Magellan Linux

Annotation of /alx-src/trunk/kernel26-alx/linux/Documentation/DocBook/kernel-hacking.tmpl

Parent Directory Parent Directory | Revision Log Revision Log


Revision 628 - (hide annotations) (download)
Wed Mar 4 10:48:58 2009 UTC (15 years, 2 months ago) by niro
File size: 44649 byte(s)
import linux sources based on 2.6.12-alx-r9:
 -using linux-2.6.12.6
 -using 2.6.12-ck6 patch set
 -using fbsplash-0.9.2-r3
 -using vesafb-tng-0.9-rc7
 -using squashfs-2.2
 -added cddvd-cmdfilter-drop.patch as ck dropped it
 -added via-epia-dri (cle266) patch
 -added zd1211-svn-32 wlan driver (http://zd1211.ath.cx/download/)
 -added debian patches to zd1211 for wep256 etc

1 niro 628 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3     "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4    
5     <book id="lk-hacking-guide">
6     <bookinfo>
7     <title>Unreliable Guide To Hacking The Linux Kernel</title>
8    
9     <authorgroup>
10     <author>
11     <firstname>Paul</firstname>
12     <othername>Rusty</othername>
13     <surname>Russell</surname>
14     <affiliation>
15     <address>
16     <email>rusty@rustcorp.com.au</email>
17     </address>
18     </affiliation>
19     </author>
20     </authorgroup>
21    
22     <copyright>
23     <year>2001</year>
24     <holder>Rusty Russell</holder>
25     </copyright>
26    
27     <legalnotice>
28     <para>
29     This documentation is free software; you can redistribute
30     it and/or modify it under the terms of the GNU General Public
31     License as published by the Free Software Foundation; either
32     version 2 of the License, or (at your option) any later
33     version.
34     </para>
35    
36     <para>
37     This program is distributed in the hope that it will be
38     useful, but WITHOUT ANY WARRANTY; without even the implied
39     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
40     See the GNU General Public License for more details.
41     </para>
42    
43     <para>
44     You should have received a copy of the GNU General Public
45     License along with this program; if not, write to the Free
46     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
47     MA 02111-1307 USA
48     </para>
49    
50     <para>
51     For more details see the file COPYING in the source
52     distribution of Linux.
53     </para>
54     </legalnotice>
55    
56     <releaseinfo>
57     This is the first release of this document as part of the kernel tarball.
58     </releaseinfo>
59    
60     </bookinfo>
61    
62     <toc></toc>
63    
64     <chapter id="introduction">
65     <title>Introduction</title>
66     <para>
67     Welcome, gentle reader, to Rusty's Unreliable Guide to Linux
68     Kernel Hacking. This document describes the common routines and
69     general requirements for kernel code: its goal is to serve as a
70     primer for Linux kernel development for experienced C
71     programmers. I avoid implementation details: that's what the
72     code is for, and I ignore whole tracts of useful routines.
73     </para>
74     <para>
75     Before you read this, please understand that I never wanted to
76     write this document, being grossly under-qualified, but I always
77     wanted to read it, and this was the only way. I hope it will
78     grow into a compendium of best practice, common starting points
79     and random information.
80     </para>
81     </chapter>
82    
83     <chapter id="basic-players">
84     <title>The Players</title>
85    
86     <para>
87     At any time each of the CPUs in a system can be:
88     </para>
89    
90     <itemizedlist>
91     <listitem>
92     <para>
93     not associated with any process, serving a hardware interrupt;
94     </para>
95     </listitem>
96    
97     <listitem>
98     <para>
99     not associated with any process, serving a softirq, tasklet or bh;
100     </para>
101     </listitem>
102    
103     <listitem>
104     <para>
105     running in kernel space, associated with a process;
106     </para>
107     </listitem>
108    
109     <listitem>
110     <para>
111     running a process in user space.
112     </para>
113     </listitem>
114     </itemizedlist>
115    
116     <para>
117     There is a strict ordering between these: other than the last
118     category (userspace) each can only be pre-empted by those above.
119     For example, while a softirq is running on a CPU, no other
120     softirq will pre-empt it, but a hardware interrupt can. However,
121     any other CPUs in the system execute independently.
122     </para>
123    
124     <para>
125     We'll see a number of ways that the user context can block
126     interrupts, to become truly non-preemptable.
127     </para>
128    
129     <sect1 id="basics-usercontext">
130     <title>User Context</title>
131    
132     <para>
133     User context is when you are coming in from a system call or
134     other trap: you can sleep, and you own the CPU (except for
135     interrupts) until you call <function>schedule()</function>.
136     In other words, user context (unlike userspace) is not pre-emptable.
137     </para>
138    
139     <note>
140     <para>
141     You are always in user context on module load and unload,
142     and on operations on the block device layer.
143     </para>
144     </note>
145    
146     <para>
147     In user context, the <varname>current</varname> pointer (indicating
148     the task we are currently executing) is valid, and
149     <function>in_interrupt()</function>
150     (<filename>include/linux/interrupt.h</filename>) is <returnvalue>false
151     </returnvalue>.
152     </para>
153    
154     <caution>
155     <para>
156     Beware that if you have interrupts or bottom halves disabled
157     (see below), <function>in_interrupt()</function> will return a
158     false positive.
159     </para>
160     </caution>
161     </sect1>
162    
163     <sect1 id="basics-hardirqs">
164     <title>Hardware Interrupts (Hard IRQs)</title>
165    
166     <para>
167     Timer ticks, <hardware>network cards</hardware> and
168     <hardware>keyboard</hardware> are examples of real
169     hardware which produce interrupts at any time. The kernel runs
170     interrupt handlers, which services the hardware. The kernel
171     guarantees that this handler is never re-entered: if another
172     interrupt arrives, it is queued (or dropped). Because it
173     disables interrupts, this handler has to be fast: frequently it
174     simply acknowledges the interrupt, marks a `software interrupt'
175     for execution and exits.
