Magellan Linux

Contents of /alx-src/tags/kernel26-2.6.12-alx-r9/mm/vmscan.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 630 - (show annotations) (download)
Wed Mar 4 11:03:09 2009 UTC (15 years, 3 months ago) by niro
File MIME type: text/plain
File size: 36333 byte(s)
Tag kernel26-2.6.12-alx-r9
1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h> /* for try_to_release_page(),
26 buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44 /* failed to write page out, page is locked */
45 PAGE_KEEP,
46 /* move page to the active list, page is locked */
47 PAGE_ACTIVATE,
48 /* page has been sent to the disk successfully, page is unlocked */
49 PAGE_SUCCESS,
50 /* page is clean and locked */
51 PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55 /* Ask refill_inactive_zone, or shrink_cache to scan this many pages */
56 unsigned long nr_to_scan;
57
58 /* Incremented by the number of inactive pages that were scanned */
59 unsigned long nr_scanned;
60
61 /* Incremented by the number of pages reclaimed */
62 unsigned long nr_reclaimed;
63
64 unsigned long nr_mapped; /* From page_state */
65
66 /* How many pages shrink_cache() should reclaim */
67 int nr_to_reclaim;
68
69 /* Ask shrink_caches, or shrink_zone to scan at this priority */
70 unsigned int priority;
71
72 /* This context's GFP mask */
73 unsigned int gfp_mask;
74
75 int may_writepage;
76
77 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
78 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
79 * In this context, it doesn't matter that we scan the
80 * whole list at once. */
81 int swap_cluster_max;
82 };
83
84 /*
85 * The list of shrinker callbacks used by to apply pressure to
86 * ageable caches.
87 */
88 struct shrinker {
89 shrinker_t shrinker;
90 struct list_head list;
91 int seeks; /* seeks to recreate an obj */
92 long nr; /* objs pending delete */
93 };
94
95 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96
97 #ifdef ARCH_HAS_PREFETCH
98 #define prefetch_prev_lru_page(_page, _base, _field) \
99 do { \
100 if ((_page)->lru.prev != _base) { \
101 struct page *prev; \
102 \
103 prev = lru_to_page(&(_page->lru)); \
104 prefetch(&prev->_field); \
105 } \
106 } while (0)
107 #else
108 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
109 #endif
110
111 #ifdef ARCH_HAS_PREFETCHW
112 #define prefetchw_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetchw(&prev->_field); \
119 } \
120 } while (0)
121 #else
122 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
123 #endif
124
125 int vm_mapped = 66;
126 int vm_hardmaplimit = 1;
127 static long total_memory;
128
129 static LIST_HEAD(shrinker_list);
130 static DECLARE_RWSEM(shrinker_rwsem);
131
132 /*
133 * Add a shrinker callback to be called from the vm
134 */
135 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
136 {
137 struct shrinker *shrinker;
138
139 shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
140 if (shrinker) {
141 shrinker->shrinker = theshrinker;
142 shrinker->seeks = seeks;
143 shrinker->nr = 0;
144 down_write(&shrinker_rwsem);
145 list_add_tail(&shrinker->list, &shrinker_list);
146 up_write(&shrinker_rwsem);
147 }
148 return shrinker;
149 }
150 EXPORT_SYMBOL(set_shrinker);
151
152 /*
153 * Remove one
154 */
155 void remove_shrinker(struct shrinker *shrinker)
156 {
157 down_write(&shrinker_rwsem);
158 list_del(&shrinker->list);
159 up_write(&shrinker_rwsem);
160 kfree(shrinker);
161 }
162 EXPORT_SYMBOL(remove_shrinker);
163
164 #define SHRINK_BATCH 128
165 /*
166 * Call the shrink functions to age shrinkable caches
167 *
168 * Here we assume it costs one seek to replace a lru page and that it also
169 * takes a seek to recreate a cache object. With this in mind we age equal
170 * percentages of the lru and ageable caches. This should balance the seeks
171 * generated by these structures.
172 *
173 * If the vm encounted mapped pages on the LRU it increase the pressure on
174 * slab to avoid swapping.
175 *
176 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
177 *
178 * `lru_pages' represents the number of on-LRU pages in all the zones which
179 * are eligible for the caller's allocation attempt. It is used for balancing
180 * slab reclaim versus page reclaim.
