Magellan Linux

Annotation of /alx-src/tags/kernel26-2.6.12-alx-r9/mm/oom_kill.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 628 - (hide annotations) (download)
Wed Mar 4 10:48:58 2009 UTC (15 years, 3 months ago) by niro
Original Path: alx-src/trunk/kernel26-alx/linux/mm/oom_kill.c
File MIME type: text/plain
File size: 7547 byte(s)
import linux sources based on 2.6.12-alx-r9:
 -using linux-2.6.12.6
 -using 2.6.12-ck6 patch set
 -using fbsplash-0.9.2-r3
 -using vesafb-tng-0.9-rc7
 -using squashfs-2.2
 -added cddvd-cmdfilter-drop.patch as ck dropped it
 -added via-epia-dri (cle266) patch
 -added zd1211-svn-32 wlan driver (http://zd1211.ath.cx/download/)
 -added debian patches to zd1211 for wep256 etc

1 niro 628 /*
2     * linux/mm/oom_kill.c
3     *
4     * Copyright (C) 1998,2000 Rik van Riel
5     * Thanks go out to Claus Fischer for some serious inspiration and
6     * for goading me into coding this file...
7     *
8     * The routines in this file are used to kill a process when
9     * we're seriously out of memory. This gets called from kswapd()
10     * in linux/mm/vmscan.c when we really run out of memory.
11     *
12     * Since we won't call these routines often (on a well-configured
13     * machine) this file will double as a 'coding guide' and a signpost
14     * for newbie kernel hackers. It features several pointers to major
15     * kernel subsystems and hints as to where to find out what things do.
16     */
17    
18     #include <linux/mm.h>
19     #include <linux/sched.h>
20     #include <linux/swap.h>
21     #include <linux/timex.h>
22     #include <linux/jiffies.h>
23    
24     /* #define DEBUG */
25    
26     /**
27     * oom_badness - calculate a numeric value for how bad this task has been
28     * @p: task struct of which task we should calculate
29     * @p: current uptime in seconds
30     *
31     * The formula used is relatively simple and documented inline in the
32     * function. The main rationale is that we want to select a good task
33     * to kill when we run out of memory.
34     *
35     * Good in this context means that:
36     * 1) we lose the minimum amount of work done
37     * 2) we recover a large amount of memory
38     * 3) we don't kill anything innocent of eating tons of memory
39     * 4) we want to kill the minimum amount of processes (one)
40     * 5) we try to kill the process the user expects us to kill, this
41     * algorithm has been meticulously tuned to meet the principle
42     * of least surprise ... (be careful when you change it)
43     */
44    
45     unsigned long badness(struct task_struct *p, unsigned long uptime)
46     {
47     unsigned long points, cpu_time, run_time, s;
48     struct list_head *tsk;
49    
50     if (!p->mm)
51     return 0;
52    
53     /*
54     * The memory size of the process is the basis for the badness.
55     */
56     points = p->mm->total_vm;
57    
58     /*
59     * Processes which fork a lot of child processes are likely
60     * a good choice. We add the vmsize of the childs if they
61     * have an own mm. This prevents forking servers to flood the
62     * machine with an endless amount of childs
63     */
64     list_for_each(tsk, &p->children) {
65     struct task_struct *chld;
66     chld = list_entry(tsk, struct task_struct, sibling);
67     if (chld->mm != p->mm && chld->mm)
68     points += chld->mm->total_vm;
69     }
70    
71     /*
72     * CPU time is in tens of seconds and run time is in thousands
73     * of seconds. There is no particular reason for this other than
74     * that it turned out to work very well in practice.
75     */
76     cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
77     >> (SHIFT_HZ + 3);
78    
79     if (uptime >= p->start_time.tv_sec)
80     run_time = (uptime - p->start_time.tv_sec) >> 10;
81     else
82     run_time = 0;
83    
84     s = int_sqrt(cpu_time);
85     if (s)
86     points /= s;
87     s = int_sqrt(int_sqrt(run_time));
88     if (s)
89     points /= s;
90    
91     /*
92     * Niced processes are most likely less important, so double
93     * their badness points.
94     */
95     if (task_nice(p) > 0)
96     points *= 2;
97    
98     /*
99     * Superuser processes are usually more important, so we make it
100     * less likely that we kill those.
101     */
102     if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
103     p->uid == 0 || p->euid == 0)
104     points /= 4;
105    
106     /*
107     * We don't want to kill a process with direct hardware access.
108     * Not only could that mess up the hardware, but usually users
109     * tend to only have this flag set on applications they think
110     * of as important.
111     */
112     if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
113     points /= 4;
114    
115     /*
116     * Adjust the score by oomkilladj.
117     */
118     if (p->oomkilladj) {
119     if (p->oomkilladj > 0)
120     points <<= p->oomkilladj;
121     else
122     points >>= -(p->oomkilladj);
123     }
124    
125     #ifdef DEBUG
126     printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
127     p->pid, p->comm, points);
128     #endif
129     return points;
130     }
131    
132     /*
133     * Simple selection loop. We chose the process with the highest
134     * number of 'points'. We expect the caller will lock the tasklist.