176     </para>
177    
178     <para>
179     You can tell you are in a hardware interrupt, because
180     <function>in_irq()</function> returns <returnvalue>true</returnvalue>.
181     </para>
182     <caution>
183     <para>
184     Beware that this will return a false positive if interrupts are disabled
185     (see below).
186     </para>
187     </caution>
188     </sect1>
189    
190     <sect1 id="basics-softirqs">
191     <title>Software Interrupt Context: Bottom Halves, Tasklets, softirqs</title>
192    
193     <para>
194     Whenever a system call is about to return to userspace, or a
195     hardware interrupt handler exits, any `software interrupts'
196     which are marked pending (usually by hardware interrupts) are
197     run (<filename>kernel/softirq.c</filename>).
198     </para>
199    
200     <para>
201     Much of the real interrupt handling work is done here. Early in
202     the transition to <acronym>SMP</acronym>, there were only `bottom
203     halves' (BHs), which didn't take advantage of multiple CPUs. Shortly
204     after we switched from wind-up computers made of match-sticks and snot,
205     we abandoned this limitation.
206     </para>
207    
208     <para>
209     <filename class="headerfile">include/linux/interrupt.h</filename> lists the
210     different BH's. No matter how many CPUs you have, no two BHs will run at
211     the same time. This made the transition to SMP simpler, but sucks hard for
212     scalable performance. A very important bottom half is the timer
213     BH (<filename class="headerfile">include/linux/timer.h</filename>): you
214     can register to have it call functions for you in a given length of time.
215     </para>
216    
217     <para>
218     2.3.43 introduced softirqs, and re-implemented the (now
219     deprecated) BHs underneath them. Softirqs are fully-SMP
220     versions of BHs: they can run on as many CPUs at once as
221     required. This means they need to deal with any races in shared
222     data using their own locks. A bitmask is used to keep track of
223     which are enabled, so the 32 available softirqs should not be
224     used up lightly. (<emphasis>Yes</emphasis>, people will
225     notice).
226     </para>
227    
228     <para>
229     tasklets (<filename class="headerfile">include/linux/interrupt.h</filename>)
230     are like softirqs, except they are dynamically-registrable (meaning you
231     can have as many as you want), and they also guarantee that any tasklet
232     will only run on one CPU at any time, although different tasklets can
233     run simultaneously (unlike different BHs).
234     </para>
235     <caution>
236     <para>
237     The name `tasklet' is misleading: they have nothing to do with `tasks',
238     and probably more to do with some bad vodka Alexey Kuznetsov had at the
239     time.
240     </para>
241     </caution>
242    
243     <para>
244     You can tell you are in a softirq (or bottom half, or tasklet)
245     using the <function>in_softirq()</function> macro
246     (<filename class="headerfile">include/linux/interrupt.h</filename>).
247     </para>
248     <caution>
249     <para>
250     Beware that this will return a false positive if a bh lock (see below)
251     is held.
252     </para>
253     </caution>
254     </sect1>
255     </chapter>
256    
257     <chapter id="basic-rules">
258     <title>Some Basic Rules</title>
259    
260     <variablelist>
261     <varlistentry>
262     <term>No memory protection</term>
263     <listitem>
264     <para>
265     If you corrupt memory, whether in user context or
266     interrupt context, the whole machine will crash. Are you
267     sure you can't do what you want in userspace?
268     </para>
269     </listitem>
270     </varlistentry>
271    
272     <varlistentry>
273     <term>No floating point or <acronym>MMX</acronym></term>
274     <listitem>
275     <para>
276     The <acronym>FPU</acronym> context is not saved; even in user
277     context the <acronym>FPU</acronym> state probably won't
278     correspond with the current process: you would mess with some
279     user process' <acronym>FPU</acronym> state. If you really want
280     to do this, you would have to explicitly save/restore the full
281     <acronym>FPU</acronym> state (and avoid context switches). It
282     is generally a bad idea; use fixed point arithmetic first.
283     </para>
284     </listitem>
285     </varlistentry>
286    
287     <varlistentry>
288     <term>A rigid stack limit</term>
289     <listitem>
290     <para>
291     The kernel stack is about 6K in 2.2 (for most
292     architectures: it's about 14K on the Alpha), and shared
293     with interrupts so you can't use it all. Avoid deep
294     recursion and huge local arrays on the stack (allocate
295     them dynamically instead).
296     </para>
297     </listitem>
298     </varlistentry>
299    
300     <varlistentry>
301     <term>The Linux kernel is portable</term>
302     <listitem>
303     <para>
304     Let's keep it that way. Your code should be 64-bit clean,
305     and endian-independent. You should also minimize CPU
306     specific stuff, e.g. inline assembly should be cleanly
307     encapsulated and minimized to ease porting. Generally it
308     should be restricted to the architecture-dependent part of
309     the kernel tree.
310     </para>
311     </listitem>
312     </varlistentry>
313     </variablelist>
314     </chapter>
315    
316     <chapter id="ioctls">
317     <title>ioctls: Not writing a new system call</title>
318    
319     <para>
320     A system call generally looks like this
321     </para>
322    
323     <programlisting>
324     asmlinkage long sys_mycall(int arg)
325     {
326     return 0;
327     }
328     </programlisting>
329    
330     <para>
331     First, in most cases you don't want to create a new system call.
332     You create a character device and implement an appropriate ioctl
333     for it. This is much more flexible than system calls, doesn't have
334     to be entered in every architecture's
335     <filename class="headerfile">include/asm/unistd.h</filename> and
336     <filename>arch/kernel/entry.S</filename> file, and is much more
337     likely to be accepted by Linus.