181 */
182 static int shrink_slab(unsigned long scanned, unsigned int gfp_mask,
183 unsigned long lru_pages)
184 {
185 struct shrinker *shrinker;
186
187 if (scanned == 0)
188 scanned = SWAP_CLUSTER_MAX;
189
190 if (!down_read_trylock(&shrinker_rwsem))
191 return 0;
192
193 list_for_each_entry(shrinker, &shrinker_list, list) {
194 unsigned long long delta;
195 unsigned long total_scan;
196
197 delta = (4 * scanned) / shrinker->seeks;
198 delta *= (*shrinker->shrinker)(0, gfp_mask);
199 do_div(delta, lru_pages + 1);
200 shrinker->nr += delta;
201 if (shrinker->nr < 0)
202 shrinker->nr = LONG_MAX; /* It wrapped! */
203
204 total_scan = shrinker->nr;
205 shrinker->nr = 0;
206
207 while (total_scan >= SHRINK_BATCH) {
208 long this_scan = SHRINK_BATCH;
209 int shrink_ret;
210
211 shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
212 if (shrink_ret == -1)
213 break;
214 mod_page_state(slabs_scanned, this_scan);
215 total_scan -= this_scan;
216
217 cond_resched();
218 }
219
220 shrinker->nr += total_scan;
221 }
222 up_read(&shrinker_rwsem);
223 return 0;
224 }
225
226 /* Called without lock on whether page is mapped, so answer is unstable */
227 static inline int page_mapping_inuse(struct page *page)
228 {
229 struct address_space *mapping;
230
231 /* Page is in somebody's page tables. */
232 if (page_mapped(page))
233 return 1;
234
235 /* Be more reluctant to reclaim swapcache than pagecache */
236 if (PageSwapCache(page))
237 return 1;
238
239 mapping = page_mapping(page);
240 if (!mapping)
241 return 0;
242
243 /* File is mmap'd by somebody? */
244 return mapping_mapped(mapping);
245 }
246
247 static inline int is_page_cache_freeable(struct page *page)
248 {
249 return page_count(page) - !!PagePrivate(page) == 2;
250 }
251
252 static int may_write_to_queue(struct backing_dev_info *bdi)
253 {
254 if (current_is_kswapd())
255 return 1;
256 if (current_is_pdflush()) /* This is unlikely, but why not... */
257 return 1;
258 if (!bdi_write_congested(bdi))
259 return 1;
260 if (bdi == current->backing_dev_info)
261 return 1;
262 return 0;
263 }
264
265 /*
266 * We detected a synchronous write error writing a page out. Probably
267 * -ENOSPC. We need to propagate that into the address_space for a subsequent
268 * fsync(), msync() or close().
269 *
270 * The tricky part is that after writepage we cannot touch the mapping: nothing
271 * prevents it from being freed up. But we have a ref on the page and once
272 * that page is locked, the mapping is pinned.
273 *
274 * We're allowed to run sleeping lock_page() here because we know the caller has
275 * __GFP_FS.
276 */
277 static void handle_write_error(struct address_space *mapping,
278 struct page *page, int error)
279 {
280 lock_page(page);
281 if (page_mapping(page) == mapping) {
282 if (error == -ENOSPC)
283 set_bit(AS_ENOSPC, &mapping->flags);
284 else
285 set_bit(AS_EIO, &mapping->flags);
286 }
287 unlock_page(page);
288 }
289
290 /*
291 * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
292 */
293 static pageout_t pageout(struct page *page, struct address_space *mapping)
294 {
295 /*
296 * If the page is dirty, only perform writeback if that write
297 * will be non-blocking. To prevent this allocation from being
298 * stalled by pagecache activity. But note that there may be
299 * stalls if we need to run get_block(). We could test
300 * PagePrivate for that.
301 *
302 * If this process is currently in generic_file_write() against
303 * this page's queue, we can perform writeback even if that
304 * will block.
305 *
306 * If the page is swapcache, write it back even if that would
307 * block, for some throttling. This happens by accident, because
308 * swap_backing_dev_info is bust: it doesn't reflect the
309 * congestion state of the swapdevs. Easy to fix, if needed.
310 * See swapfile.c:page_queue_congested().
311 */
312 if (!is_page_cache_freeable(page))
313 return PAGE_KEEP;
314 if (!mapping) {
315 /*
316 * Some data journaling orphaned pages can have
317 * page->mapping == NULL while being dirty with clean buffers.
318 */
319 if (PagePrivate(page)) {
320 if (try_to_free_buffers(page)) {
321 ClearPageDirty(page);
322 printk("%s: orphaned page\n", __FUNCTION__);
323 return PAGE_CLEAN;
324 }
325 }
326 return PAGE_KEEP;
327 }
328 if (mapping->a_ops->writepage == NULL)
329 return PAGE_ACTIVATE;
330 if (!may_write_to_queue(mapping->backing_dev_info))
331 return PAGE_KEEP;
332
333 if (clear_page_dirty_for_io(page)) {
334 int res;
335 struct writeback_control wbc = {
336 .sync_mode = WB_SYNC_NONE,
337 .nr_to_write = SWAP_CLUSTER_MAX,
338 .nonblocking = 1,
339 .for_reclaim = 1,
340 };
341
342 SetPageReclaim(page);
343 res = mapping->a_ops->writepage(page, &wbc);
344 if (res < 0)
345 handle_write_error(mapping, page, res);
346 if (res == WRITEPAGE_ACTIVATE) {
347 ClearPageReclaim(page);
348 return PAGE_ACTIVATE;
349 }
350 if (!PageWriteback(page)) {
351 /* synchronous write or broken a_ops? */
352 ClearPageReclaim(page);
353 }
354
355 return PAGE_SUCCESS;
356 }
357
358 return PAGE_CLEAN;
359 }
360
361 /*
362 * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
363 */
364 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
365 {
366 LIST_HEAD(ret_pages);
367 struct pagevec freed_pvec;
368 int pgactivate = 0;
369 int reclaimed = 0;
370
371 cond_resched();
372
373 pagevec_init(&freed_pvec, 1);
374 while (!list_empty(page_list)) {
375 struct address_space *mapping;
376 struct page *page;
377 int may_enter_fs;
378 int referenced;
379
380 cond_resched();
381
382 page = lru_to_page(page_list);
383 list_del(&page->lru);
384
385 if (TestSetPageLocked(page))
386 goto keep;
387
388 BUG_ON(PageActive(page));
389
390 sc->nr_scanned++;
391 /* Double the slab pressure for mapped and swapcache pages */
392 if (page_mapped(page) || PageSwapCache(page))
393 sc->nr_scanned++;
394
395 if (PageWriteback(page))
396 goto keep_locked;
397
398 referenced = page_referenced(page, 1, sc->priority <= 0);
399 /* In active use or really unfreeable? Activate it. */
400 if (referenced && page_mapping_inuse(page))
401 goto activate_locked;
402
403 #ifdef CONFIG_SWAP
404 /*
405 * Anonymous process memory has backing store?
