, ocount);
2136 if (written < 0 || written == count)
2137 goto out;
2138 /*
2139 * direct-io write to a hole: fall through to buffered I/O
2140 * for completing the rest of the request.
2141 */
2142 pos += written;
2143 count -= written;
2144 }
2145
2146 written = generic_file_buffered_write(iocb, iov, nr_segs,
2147 pos, ppos, count, written);
2148 out:
2149 current->backing_dev_info = NULL;
2150 return written ? written : err;
2151 }
2152 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2153
2154 ssize_t
2155 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2156 unsigned long nr_segs, loff_t *ppos)
2157 {
2158 struct file *file = iocb->ki_filp;
2159 struct address_space *mapping = file->f_mapping;
2160 struct inode *inode = mapping->host;
2161 ssize_t ret;
2162 loff_t pos = *ppos;
2163
2164 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2165
2166 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2167 int err;
2168
2169 err = sync_page_range_nolock(inode, mapping, pos, ret);
2170 if (err < 0)
2171 ret = err;
2172 }
2173 return ret;
2174 }
2175
2176 ssize_t
2177 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2178 unsigned long nr_segs, loff_t *ppos)
2179 {
2180 struct kiocb kiocb;
2181 ssize_t ret;
2182
2183 init_sync_kiocb(&kiocb, file);
2184 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2185 if (ret == -EIOCBQUEUED)
2186 ret = wait_on_sync_kiocb(&kiocb);
2187 return ret;
2188 }
2189
2190 ssize_t
2191 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2192 unsigned long nr_segs, loff_t *ppos)
2193 {
2194 struct kiocb kiocb;
2195 ssize_t ret;
2196
2197 init_sync_kiocb(&kiocb, file);
2198 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2199 if (-EIOCBQUEUED == ret)
2200 ret = wait_on_sync_kiocb(&kiocb);
2201 return ret;
2202 }
2203 EXPORT_SYMBOL(generic_file_write_nolock);
2204
2205 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2206 size_t count, loff_t pos)
2207 {
2208 struct file *file = iocb->ki_filp;
2209 struct address_space *mapping = file->f_mapping;
2210 struct inode *inode = mapping->host;
2211 ssize_t ret;
2212 struct iovec local_iov = { .iov_base = (void __user *)buf,
2213 .iov_len = count };
2214
2215 BUG_ON(iocb->ki_pos != pos);
2216
2217 down(&inode->i_sem);
2218 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2219 &iocb->ki_pos);
2220 up(&inode->i_sem);
2221
2222 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2223 ssize_t err;
2224
2225 err = sync_page_range(inode, mapping, pos, ret);
2226 if (err < 0)
2227 ret = err;
2228 }
2229 return ret;
2230 }
2231 EXPORT_SYMBOL(generic_file_aio_write);
2232
2233 ssize_t generic_file_write(struct file *file, const char __user *buf,
2234 size_t count, loff_t *ppos)
2235 {
2236 struct address_space *mapping = file->f_mapping;
2237 struct inode *inode = mapping->host;
2238 ssize_t ret;
2239 struct iovec local_iov = { .iov_base = (void __user *)buf,
2240 .iov_len = count };
2241
2242 down(&inode->i_sem);
2243 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2244 up(&inode->i_sem);
2245
2246 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2247 ssize_t err;
2248
2249 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2250 if (err < 0)
2251 ret = err;
2252 }
2253 return ret;
2254 }
2255 EXPORT_SYMBOL(generic_file_write);
2256
2257 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2258 unsigned long nr_segs, loff_t *ppos)
2259 {
2260 struct kiocb kiocb;
2261 ssize_t ret;
2262
2263 init_sync_kiocb(&kiocb, filp);
2264 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2265 if (-EIOCBQUEUED == ret)
2266 ret = wait_on_sync_kiocb(&kiocb);
2267 return ret;
2268 }
2269 EXPORT_SYMBOL(generic_file_readv);
2270
2271 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2272 unsigned long nr_segs, loff_t *ppos)
2273 {
2274 struct address_space *mapping = file->f_mapping;
2275 struct inode *inode = mapping->host;
2276 ssize_t ret;
2277
2278 down(&inode->i_sem);
2279 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2280 up(&inode->i_sem);
2281
2282 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2283 int err;
2284
2285 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2286 if (err < 0)
2287 ret = err;
2288 }
2289 return ret;
2290 }
2291 EXPORT_SYMBOL(generic_file_writev);
2292
2293 /*
2294 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something
2295 * went wrong during pagecache shootdown.
2296 */
2297 ssize_t
2298 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2299 loff_t offset, unsigned long nr_segs)
2300 {
2301 struct file *file = iocb->ki_filp;
2302 struct address_space *mapping = file->f_mapping;
2303 ssize_t retval;
2304 size_t write_len = 0;
2305
2306 /*
2307 * If it's a write, unmap all mmappings of the file up-front. This
2308 * will cause any pte dirty bits to be propagated into the pageframes
2309 * for the subsequent filemap_write_and_wait().
2310 */
2311 if (rw == WRITE) {
2312 write_len = iov_length(iov, nr_segs);
2313 if (mapping_mapped(mapping))
2314 unmap_mapping_range(mapping, offset, write_len, 0);
2315 }
2316
2317 retval = filemap_write_and_wait(mapping);
2318 if (retval == 0) {
2319 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2320 offset, nr_segs);
2321 if (rw == WRITE && mapping->nrpages) {
2322 pgoff_t end = (offset + write_len - 1)
2323 >> PAGE_CACHE_SHIFT;
2324 int err = invalidate_inode_pages2_range(mapping,
2325 offset >> PAGE_CACHE_SHIFT, end);
2326 if (err)
2327 retval = err;
2328 }
2329 }
2330 return retval;
2331 }
2332 EXPORT_SYMBOL_GPL(generic_file_direct_IO);