338     </para>
339    
340     <para>
341     If all your routine does is read or write some parameter, consider
342     implementing a <function>sysctl</function> interface instead.
343     </para>
344    
345     <para>
346     Inside the ioctl you're in user context to a process. When a
347     error occurs you return a negated errno (see
348     <filename class="headerfile">include/linux/errno.h</filename>),
349     otherwise you return <returnvalue>0</returnvalue>.
350     </para>
351    
352     <para>
353     After you slept you should check if a signal occurred: the
354     Unix/Linux way of handling signals is to temporarily exit the
355     system call with the <constant>-ERESTARTSYS</constant> error. The
356     system call entry code will switch back to user context, process
357     the signal handler and then your system call will be restarted
358     (unless the user disabled that). So you should be prepared to
359     process the restart, e.g. if you're in the middle of manipulating
360     some data structure.
361     </para>
362    
363     <programlisting>
364     if (signal_pending())
365     return -ERESTARTSYS;
366     </programlisting>
367    
368     <para>
369     If you're doing longer computations: first think userspace. If you
370     <emphasis>really</emphasis> want to do it in kernel you should
371     regularly check if you need to give up the CPU (remember there is
372     cooperative multitasking per CPU). Idiom:
373     </para>
374    
375     <programlisting>
376     cond_resched(); /* Will sleep */
377     </programlisting>
378    
379     <para>
380     A short note on interface design: the UNIX system call motto is
381     "Provide mechanism not policy".
382     </para>
383     </chapter>
384    
385     <chapter id="deadlock-recipes">
386     <title>Recipes for Deadlock</title>
387    
388     <para>
389     You cannot call any routines which may sleep, unless:
390     </para>
391     <itemizedlist>
392     <listitem>
393     <para>
394     You are in user context.
395     </para>
396     </listitem>
397    
398     <listitem>
399     <para>
400     You do not own any spinlocks.
401     </para>
402     </listitem>
403    
404     <listitem>
405     <para>
406     You have interrupts enabled (actually, Andi Kleen says
407     that the scheduling code will enable them for you, but
408     that's probably not what you wanted).
409     </para>
410     </listitem>
411     </itemizedlist>
412    
413     <para>
414     Note that some functions may sleep implicitly: common ones are
415     the user space access functions (*_user) and memory allocation
416     functions without <symbol>GFP_ATOMIC</symbol>.
417     </para>
418    
419     <para>
420     You will eventually lock up your box if you break these rules.
421     </para>
422    
423     <para>
424     Really.
425     </para>
426     </chapter>
427    
428     <chapter id="common-routines">
429     <title>Common Routines</title>
430    
431     <sect1 id="routines-printk">
432     <title>
433     <function>printk()</function>
434     <filename class="headerfile">include/linux/kernel.h</filename>
435     </title>
436    
437     <para>
438     <function>printk()</function> feeds kernel messages to the
439     console, dmesg, and the syslog daemon. It is useful for debugging
440     and reporting errors, and can be used inside interrupt context,
441     but use with caution: a machine which has its console flooded with
442     printk messages is unusable. It uses a format string mostly
443     compatible with ANSI C printf, and C string concatenation to give
444     it a first "priority" argument:
445     </para>
446    
447     <programlisting>
448     printk(KERN_INFO "i = %u\n", i);
449     </programlisting>
450    
451     <para>
452     See <filename class="headerfile">include/linux/kernel.h</filename>;
453     for other KERN_ values; these are interpreted by syslog as the
454     level. Special case: for printing an IP address use
455     </para>
456    
457     <programlisting>
458     __u32 ipaddress;
459     printk(KERN_INFO "my ip: %d.%d.%d.%d\n", NIPQUAD(ipaddress));
460     </programlisting>
461    
462     <para>
463     <function>printk()</function> internally uses a 1K buffer and does
464     not catch overruns. Make sure that will be enough.
465     </para>
466    
467     <note>
468     <para>
469     You will know when you are a real kernel hacker
470     when you start typoing printf as printk in your user programs :)
471     </para>
472     </note>
473    
474     <!--- From the Lions book reader department -->
475    
476     <note>
477     <para>
478     Another sidenote: the original Unix Version 6 sources had a
479     comment on top of its printf function: "Printf should not be
480     used for chit-chat". You should follow that advice.
481     </para>
482     </note>
483     </sect1>
484    
485     <sect1 id="routines-copy">
486     <title>
487     <function>copy_[to/from]_user()</function>
488     /
489     <function>get_user()</function>
490     /
491     <function>put_user()</function>
492     <filename class="headerfile">include/asm/uaccess.h</filename>
493     </title>
494    
495     <para>
496     <emphasis>[SLEEPS]</emphasis>
497     </para>
498    
499     <para>
500     <function>put_user()</function> and <function>get_user()</function>
501     are used to get and put single values (such as an int, char, or
502     long) from and to userspace. A pointer into userspace should
503     never be simply dereferenced: data should be copied using these
504     routines. Both return <constant>-EFAULT</constant> or 0.
505     </para>
506     <para>
507     <function>copy_to_user()</function> and
508     <function>copy_from_user()</function> are more general: they copy
509     an arbitrary amount of data to and from userspace.
510     <caution>
511     <para>
512     Unlike <function>put_user()</function> and
513     <function>get_user()</function>, they return the amount of
514     uncopied data (ie. <returnvalue>0</returnvalue> still means
515     success).
516     </para>
517     </caution>
518     [Yes, this moronic interface makes me cringe. Please submit a
519     patch and become my hero --RR.]