406 * Try to allocate it some swap space here.
407 */
408 if (PageAnon(page) && !PageSwapCache(page)) {
409 if (!add_to_swap(page))
410 goto activate_locked;
411 }
412 #endif /* CONFIG_SWAP */
413
414 mapping = page_mapping(page);
415 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
416 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
417
418 /*
419 * The page is mapped into the page tables of one or more
420 * processes. Try to unmap it here.
421 */
422 if (page_mapped(page) && mapping) {
423 switch (try_to_unmap(page)) {
424 case SWAP_FAIL:
425 goto activate_locked;
426 case SWAP_AGAIN:
427 goto keep_locked;
428 case SWAP_SUCCESS:
429 ; /* try to free the page below */
430 }
431 }
432
433 if (PageDirty(page)) {
434 if (referenced)
435 goto keep_locked;
436 if (!may_enter_fs)
437 goto keep_locked;
438 if (laptop_mode && !sc->may_writepage)
439 goto keep_locked;
440
441 /* Page is dirty, try to write it out here */
442 switch(pageout(page, mapping)) {
443 case PAGE_KEEP:
444 goto keep_locked;
445 case PAGE_ACTIVATE:
446 goto activate_locked;
447 case PAGE_SUCCESS:
448 if (PageWriteback(page) || PageDirty(page))
449 goto keep;
450 /*
451 * A synchronous write - probably a ramdisk. Go
452 * ahead and try to reclaim the page.
453 */
454 if (TestSetPageLocked(page))
455 goto keep;
456 if (PageDirty(page) || PageWriteback(page))
457 goto keep_locked;
458 mapping = page_mapping(page);
459 case PAGE_CLEAN:
460 ; /* try to free the page below */
461 }
462 }
463
464 /*
465 * If the page has buffers, try to free the buffer mappings
466 * associated with this page. If we succeed we try to free
467 * the page as well.
468 *
469 * We do this even if the page is PageDirty().
470 * try_to_release_page() does not perform I/O, but it is
471 * possible for a page to have PageDirty set, but it is actually
472 * clean (all its buffers are clean). This happens if the
473 * buffers were written out directly, with submit_bh(). ext3
474 * will do this, as well as the blockdev mapping.
475 * try_to_release_page() will discover that cleanness and will
476 * drop the buffers and mark the page clean - it can be freed.
477 *
478 * Rarely, pages can have buffers and no ->mapping. These are
479 * the pages which were not successfully invalidated in
480 * truncate_complete_page(). We try to drop those buffers here
481 * and if that worked, and the page is no longer mapped into
482 * process address space (page_count == 1) it can be freed.
483 * Otherwise, leave the page on the LRU so it is swappable.
484 */
485 if (PagePrivate(page)) {
486 if (!try_to_release_page(page, sc->gfp_mask))
487 goto activate_locked;
488 if (!mapping && page_count(page) == 1)
489 goto free_it;
490 }
491
492 if (!mapping)
493 goto keep_locked; /* truncate got there first */
494
495 write_lock_irq(&mapping->tree_lock);
496
497 /*
498 * The non-racy check for busy page. It is critical to check
499 * PageDirty _after_ making sure that the page is freeable and
500 * not in use by anybody. (pagecache + us == 2)
501 */
502 if (page_count(page) != 2 || PageDirty(page)) {
503 write_unlock_irq(&mapping->tree_lock);
504 goto keep_locked;
505 }
506
507 #ifdef CONFIG_SWAP
508 if (PageSwapCache(page)) {
509 swp_entry_t swap = { .val = page->private };
510 __delete_from_swap_cache(page);
511 write_unlock_irq(&mapping->tree_lock);
512 swap_free(swap);
513 __put_page(page); /* The pagecache ref */
514 goto free_it;
515 }
516 #endif /* CONFIG_SWAP */
517
518 __remove_from_page_cache(page);
519 write_unlock_irq(&mapping->tree_lock);
520 __put_page(page);
521
522 free_it:
523 unlock_page(page);
524 reclaimed++;
525 if (!pagevec_add(&freed_pvec, page))
526 __pagevec_release_nonlru(&freed_pvec);
527 continue;
528
529 activate_locked:
530 SetPageActive(page);
531 pgactivate++;
532 keep_locked:
533 unlock_page(page);
534 keep:
535 list_add(&page->lru, &ret_pages);
536 BUG_ON(PageLRU(page));
537 }
538 list_splice(&ret_pages, page_list);
539 if (pagevec_count(&freed_pvec))
540 __pagevec_release_nonlru(&freed_pvec);
541 mod_page_state(pgactivate, pgactivate);
542 sc->nr_reclaimed += reclaimed;
543 return reclaimed;
544 }
545
546 /*
547 * zone->lru_lock is heavily contended. Some of the functions that
548 * shrink the lists perform better by taking out a batch of pages
549 * and working on them outside the LRU lock.