135     *
136     * (not docbooked, we don't want this one cluttering up the manual)
137     */
138     static struct task_struct * select_bad_process(void)
139     {
140     unsigned long maxpoints = 0;
141     struct task_struct *g, *p;
142     struct task_struct *chosen = NULL;
143     struct timespec uptime;
144    
145     do_posix_clock_monotonic_gettime(&uptime);
146     do_each_thread(g, p)
147     /* skip the init task with pid == 1 */
148     if (p->pid > 1 && p->oomkilladj != OOM_DISABLE) {
149     unsigned long points;
150    
151     /*
152     * This is in the process of releasing memory so wait it
153     * to finish before killing some other task by mistake.
154     */
155     if ((unlikely(test_tsk_thread_flag(p, TIF_MEMDIE)) || (p->flags & PF_EXITING)) &&
156     !(p->flags & PF_DEAD))
157     return ERR_PTR(-1UL);
158     if (p->flags & PF_SWAPOFF)
159     return p;
160    
161     points = badness(p, uptime.tv_sec);
162     if (points > maxpoints || !chosen) {
163     chosen = p;
164     maxpoints = points;
165     }
166     }
167     while_each_thread(g, p);
168     return chosen;
169     }
170    
171     /**
172     * We must be careful though to never send SIGKILL a process with
173     * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
174     * we select a process with CAP_SYS_RAW_IO set).
175     */
176     static void __oom_kill_task(task_t *p)
177     {
178     if (p->pid == 1) {
179     WARN_ON(1);
180     printk(KERN_WARNING "tried to kill init!\n");
181     return;
182     }
183    
184     task_lock(p);
185     if (!p->mm || p->mm == &init_mm) {
186     WARN_ON(1);
187     printk(KERN_WARNING "tried to kill an mm-less task!\n");
188     task_unlock(p);
189     return;
190     }
191     task_unlock(p);
192     printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n", p->pid, p->comm);
193    
194     /*
195     * We give our sacrificial lamb high priority and access to
196     * all the memory it needs. That way it should be able to
197     * exit() and clear out its resources quickly...
198     */
199     p->time_slice = HZ;
200     set_tsk_thread_flag(p, TIF_MEMDIE);
201    
202     force_sig(SIGKILL, p);
203     }
204    
205     static struct mm_struct *oom_kill_task(task_t *p)
206     {
207     struct mm_struct *mm = get_task_mm(p);
208     task_t * g, * q;
209    
210     if (!mm)
211     return NULL;
212     if (mm == &init_mm) {
213     mmput(mm);
214     return NULL;
215     }
216    
217     __oom_kill_task(p);
218     /*
219     * kill all processes that share the ->mm (i.e. all threads),
220     * but are in a different thread group
221     */
222     do_each_thread(g, q)
223     if (q->mm == mm && q->tgid != p->tgid)
224     __oom_kill_task(q);
225     while_each_thread(g, q);
226    
227     return mm;
228     }
229    
230     static struct mm_struct *oom_kill_process(struct task_struct *p)
231     {
232     struct mm_struct *mm;
233     struct task_struct *c;
234     struct list_head *tsk;
235    
236     /* Try to kill a child first */
237     list_for_each(tsk, &p->children) {
238     c = list_entry(tsk, struct task_struct, sibling);
239     if (c->mm == p->mm)
240     continue;
241     mm = oom_kill_task(c);
242     if (mm)
243     return mm;
244     }
245     return oom_kill_task(p);
246     }
247    
248     /**
249     * oom_kill - kill the "best" process when we run out of memory
250     *
251     * If we run out of memory, we have the choice between either
252     * killing a random task (bad), letting the system crash (worse)
253     * OR try to be smart about which process to kill. Note that we
254     * don't have to be perfect here, we just have to be good.
255     */
256     void out_of_memory(unsigned int __nocast gfp_mask)
257     {
258     struct mm_struct *mm = NULL;
259     task_t * p;
260    
261     read_lock(&tasklist_lock);
262     retry:
263     p = select_bad_process();
264    
265     if (PTR_ERR(p) == -1UL)
266     goto out;
267    
268     /* Found nothing?!?! Either we hang forever, or we panic. */
269     if (!p) {
270     read_unlock(&tasklist_lock);
271     show_free_areas();
272     panic("Out of memory and no killable processes...\n");
273     }
274    
275     printk("oom-killer: gfp_mask=0x%x\n", gfp_mask);
276     show_free_areas();
277     mm = oom_kill_process(p);
278     if (!mm)
279     goto retry;
280    
281     out:
282     read_unlock(&tasklist_lock);
283     if (mm)
284     mmput(mm);
285    
286     /*
287     * Give "p" a good chance of killing itself before we
288     * retry to allocate memory.
289     */
290     __set_current_state(TASK_INTERRUPTIBLE);
291     schedule_timeout(1);
292     }