520     </para>
521     <para>
522     The functions may sleep implicitly. This should never be called
523     outside user context (it makes no sense), with interrupts
524     disabled, or a spinlock held.
525     </para>
526     </sect1>
527    
528     <sect1 id="routines-kmalloc">
529     <title><function>kmalloc()</function>/<function>kfree()</function>
530     <filename class="headerfile">include/linux/slab.h</filename></title>
531    
532     <para>
533     <emphasis>[MAY SLEEP: SEE BELOW]</emphasis>
534     </para>
535    
536     <para>
537     These routines are used to dynamically request pointer-aligned
538     chunks of memory, like malloc and free do in userspace, but
539     <function>kmalloc()</function> takes an extra flag word.
540     Important values:
541     </para>
542    
543     <variablelist>
544     <varlistentry>
545     <term>
546     <constant>
547     GFP_KERNEL
548     </constant>
549     </term>
550     <listitem>
551     <para>
552     May sleep and swap to free memory. Only allowed in user
553     context, but is the most reliable way to allocate memory.
554     </para>
555     </listitem>
556     </varlistentry>
557    
558     <varlistentry>
559     <term>
560     <constant>
561     GFP_ATOMIC
562     </constant>
563     </term>
564     <listitem>
565     <para>
566     Don't sleep. Less reliable than <constant>GFP_KERNEL</constant>,
567     but may be called from interrupt context. You should
568     <emphasis>really</emphasis> have a good out-of-memory
569     error-handling strategy.
570     </para>
571     </listitem>
572     </varlistentry>
573    
574     <varlistentry>
575     <term>
576     <constant>
577     GFP_DMA
578     </constant>
579     </term>
580     <listitem>
581     <para>
582     Allocate ISA DMA lower than 16MB. If you don't know what that
583     is you don't need it. Very unreliable.
584     </para>
585     </listitem>
586     </varlistentry>
587     </variablelist>
588    
589     <para>
590     If you see a <errorname>kmem_grow: Called nonatomically from int
591     </errorname> warning message you called a memory allocation function
592     from interrupt context without <constant>GFP_ATOMIC</constant>.
593     You should really fix that. Run, don't walk.
594     </para>
595    
596     <para>
597     If you are allocating at least <constant>PAGE_SIZE</constant>
598     (<filename class="headerfile">include/asm/page.h</filename>) bytes,
599     consider using <function>__get_free_pages()</function>
600    
601     (<filename class="headerfile">include/linux/mm.h</filename>). It
602     takes an order argument (0 for page sized, 1 for double page, 2
603     for four pages etc.) and the same memory priority flag word as
604     above.
605     </para>
606    
607     <para>
608     If you are allocating more than a page worth of bytes you can use
609     <function>vmalloc()</function>. It'll allocate virtual memory in
610     the kernel map. This block is not contiguous in physical memory,
611     but the <acronym>MMU</acronym> makes it look like it is for you
612     (so it'll only look contiguous to the CPUs, not to external device
613     drivers). If you really need large physically contiguous memory
614     for some weird device, you have a problem: it is poorly supported
615     in Linux because after some time memory fragmentation in a running
616     kernel makes it hard. The best way is to allocate the block early
617     in the boot process via the <function>alloc_bootmem()</function>
618     routine.
619     </para>
620    
621     <para>
622     Before inventing your own cache of often-used objects consider
623     using a slab cache in
624     <filename class="headerfile">include/linux/slab.h</filename>
625     </para>
626     </sect1>
627    
628     <sect1 id="routines-current">
629     <title><function>current</function>
630     <filename class="headerfile">include/asm/current.h</filename></title>
631    
632     <para>
633     This global variable (really a macro) contains a pointer to
634     the current task structure, so is only valid in user context.
635     For example, when a process makes a system call, this will
636     point to the task structure of the calling process. It is
637     <emphasis>not NULL</emphasis> in interrupt context.
638     </para>
639     </sect1>
640    
641     <sect1 id="routines-udelay">
642     <title><function>udelay()</function>/<function>mdelay()</function>
643     <filename class="headerfile">include/asm/delay.h</filename>
644     <filename class="headerfile">include/linux/delay.h</filename>
645     </title>
646    
647     <para>
648     The <function>udelay()</function> function can be used for small pauses.
649     Do not use large values with <function>udelay()</function> as you risk
650     overflow - the helper function <function>mdelay()</function> is useful
651     here, or even consider <function>schedule_timeout()</function>.
652     </para>
653     </sect1>
654    
655     <sect1 id="routines-endian">
656     <title><function>cpu_to_be32()</function>/<function>be32_to_cpu()</function>/<function>cpu_to_le32()</function>/<function>le32_to_cpu()</function>
657     <filename class="headerfile">include/asm/byteorder.h</filename>
658     </title>
659    
660     <para>
661     The <function>cpu_to_be32()</function> family (where the "32" can
662     be replaced by 64 or 16, and the "be" can be replaced by "le") are
663     the general way to do endian conversions in the kernel: they
664     return the converted value. All variations supply the reverse as
665     well: <function>be32_to_cpu()</function>, etc.
666     </para>
667    
668     <para>
669     There are two major variations of these functions: the pointer
670     variation, such as <function>cpu_to_be32p()</function>, which take
671     a pointer to the given type, and return the converted value. The
672     other variation is the "in-situ" family, such as
673     <function>cpu_to_be32s()</function>, which convert value referred
674     to by the pointer, and return void.
675     </para>
676     </sect1>
677    
678     <sect1 id="routines-local-irqs">
679     <title><function>local_irq_save()</function>/<function>local_irq_restore()</function>
680     <filename class="headerfile">include/asm/system.h</filename>
681     </title>
682    
683     <para>
684     These routines disable hard interrupts on the local CPU, and
685     restore them. They are reentrant; saving the previous state in
686     their one <varname>unsigned long flags</varname> argument. If you
687     know that interrupts are enabled, you can simply use
688     <function>local_irq_disable()</function> and
689     <function>local_irq_enable()</function>.