550 *
551 * For pagecache intensive workloads, this function is the hottest
552 * spot in the kernel (apart from copy_*_user functions).
553 *
554 * Appropriate locks must be held before calling this function.
555 *
556 * @nr_to_scan: The number of pages to look through on the list.
557 * @src: The LRU list to pull pages off.
558 * @dst: The temp list to put pages on to.
559 * @scanned: The number of pages that were scanned.
560 *
561 * returns how many pages were moved onto *@dst.
562 */
563 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
564 struct list_head *dst, int *scanned)
565 {
566 int nr_taken = 0;
567 struct page *page;
568 int scan = 0;
569
570 while (scan++ < nr_to_scan && !list_empty(src)) {
571 page = lru_to_page(src);
572 prefetchw_prev_lru_page(page, src, flags);
573
574 if (!TestClearPageLRU(page))
575 BUG();
576 list_del(&page->lru);
577 if (get_page_testone(page)) {
578 /*
579 * It is being freed elsewhere
580 */
581 __put_page(page);
582 SetPageLRU(page);
583 list_add(&page->lru, src);
584 continue;
585 } else {
586 list_add(&page->lru, dst);
587 nr_taken++;
588 }
589 }
590
591 *scanned = scan;
592 return nr_taken;
593 }
594
595 /*
596 * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
597 */
598 static void shrink_cache(struct zone *zone, struct scan_control *sc)
599 {
600 LIST_HEAD(page_list);
601 struct pagevec pvec;
602 int max_scan = sc->nr_to_scan;
603
604 pagevec_init(&pvec, 1);
605
606 lru_add_drain();
607 spin_lock_irq(&zone->lru_lock);
608 while (max_scan > 0) {
609 struct page *page;
610 int nr_taken;
611 int nr_scan;
612 int nr_freed;
613
614 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
615 &zone->inactive_list,
616 &page_list, &nr_scan);
617 zone->nr_inactive -= nr_taken;
618 zone->pages_scanned += nr_scan;
619 spin_unlock_irq(&zone->lru_lock);
620
621 if (nr_taken == 0)
622 goto done;
623
624 max_scan -= nr_scan;
625 if (current_is_kswapd())
626 mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
627 else
628 mod_page_state_zone(zone, pgscan_direct, nr_scan);
629 nr_freed = shrink_list(&page_list, sc);
630 if (current_is_kswapd())
631 mod_page_state(kswapd_steal, nr_freed);
632 mod_page_state_zone(zone, pgsteal, nr_freed);
633 sc->nr_to_reclaim -= nr_freed;
634
635 spin_lock_irq(&zone->lru_lock);
636 /*
637 * Put back any unfreeable pages.
638 */
639 while (!list_empty(&page_list)) {
640 page = lru_to_page(&page_list);
641 if (TestSetPageLRU(page))
642 BUG();
643 list_del(&page->lru);
644 if (PageActive(page))
645 add_page_to_active_list(zone, page);
646 else
647 add_page_to_inactive_list(zone, page);
648 if (!pagevec_add(&pvec, page)) {
649 spin_unlock_irq(&zone->lru_lock);
650 __pagevec_release(&pvec);
651 spin_lock_irq(&zone->lru_lock);
652 }
653 }
654 }
655 spin_unlock_irq(&zone->lru_lock);
656 done:
657 pagevec_release(&pvec);
658 }
659
660 /*
661 * This moves pages from the active list to the inactive list.
662 *
663 * We move them the other way if the page is referenced by one or more
664 * processes, from rmap.
665 *
666 * If the pages are mostly unmapped, the processing is fast and it is
667 * appropriate to hold zone->lru_lock across the whole operation. But if
668 * the pages are mapped, the processing is slow (page_referenced()) so we
669 * should drop zone->lru_lock around each page. It's impossible to balance
670 * this, so instead we remove the pages from the LRU while processing them.
671 * It is safe to rely on PG_active against the non-LRU pages in here because
672 * nobody will play with that bit on a non-LRU page.
673 *
674 * The downside is that we have to touch page->_count against each page.
675 * But we had to alter page->flags anyway.
676 */
677 static void
678 refill_inactive_zone(struct zone *zone, struct scan_control *sc)
679 {
680 int pgmoved;
681 int pgdeactivate = 0;
682 int pgscanned;
683 int nr_pages = sc->nr_to_scan;
684 LIST_HEAD(l_hold); /* The pages which were snipped off */
685 LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
686 LIST_HEAD(l_active); /* Pages to go onto the active_list */
687 struct page *page;
688 struct pagevec pvec;
689 int reclaim_mapped = 0;
690 long mapped_ratio;
691 long distress;
692 long swap_tendency;
693
694 lru_add_drain();
695 spin_lock_irq(&zone->lru_lock);
696 pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
697 &l_hold, &pgscanned);
698 zone->pages_scanned += pgscanned;
699 zone->nr_active -= pgmoved;
700 spin_unlock_irq(&zone->lru_lock);
701
702 /*
703 * `distress' is a measure of how much trouble we're having reclaiming
704 * pages. 0 -> no problems. 100 -> great trouble.