690     </para>
691     </sect1>
692    
693     <sect1 id="routines-softirqs">
694     <title><function>local_bh_disable()</function>/<function>local_bh_enable()</function>
695     <filename class="headerfile">include/linux/interrupt.h</filename></title>
696    
697     <para>
698     These routines disable soft interrupts on the local CPU, and
699     restore them. They are reentrant; if soft interrupts were
700     disabled before, they will still be disabled after this pair
701     of functions has been called. They prevent softirqs, tasklets
702     and bottom halves from running on the current CPU.
703     </para>
704     </sect1>
705    
706     <sect1 id="routines-processorids">
707     <title><function>smp_processor_id</function>()
708     <filename class="headerfile">include/asm/smp.h</filename></title>
709    
710     <para>
711     <function>smp_processor_id()</function> returns the current
712     processor number, between 0 and <symbol>NR_CPUS</symbol> (the
713     maximum number of CPUs supported by Linux, currently 32). These
714     values are not necessarily continuous.
715     </para>
716     </sect1>
717    
718     <sect1 id="routines-init">
719     <title><type>__init</type>/<type>__exit</type>/<type>__initdata</type>
720     <filename class="headerfile">include/linux/init.h</filename></title>
721    
722     <para>
723     After boot, the kernel frees up a special section; functions
724     marked with <type>__init</type> and data structures marked with
725     <type>__initdata</type> are dropped after boot is complete (within
726     modules this directive is currently ignored). <type>__exit</type>
727     is used to declare a function which is only required on exit: the
728     function will be dropped if this file is not compiled as a module.
729     See the header file for use. Note that it makes no sense for a function
730     marked with <type>__init</type> to be exported to modules with
731     <function>EXPORT_SYMBOL()</function> - this will break.
732     </para>
733     <para>
734     Static data structures marked as <type>__initdata</type> must be initialised
735     (as opposed to ordinary static data which is zeroed BSS) and cannot be
736     <type>const</type>.
737     </para>
738    
739     </sect1>
740    
741     <sect1 id="routines-init-again">
742     <title><function>__initcall()</function>/<function>module_init()</function>
743     <filename class="headerfile">include/linux/init.h</filename></title>
744     <para>
745     Many parts of the kernel are well served as a module
746     (dynamically-loadable parts of the kernel). Using the
747     <function>module_init()</function> and
748     <function>module_exit()</function> macros it is easy to write code
749     without #ifdefs which can operate both as a module or built into
750     the kernel.
751     </para>
752    
753     <para>
754     The <function>module_init()</function> macro defines which
755     function is to be called at module insertion time (if the file is
756     compiled as a module), or at boot time: if the file is not
757     compiled as a module the <function>module_init()</function> macro
758     becomes equivalent to <function>__initcall()</function>, which
759     through linker magic ensures that the function is called on boot.
760     </para>
761    
762     <para>
763     The function can return a negative error number to cause
764     module loading to fail (unfortunately, this has no effect if
765     the module is compiled into the kernel). For modules, this is
766     called in user context, with interrupts enabled, and the
767     kernel lock held, so it can sleep.
768     </para>
769     </sect1>
770    
771     <sect1 id="routines-moduleexit">
772     <title> <function>module_exit()</function>
773     <filename class="headerfile">include/linux/init.h</filename> </title>
774    
775     <para>
776     This macro defines the function to be called at module removal
777     time (or never, in the case of the file compiled into the
778     kernel). It will only be called if the module usage count has
779     reached zero. This function can also sleep, but cannot fail:
780     everything must be cleaned up by the time it returns.
781     </para>
782     </sect1>
783    
784     <!-- add info on new-style module refcounting here -->
785     </chapter>
786    
787     <chapter id="queues">
788     <title>Wait Queues
789     <filename class="headerfile">include/linux/wait.h</filename>
790     </title>
791     <para>
792     <emphasis>[SLEEPS]</emphasis>
793     </para>
794    
795     <para>
796     A wait queue is used to wait for someone to wake you up when a
797     certain condition is true. They must be used carefully to ensure
798     there is no race condition. You declare a
799     <type>wait_queue_head_t</type>, and then processes which want to
800     wait for that condition declare a <type>wait_queue_t</type>
801     referring to themselves, and place that in the queue.
802     </para>
803    
804     <sect1 id="queue-declaring">
805     <title>Declaring</title>
806    
807     <para>
808     You declare a <type>wait_queue_head_t</type> using the
809     <function>DECLARE_WAIT_QUEUE_HEAD()</function> macro, or using the
810     <function>init_waitqueue_head()</function> routine in your
811     initialization code.
812     </para>
813     </sect1>
814    
815     <sect1 id="queue-waitqueue">
816     <title>Queuing</title>
817    
818     <para>
819     Placing yourself in the waitqueue is fairly complex, because you
820     must put yourself in the queue before checking the condition.
821     There is a macro to do this:
822     <function>wait_event_interruptible()</function>
823    
824     <filename class="headerfile">include/linux/sched.h</filename> The
825     first argument is the wait queue head, and the second is an
826     expression which is evaluated; the macro returns
827     <returnvalue>0</returnvalue> when this expression is true, or
828     <returnvalue>-ERESTARTSYS</returnvalue> if a signal is received.
829     The <function>wait_event()</function> version ignores signals.
830     </para>
831     <para>
832     Do not use the <function>sleep_on()</function> function family -
833     it is very easy to accidentally introduce races; almost certainly
834     one of the <function>wait_event()</function> family will do, or a
835     loop around <function>schedule_timeout()</function>. If you choose
836     to loop around <function>schedule_timeout()</function> remember
837     you must set the task state (with
838     <function>set_current_state()</function>) on each iteration to avoid
839     busy-looping.
840     </para>
841    
842     </sect1>
843    
844     <sect1 id="queue-waking">
845     <title>Waking Up Queued Tasks</title>
846    
847     <para>
848     Call <function>wake_up()</function>
849    
850     <filename class="headerfile">include/linux/sched.h</filename>;,
851     which will wake up every process in the queue. The exception is
852     if one has <constant>TASK_EXCLUSIVE</constant> set, in which case
853     the remainder of the queue will not be woken.
854     </para>
855     </sect1>
856     </chapter>
857    
858     <chapter id="atomic-ops">
859     <title>Atomic Operations</title>
860    
861     <para>
862     Certain operations are guaranteed atomic on all platforms. The
863     first class of operations work on <type>atomic_t</type>
864    
865     <filename class="headerfile">include/asm/atomic.h</filename>; this
866     contains a signed integer (at least 24 bits long), and you must use
867     these functions to manipulate or read atomic_t variables.
868     <function>atomic_read()</function> and
869     <function>atomic_set()</function> get and set the counter,
870     <function>atomic_add()</function>,
871     <function>atomic_sub()</function>,
872     <function>atomic_inc()</function>,
873     <function>atomic_dec()</function>, and
874     <function>atomic_dec_and_test()</function> (returns
875     <returnvalue>true</returnvalue> if it was decremented to zero).
876     </para>
877    
878     <para>
879     Yes. It returns <returnvalue>true</returnvalue> (i.e. != 0) if the
880     atomic variable is zero.
881     </para>
882    
883     <para>
884     Note that these functions are slower than normal arithmetic, and
885     so should not be used unnecessarily. On some platforms they
886     are much slower, like 32-bit Sparc where they use a spinlock.
887     </para>
888    
889     <para>
890     The second class of atomic operations is atomic bit operations on a
891     <type>long</type>, defined in
892    
893     <filename class="headerfile">include/linux/bitops.h</filename>. These
894     operations generally take a pointer to the bit pattern, and a bit
895     number: 0 is the least significant bit.
896     <function>set_bit()</function>, <function>clear_bit()</function>
897     and <function>change_bit()</function> set, clear, and flip the
898     given bit. <function>test_and_set_bit()</function>,
899     <function>test_and_clear_bit()</function> and
900     <function>test_and_change_bit()</function> do the same thing,
901     except return true if the bit was previously set; these are
902     particularly useful for very simple locking.
903     </para>
904    
905     <para>
906     It is possible to call these operations with bit indices greater
907     than BITS_PER_LONG. The resulting behavior is strange on big-endian
908     platforms though so it is a good idea not to do this.
909     </para>
910    
911     <para>
912     Note that the order of bits depends on the architecture, and in
913     particular, the bitfield passed to these operations must be at
914     least as large as a <type>long</type>.
915     </para>
916     </chapter>
917    
918     <chapter id="symbols">
919     <title>Symbols</title>
920    
921     <para>
922     Within the kernel proper, the normal linking rules apply
923     (ie. unless a symbol is declared to be file scope with the
924     <type>static</type> keyword, it can be used anywhere in the
925     kernel). However, for modules, a special exported symbol table is
926     kept which limits the entry points to the kernel proper. Modules
927     can also export symbols.
928     </para>
929    
930     <sect1 id="sym-exportsymbols">
931     <title><function>EXPORT_SYMBOL()</function>
932     <filename class="headerfile">include/linux/module.h</filename></title>
933    
934     <para>
935     This is the classic method of exporting a symbol, and it works
936     for both modules and non-modules. In the kernel all these
937     declarations are often bundled into a single file to help
938     genksyms (which searches source files for these declarations).
939     See the comment on genksyms and Makefiles below.
940     </para>
941     </sect1>
942    
943     <sect1 id="sym-exportsymbols-gpl">
944     <title><function>EXPORT_SYMBOL_GPL()</function>
945     <filename class="headerfile">include/linux/module.h</filename></title>
946    
947     <para>
948     Similar to <function>EXPORT_SYMBOL()</function> except that the
949     symbols exported by <function>EXPORT_SYMBOL_GPL()</function> can
950     only be seen by modules with a
951     <function>MODULE_LICENSE()</function> that specifies a GPL
952     compatible license.
953     </para>
954     </sect1>
955     </chapter>
956    
957     <chapter id="conventions">
958     <title>Routines and Conventions</title>
959    
960     <sect1 id="conventions-doublelinkedlist">
961     <title>Double-linked lists
962     <filename class="headerfile">include/linux/list.h</filename></title>
963    
964     <para>
965     There are three sets of linked-list routines in the kernel
966     headers, but this one seems to be winning out (and Linus has
967     used it). If you don't have some particular pressing need for
968     a single list, it's a good choice. In fact, I don't care
969     whether it's a good choice or not, just use it so we can get
970     rid of the others.
971     </para>
972     </sect1>
973    
974     <sect1 id="convention-returns">
975     <title>Return Conventions</title>
976    
977     <para>
978     For code called in user context, it's very common to defy C
979     convention, and return <returnvalue>0</returnvalue> for success,
980     and a negative error number
981     (eg. <returnvalue>-EFAULT</returnvalue>) for failure. This can be
982     unintuitive at first, but it's fairly widespread in the networking
983     code, for example.
984     </para>
985    
986     <para>
987     The filesystem code uses <function>ERR_PTR()</function>
988    
989     <filename class="headerfile">include/linux/fs.h</filename>; to
990     encode a negative error number into a pointer, and
991     <function>IS_ERR()</function> and <function>PTR_ERR()</function>
992     to get it back out again: avoids a separate pointer parameter for
993     the error number. Icky, but in a good way.