705 */
706 distress = 100 >> zone->prev_priority;
707
708 /*
709 * The point of this algorithm is to decide when to start reclaiming
710 * mapped memory instead of just pagecache. Work out how much memory
711 * is mapped.
712 */
713 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
714
715 /*
716 * Now decide how much we really want to unmap some pages. The mapped
717 * ratio is downgraded - just because there's a lot of mapped memory
718 * doesn't necessarily mean that page reclaim isn't succeeding.
719 *
720 * The distress ratio is important - we don't want to start going oom.
721 * This distress value is ignored if we apply a hardmaplimit except
722 * in extreme distress.
723 *
724 * A 0% value of vm_mapped overrides this algorithm altogether.
725 */
726 swap_tendency = mapped_ratio * 100 / (vm_mapped + 1);
727 if (!vm_hardmaplimit || distress == 100)
728 swap_tendency += distress;
729
730 /*
731 * Now use this metric to decide whether to start moving mapped memory
732 * onto the inactive list.
733 */
734 if (swap_tendency >= 100)
735 reclaim_mapped = 1;
736
737 while (!list_empty(&l_hold)) {
738 cond_resched();
739 page = lru_to_page(&l_hold);
740 list_del(&page->lru);
741 if (page_mapped(page)) {
742 if (!reclaim_mapped ||
743 (total_swap_pages == 0 && PageAnon(page)) ||
744 page_referenced(page, 0, sc->priority <= 0)) {
745 list_add(&page->lru, &l_active);
746 continue;
747 }
748 }
749 list_add(&page->lru, &l_inactive);
750 }
751
752 pagevec_init(&pvec, 1);
753 pgmoved = 0;
754 spin_lock_irq(&zone->lru_lock);
755 while (!list_empty(&l_inactive)) {
756 page = lru_to_page(&l_inactive);
757 prefetchw_prev_lru_page(page, &l_inactive, flags);
758 if (TestSetPageLRU(page))
759 BUG();
760 if (!TestClearPageActive(page))
761 BUG();
762 list_move(&page->lru, &zone->inactive_list);
763 pgmoved++;
764 if (!pagevec_add(&pvec, page)) {
765 zone->nr_inactive += pgmoved;
766 spin_unlock_irq(&zone->lru_lock);
767 pgdeactivate += pgmoved;
768 pgmoved = 0;
769 if (buffer_heads_over_limit)
770 pagevec_strip(&pvec);
771 __pagevec_release(&pvec);
772 spin_lock_irq(&zone->lru_lock);
773 }
774 }
775 zone->nr_inactive += pgmoved;
776 pgdeactivate += pgmoved;
777 if (buffer_heads_over_limit) {
778 spin_unlock_irq(&zone->lru_lock);
779 pagevec_strip(&pvec);
780 spin_lock_irq(&zone->lru_lock);
781 }
782
783 pgmoved = 0;
784 while (!list_empty(&l_active)) {
785 page = lru_to_page(&l_active);
786 prefetchw_prev_lru_page(page, &l_active, flags);
787 if (TestSetPageLRU(page))
788 BUG();
789 BUG_ON(!PageActive(page));
790 list_move(&page->lru, &zone->active_list);
791 pgmoved++;
792 if (!pagevec_add(&pvec, page)) {
793 zone->nr_active += pgmoved;
794 pgmoved = 0;
795 spin_unlock_irq(&zone->lru_lock);
796 __pagevec_release(&pvec);
797 spin_lock_irq(&zone->lru_lock);
798 }
799 }
800 zone->nr_active += pgmoved;
801 spin_unlock_irq(&zone->lru_lock);
802 pagevec_release(&pvec);
803
804 mod_page_state_zone(zone, pgrefill, pgscanned);
805 mod_page_state(pgdeactivate, pgdeactivate);
806 }
807
808 /*
809 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
810 */
811 static void
812 shrink_zone(struct zone *zone, struct scan_control *sc)
813 {
814 unsigned long nr_active;
815 unsigned long nr_inactive;
816
817 /*
818 * Add one to `nr_to_scan' just to make sure that the kernel will
819 * slowly sift through the active list.
820 */
821 zone->nr_scan_active += (zone->nr_active >> sc->priority) + 1;
822 nr_active = zone->nr_scan_active;
823 if (nr_active >= sc->swap_cluster_max)
824 zone->nr_scan_active = 0;
825 else
826 nr_active = 0;
827
828 zone->nr_scan_inactive += (zone->nr_inactive >> sc->priority) + 1;
829 nr_inactive = zone->nr_scan_inactive;
830 if (nr_inactive >= sc->swap_cluster_max)
831 zone->nr_scan_inactive = 0;
832 else
833 nr_inactive = 0;
834
835 sc->nr_to_reclaim = sc->swap_cluster_max;
836
837 while (nr_active || nr_inactive) {
838 if (nr_active) {
839 sc->nr_to_scan = min(nr_active,
840 (unsigned long)sc->swap_cluster_max);
841 nr_active -= sc->nr_to_scan;
842 refill_inactive_zone(zone, sc);
843 }
844
845 if (nr_inactive) {
846 sc->nr_to_scan = min(nr_inactive,
847 (unsigned long)sc->swap_cluster_max);
848 nr_inactive -= sc->nr_to_scan;
849 shrink_cache(zone, sc);
850 if (sc->nr_to_reclaim <= 0)
851 break;
852 }
853 }
854
855 throttle_vm_writeout();
856 }
857
858 /*
859 * This is the direct reclaim path, for page-allocating processes. We only
860 * try to reclaim pages from zones which will satisfy the caller's allocation
861 * request.