994     </para>
995     </sect1>
996    
997     <sect1 id="conventions-borkedcompile">
998     <title>Breaking Compilation</title>
999    
1000     <para>
1001     Linus and the other developers sometimes change function or
1002     structure names in development kernels; this is not done just to
1003     keep everyone on their toes: it reflects a fundamental change
1004     (eg. can no longer be called with interrupts on, or does extra
1005     checks, or doesn't do checks which were caught before). Usually
1006     this is accompanied by a fairly complete note to the linux-kernel
1007     mailing list; search the archive. Simply doing a global replace
1008     on the file usually makes things <emphasis>worse</emphasis>.
1009     </para>
1010     </sect1>
1011    
1012     <sect1 id="conventions-initialising">
1013     <title>Initializing structure members</title>
1014    
1015     <para>
1016     The preferred method of initializing structures is to use
1017     designated initialisers, as defined by ISO C99, eg:
1018     </para>
1019     <programlisting>
1020     static struct block_device_operations opt_fops = {
1021     .open = opt_open,
1022     .release = opt_release,
1023     .ioctl = opt_ioctl,
1024     .check_media_change = opt_media_change,
1025     };
1026     </programlisting>
1027     <para>
1028     This makes it easy to grep for, and makes it clear which
1029     structure fields are set. You should do this because it looks
1030     cool.
1031     </para>
1032     </sect1>
1033    
1034     <sect1 id="conventions-gnu-extns">
1035     <title>GNU Extensions</title>
1036    
1037     <para>
1038     GNU Extensions are explicitly allowed in the Linux kernel.
1039     Note that some of the more complex ones are not very well
1040     supported, due to lack of general use, but the following are
1041     considered standard (see the GCC info page section "C
1042     Extensions" for more details - Yes, really the info page, the
1043     man page is only a short summary of the stuff in info):
1044     </para>
1045     <itemizedlist>
1046     <listitem>
1047     <para>
1048     Inline functions
1049     </para>
1050     </listitem>
1051     <listitem>
1052     <para>
1053     Statement expressions (ie. the ({ and }) constructs).
1054     </para>
1055     </listitem>
1056     <listitem>
1057     <para>
1058     Declaring attributes of a function / variable / type
1059     (__attribute__)
1060     </para>
1061     </listitem>
1062     <listitem>
1063     <para>
1064     typeof
1065     </para>
1066     </listitem>
1067     <listitem>
1068     <para>
1069     Zero length arrays
1070     </para>
1071     </listitem>
1072     <listitem>
1073     <para>
1074     Macro varargs
1075     </para>
1076     </listitem>
1077     <listitem>
1078     <para>
1079     Arithmetic on void pointers
1080     </para>
1081     </listitem>
1082     <listitem>
1083     <para>
1084     Non-Constant initializers
1085     </para>
1086     </listitem>
1087     <listitem>
1088     <para>
1089     Assembler Instructions (not outside arch/ and include/asm/)
1090     </para>
1091     </listitem>
1092     <listitem>
1093     <para>
1094     Function names as strings (__FUNCTION__)
1095     </para>
1096     </listitem>
1097     <listitem>
1098     <para>
1099     __builtin_constant_p()
1100     </para>
1101     </listitem>
1102     </itemizedlist>
1103    
1104     <para>
1105     Be wary when using long long in the kernel, the code gcc generates for
1106     it is horrible and worse: division and multiplication does not work
1107     on i386 because the GCC runtime functions for it are missing from
1108     the kernel environment.
1109     </para>
1110    
1111     <!-- FIXME: add a note about ANSI aliasing cleanness -->
1112     </sect1>
1113    
1114     <sect1 id="conventions-cplusplus">
1115     <title>C++</title>
1116    
1117     <para>
1118     Using C++ in the kernel is usually a bad idea, because the
1119     kernel does not provide the necessary runtime environment
1120     and the include files are not tested for it. It is still
1121     possible, but not recommended. If you really want to do
1122     this, forget about exceptions at least.
1123     </para>
1124     </sect1>
1125    
1126     <sect1 id="conventions-ifdef">
1127     <title>&num;if</title>
1128    
1129     <para>
1130     It is generally considered cleaner to use macros in header files
1131     (or at the top of .c files) to abstract away functions rather than
1132     using `#if' pre-processor statements throughout the source code.
1133     </para>
1134     </sect1>
1135     </chapter>
1136    
1137     <chapter id="submitting">
1138     <title>Putting Your Stuff in the Kernel</title>
1139    
1140     <para>
1141     In order to get your stuff into shape for official inclusion, or
1142     even to make a neat patch, there's administrative work to be
1143     done:
1144     </para>
1145     <itemizedlist>
1146     <listitem>
1147     <para>
1148     Figure out whose pond you've been pissing in. Look at the top of
1149     the source files, inside the <filename>MAINTAINERS</filename>
1150     file, and last of all in the <filename>CREDITS</filename> file.
1151     You should coordinate with this person to make sure you're not
1152     duplicating effort, or trying something that's already been
1153     rejected.
1154     </para>
1155    
1156     <para>
1157     Make sure you put your name and EMail address at the top of
1158     any files you create or mangle significantly. This is the
1159     first place people will look when they find a bug, or when
1160     <emphasis>they</emphasis> want to make a change.