862 *
863 * We reclaim from a zone even if that zone is over pages_high. Because:
864 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
865 * allocation or
866 * b) The zones may be over pages_high but they must go *over* pages_high to
867 * satisfy the `incremental min' zone defense algorithm.
868 *
869 * Returns the number of reclaimed pages.
870 *
871 * If a zone is deemed to be full of pinned pages then just give it a light
872 * scan then give up on it.
873 */
874 static void
875 shrink_caches(struct zone **zones, struct scan_control *sc)
876 {
877 int i;
878
879 for (i = 0; zones[i] != NULL; i++) {
880 struct zone *zone = zones[i];
881
882 if (zone->present_pages == 0)
883 continue;
884
885 if (!cpuset_zone_allowed(zone))
886 continue;
887
888 zone->temp_priority = sc->priority;
889 if (zone->prev_priority > sc->priority)
890 zone->prev_priority = sc->priority;
891
892 if (zone->all_unreclaimable && sc->priority != DEF_PRIORITY)
893 continue; /* Let kswapd poll it */
894
895 shrink_zone(zone, sc);
896 }
897 }
898
899 /*
900 * This is the main entry point to direct page reclaim.
901 *
902 * If a full scan of the inactive list fails to free enough memory then we
903 * are "out of memory" and something needs to be killed.
904 *
905 * If the caller is !__GFP_FS then the probability of a failure is reasonably
906 * high - the zone may be full of dirty or under-writeback pages, which this
907 * caller can't do much about. We kick pdflush and take explicit naps in the
908 * hope that some of these pages can be written. But if the allocating task
909 * holds filesystem locks which prevent writeout this might not work, and the
910 * allocation attempt will fail.
911 */
912 int try_to_free_pages(struct zone **zones,
913 unsigned int gfp_mask, unsigned int order)
914 {
915 int priority;
916 int ret = 0;
917 int total_scanned = 0, total_reclaimed = 0;
918 struct reclaim_state *reclaim_state = current->reclaim_state;
919 struct scan_control sc;
920 unsigned long lru_pages = 0;
921 int i;
922
923 sc.gfp_mask = gfp_mask;
924 sc.may_writepage = 0;
925
926 inc_page_state(allocstall);
927
928 for (i = 0; zones[i] != NULL; i++) {
929 struct zone *zone = zones[i];
930
931 if (!cpuset_zone_allowed(zone))
932 continue;
933
934 zone->temp_priority = DEF_PRIORITY;
935 lru_pages += zone->nr_active + zone->nr_inactive;
936 }
937
938 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
939 sc.nr_mapped = read_page_state(nr_mapped);
940 sc.nr_scanned = 0;
941 sc.nr_reclaimed = 0;
942 sc.priority = priority;
943 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
944 shrink_caches(zones, &sc);
945 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
946 if (reclaim_state) {
947 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
948 reclaim_state->reclaimed_slab = 0;
949 }
950 total_scanned += sc.nr_scanned;
951 total_reclaimed += sc.nr_reclaimed;
952 if (total_reclaimed >= sc.swap_cluster_max) {
953 ret = 1;
954 goto out;
955 }
956
957 /*
958 * Try to write back as many pages as we just scanned. This
959 * tends to cause slow streaming writers to write data to the
960 * disk smoothly, at the dirtying rate, which is nice. But
961 * that's undesirable in laptop mode, where we *want* lumpy
962 * writeout. So in laptop mode, write out the whole world.
963 */
964 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
965 wakeup_bdflush(laptop_mode ? 0 : total_scanned);
966 sc.may_writepage = 1;
967 }
968
969 /* Take a nap, wait for some writeback to complete */
970 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
971 blk_congestion_wait(WRITE, HZ/10);
972 }
973 out:
974 for (i = 0; zones[i] != 0; i++) {
975 struct zone *zone = zones[i];
976
977 if (!cpuset_zone_allowed(zone))
978 continue;
979
980 zone->prev_priority = zone->temp_priority;
981 }
982 return ret;
983 }
984
985 /*
986 * For kswapd, balance_pgdat() will work across all this node's zones until
987 * they are all at pages_high.
988 *
989 * If `nr_pages' is non-zero then it is the number of pages which are to be
990 * reclaimed, regardless of the zone occupancies. This is a software suspend
991 * special.
992 *
993 * Returns the number of pages which were actually freed.
994 *
995 * There is special handling here for zones which are full of pinned pages.
996 * This can happen if the pages are all mlocked, or if they are all used by
997 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
998 * What we do is to detect the case where all pages in the zone have been
999 * scanned twice and there has been zero successful reclaim. Mark the zone as
1000 * dead and from now on, only perform a short scan. Basically we're polling
1001 * the zone for when the problem goes away.
1002 *
1003 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1004 * zones which have free_pages > pages_high, but once a zone is found to have
1005 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1006 * of the number of free pages in the lower zones. This interoperates with
1007 * the page allocator fallback scheme to ensure that aging of pages is balanced
1008 * across the zones.
1009 */
1010 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1011 {
1012 int to_free = nr_pages;
1013 int all_zones_ok;
1014 int priority;
1015 int i;
1016 int total_scanned, total_reclaimed;
1017 struct reclaim_state *reclaim_state = current->reclaim_state;
1018 struct scan_control sc;
1019
1020 loop_again:
1021 total_scanned = 0;
1022 total_reclaimed = 0;
1023 sc.gfp_mask = GFP_KERNEL;
1024 sc.may_writepage = 0;
1025 sc.nr_mapped = read_page_state(nr_mapped);
1026
1027 inc_page_state(pageoutrun);
1028
1029 for (i = 0; i < pgdat->nr_zones; i++) {
1030 struct zone *zone = pgdat->node_zones + i;
1031
1032 zone->temp_priority = DEF_PRIORITY;
1033 }
1034
1035 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1036 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1037 unsigned long lru_pages = 0;
1038
1039 all_zones_ok = 1;
1040
1041 if (nr_pages == 0) {
1042 /*
1043 * Scan in the highmem->dma direction for the highest
1044 * zone which needs scanning
1045 */
1046 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1047 struct zone *zone = pgdat->node_zones + i;
1048 unsigned long watermark = zone->pages_high;
1049
1050 if (zone->present_pages == 0)
1051 continue;
1052
1053 if (zone->all_unreclaimable &&
1054 priority != DEF_PRIORITY)
1055 continue;
1056
1057 /*
1058 * The watermark is relaxed depending on the
1059 * level of "priority" till it drops to
1060 * pages_high.
1061 */
1062 watermark += (zone->pages_high * priority /
1063 DEF_PRIORITY);
1064
1065 if (!zone_watermark_ok(zone, order,
1066 watermark, 0, 0, 0)) {
1067 end_zone = i;
1068 goto scan;
1069 }
1070 }
1071 goto out;
1072 } else {
1073 end_zone = pgdat->nr_zones - 1;
1074 }
1075 scan:
1076 for (i = 0; i <= end_zone; i++) {
1077 struct zone *zone = pgdat->node_zones + i;
1078
1079 lru_pages += zone->nr_active + zone->nr_inactive;
1080 }
1081
1082 /*
1083 * Now scan the zone in the dma->highmem direction, stopping
1084 * at the last zone which needs scanning.
1085 *
1086 * We do this because the page allocator works in the opposite
1087 * direction. This prevents the page allocator from allocating
1088 * pages behind kswapd's direction of progress, which would
1089 * cause too much scanning of the lower zones.
1090 */
1091 for (i = 0; i <= end_zone; i++) {
1092 struct zone *zone = pgdat->node_zones + i;
1093
1094 if (zone->present_pages == 0)
1095 continue;
1096
1097 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1098 continue;
1099
1100 if (nr_pages == 0) { /* Not software suspend */
1101 if (!zone_watermark_ok(zone, order,
1102 zone->pages_high, end_zone, 0, 0))
1103 all_zones_ok = 0;
1104 }
1105 zone->temp_priority = priority;
1106 if (zone->prev_priority > priority)
1107 zone->prev_priority = priority;
1108 sc.nr_scanned = 0;
1109 sc.nr_reclaimed = 0;
1110 sc.priority = priority;
1111 sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1112 shrink_zone(zone, &sc);
1113 reclaim_state->reclaimed_slab = 0;
1114 shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages);
1115 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1116 total_reclaimed += sc.nr_reclaimed;
1117 total_scanned += sc.nr_scanned;
1118 if (zone->all_unreclaimable)
1119 continue;
1120 if (zone->pages_scanned >= (zone->nr_active +
1121 zone->nr_inactive) * 4)
1122 zone->all_unreclaimable = 1;
1123 /*
1124 * If we've done a decent amount of scanning and
1125 * the reclaim ratio is low, start doing writepage
1126 * even in laptop mode
1127 */
1128 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1129 total_scanned > total_reclaimed+total_reclaimed/2)
1130 sc.may_writepage = 1;
1131 }
1132 if (nr_pages && to_free > total_reclaimed)
1133 continue; /* swsusp: need to do more work */
1134 if (all_zones_ok)
1135 break; /* kswapd: all done */
1136 /*
1137 * OK, kswapd is getting into trouble. Take a nap, then take
1138 * another pass across the zones.
1139 */
1140 if (total_scanned && priority < DEF_PRIORITY - 2)
1141 blk_congestion_wait(WRITE, HZ/10);
1142
1143 /*
1144 * We do this so kswapd doesn't build up large priorities for
1145 * example when it is freeing in parallel with allocators. It
1146 * matches the direct reclaim path behaviour in terms of impact
1147 * on zone->*_priority.
1148 */
1149 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1150 break;
1151 }
1152 out:
1153 for (i = 0; i < pgdat->nr_zones; i++) {
1154 struct zone *zone = pgdat->node_zones + i;
1155
1156 zone->prev_priority = zone->temp_priority;
1157 }
1158 if (!all_zones_ok) {
1159 cond_resched();
1160 goto loop_again;
1161 }
1162
1163 return total_reclaimed;
1164 }
1165
1166 /*
1167 * The background pageout daemon, started as a kernel thread
1168 * from the init process.
1169 *
1170 * This basically trickles out pages so that we have _some_
1171 * free memory available even if there is no other activity
1172 * that frees anything up. This is needed for things like routing
1173 * etc, where we otherwise might have all activity going on in
1174 * asynchronous contexts that cannot page things out.
1175 *
1176 * If there are applications that are active memory-allocators
1177 * (most normal use), this basically shouldn't matter.
1178 */
1179 static int kswapd(void *p)
1180 {
1181 unsigned long order;
1182 pg_data_t *pgdat = (pg_data_t*)p;
1183 struct task_struct *tsk = current;
1184 DEFINE_WAIT(wait);
1185 struct reclaim_state reclaim_state = {
1186 .reclaimed_slab = 0,
1187 };
1188 cpumask_t cpumask;
1189
1190 daemonize("kswapd%d", pgdat->node_id);
1191 cpumask = node_to_cpumask(pgdat->node_id);
1192 if (!cpus_empty(cpumask))
1193 set_cpus_allowed(tsk, cpumask);
1194 current->reclaim_state = &reclaim_state;
1195
1196 /*
1197 * Tell the memory management that we're a "memory allocator",
1198 * and that if we need more memory we should get access to it
1199 * regardless (see "__alloc_pages()"). "kswapd" should
1200 * never get caught in the normal page freeing logic.
1201 *
1202 * (Kswapd normally doesn't need memory anyway, but sometimes
1203 * you need a small amount of memory in order to be able to
1204 * page out something else, and this flag essentially protects
1205 * us from recursively trying to free more memory as we're
1206 * trying to free the first piece of memory in the first place).
1207 */
1208 tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
1209
1210 order = 0;
1211 for ( ; ; ) {
1212 unsigned long new_order;
1213 if (current->flags & PF_FREEZE)
1214 refrigerator(PF_FREEZE);
1215
1216 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1217 new_order = pgdat->kswapd_max_order;
1218 pgdat->kswapd_max_order = 0;
1219 if (order < new_order) {
1220 /*
1221 * Don't sleep if someone wants a larger 'order'
1222 * allocation
1223 */
1224 order = new_order;
1225 } else {
1226 schedule();
1227 order = pgdat->kswapd_max_order;
1228 }
1229 finish_wait(&pgdat->kswapd_wait, &wait);
1230
1231 balance_pgdat(pgdat, 0, order);
1232 }
1233 return 0;
1234 }
1235
1236 /*
1237 * A zone is low on free memory, so wake its kswapd task to service it.
1238 */
1239 void wakeup_kswapd(struct zone *zone, int order)
1240 {
1241 pg_data_t *pgdat;
1242
1243 if (zone->present_pages == 0)
1244 return;
1245
1246 pgdat = zone->zone_pgdat;
1247 if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0, 0))
1248 return;
1249 if (pgdat->kswapd_max_order < order)
1250 pgdat->kswapd_max_order = order;
1251 if (!cpuset_zone_allowed(zone))
1252 return;
1253 if (!waitqueue_active(&zone->zone_pgdat->kswapd_wait))
1254 return;
1255 wake_up_interruptible(&zone->zone_pgdat->kswapd_wait);
1256 }
1257
1258 #ifdef CONFIG_PM
1259 /*
1260 * Try to free `nr_pages' of memory, system-wide. Returns the number of freed
1261 * pages.
1262 */
1263 int shrink_all_memory(int nr_pages)
1264 {
1265 pg_data_t *pgdat;
1266 int nr_to_free = nr_pages;
1267 int ret = 0;
1268 struct reclaim_state reclaim_state = {
1269 .reclaimed_slab = 0,
1270 };
1271
1272 current->reclaim_state = &reclaim_state;
1273 for_each_pgdat(pgdat) {
1274 int freed;
1275 freed = balance_pgdat(pgdat, nr_to_free, 0);
1276 ret += freed;
1277 nr_to_free -= freed;
1278 if (nr_to_free <= 0)
1279 break;
1280 }
1281 current->reclaim_state = NULL;
1282 return ret;
1283 }
1284 #endif
1285
1286 #ifdef CONFIG_HOTPLUG_CPU
1287 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1288 not required for correctness. So if the last cpu in a node goes
1289 away, we get changed to run anywhere: as the first one comes back,
1290 restore their cpu bindings. */
1291 static int __devinit cpu_callback(struct notifier_block *nfb,
1292 unsigned long action,
1293 void *hcpu)
1294 {
1295 pg_data_t *pgdat;
1296 cpumask_t mask;
1297
1298 if (action == CPU_ONLINE) {
1299 for_each_pgdat(pgdat) {
1300 mask = node_to_cpumask(pgdat->node_id);
1301 if (any_online_cpu(mask) != NR_CPUS)
1302 /* One of our CPUs online: restore mask */
1303 set_cpus_allowed(pgdat->kswapd, mask);
1304 }
1305 }
1306 return NOTIFY_OK;
1307 }
1308 #endif /* CONFIG_HOTPLUG_CPU */
1309
1310 static int __init kswapd_init(void)
1311 {
1312 pg_data_t *pgdat;
1313 swap_setup();
1314 for_each_pgdat(pgdat)
1315 pgdat->kswapd
1316 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1317 total_memory = nr_free_pagecache_pages();
1318 hotcpu_notifier(cpu_callback, 0);
1319 return 0;
1320 }
1321
1322 module_init(kswapd_init)