1161     </para>
1162     </listitem>
1163    
1164     <listitem>
1165     <para>
1166     Usually you want a configuration option for your kernel hack.
1167     Edit <filename>Config.in</filename> in the appropriate directory
1168     (but under <filename>arch/</filename> it's called
1169     <filename>config.in</filename>). The Config Language used is not
1170     bash, even though it looks like bash; the safe way is to use only
1171     the constructs that you already see in
1172     <filename>Config.in</filename> files (see
1173     <filename>Documentation/kbuild/kconfig-language.txt</filename>).
1174     It's good to run "make xconfig" at least once to test (because
1175     it's the only one with a static parser).
1176     </para>
1177    
1178     <para>
1179     Variables which can be Y or N use <type>bool</type> followed by a
1180     tagline and the config define name (which must start with
1181     CONFIG_). The <type>tristate</type> function is the same, but
1182     allows the answer M (which defines
1183     <symbol>CONFIG_foo_MODULE</symbol> in your source, instead of
1184     <symbol>CONFIG_FOO</symbol>) if <symbol>CONFIG_MODULES</symbol>
1185     is enabled.
1186     </para>
1187    
1188     <para>
1189     You may well want to make your CONFIG option only visible if
1190     <symbol>CONFIG_EXPERIMENTAL</symbol> is enabled: this serves as a
1191     warning to users. There many other fancy things you can do: see
1192     the various <filename>Config.in</filename> files for ideas.
1193     </para>
1194     </listitem>
1195    
1196     <listitem>
1197     <para>
1198     Edit the <filename>Makefile</filename>: the CONFIG variables are
1199     exported here so you can conditionalize compilation with `ifeq'.
1200     If your file exports symbols then add the names to
1201     <varname>export-objs</varname> so that genksyms will find them.
1202     <caution>
1203     <para>
1204     There is a restriction on the kernel build system that objects
1205     which export symbols must have globally unique names.
1206     If your object does not have a globally unique name then the
1207     standard fix is to move the
1208     <function>EXPORT_SYMBOL()</function> statements to their own
1209     object with a unique name.
1210     This is why several systems have separate exporting objects,
1211     usually suffixed with ksyms.
1212     </para>
1213     </caution>
1214     </para>
1215     </listitem>
1216    
1217     <listitem>
1218     <para>
1219     Document your option in Documentation/Configure.help. Mention
1220     incompatibilities and issues here. <emphasis> Definitely
1221     </emphasis> end your description with <quote> if in doubt, say N
1222     </quote> (or, occasionally, `Y'); this is for people who have no
1223     idea what you are talking about.
1224     </para>
1225     </listitem>
1226    
1227     <listitem>
1228     <para>
1229     Put yourself in <filename>CREDITS</filename> if you've done
1230     something noteworthy, usually beyond a single file (your name
1231     should be at the top of the source files anyway).
1232     <filename>MAINTAINERS</filename> means you want to be consulted
1233     when changes are made to a subsystem, and hear about bugs; it
1234     implies a more-than-passing commitment to some part of the code.
1235     </para>
1236     </listitem>
1237    
1238     <listitem>
1239     <para>
1240     Finally, don't forget to read <filename>Documentation/SubmittingPatches</filename>
1241     and possibly <filename>Documentation/SubmittingDrivers</filename>.
1242     </para>
1243     </listitem>
1244     </itemizedlist>
1245     </chapter>
1246    
1247     <chapter id="cantrips">
1248     <title>Kernel Cantrips</title>
1249    
1250     <para>
1251     Some favorites from browsing the source. Feel free to add to this
1252     list.
1253     </para>
1254    
1255     <para>
1256     <filename>include/linux/brlock.h:</filename>
1257     </para>
1258     <programlisting>
1259     extern inline void br_read_lock (enum brlock_indices idx)
1260     {
1261     /*
1262     * This causes a link-time bug message if an
1263     * invalid index is used:
1264     */
1265     if (idx >= __BR_END)
1266     __br_lock_usage_bug();
1267    
1268     read_lock(&amp;__brlock_array[smp_processor_id()][idx]);
1269     }
1270     </programlisting>
1271    
1272     <para>
1273     <filename>include/linux/fs.h</filename>:
1274     </para>
1275     <programlisting>
1276     /*
1277     * Kernel pointers have redundant information, so we can use a
1278     * scheme where we can return either an error code or a dentry
1279     * pointer with the same return value.
1280     *
1281     * This should be a per-architecture thing, to allow different
1282     * error and pointer decisions.
1283     */
1284     #define ERR_PTR(err) ((void *)((long)(err)))
1285     #define PTR_ERR(ptr) ((long)(ptr))
1286     #define IS_ERR(ptr) ((unsigned long)(ptr) > (unsigned long)(-1000))
1287     </programlisting>
1288    
1289     <para>
1290     <filename>include/asm-i386/uaccess.h:</filename>
1291     </para>
1292    
1293     <programlisting>
1294     #define copy_to_user(to,from,n) \
1295     (__builtin_constant_p(n) ? \
1296     __constant_copy_to_user((to),(from),(n)) : \
1297     __generic_copy_to_user((to),(from),(n)))
1298     </programlisting>
1299    
1300     <para>
1301     <filename>arch/sparc/kernel/head.S:</filename>
1302     </para>
1303    
1304     <programlisting>
1305     /*
1306     * Sun people can't spell worth damn. "compatability" indeed.
1307     * At least we *know* we can't spell, and use a spell-checker.
1308     */
1309    
1310     /* Uh, actually Linus it is I who cannot spell. Too much murky
1311     * Sparc assembly will do this to ya.
1312     */
1313     C_LABEL(cputypvar):
1314     .asciz "compatability"
1315    
1316     /* Tested on SS-5, SS-10. Probably someone at Sun applied a spell-checker. */
1317     .align 4
1318     C_LABEL(cputypvar_sun4m):
1319     .asciz "compatible"
1320     </programlisting>
1321    
1322     <para>
1323     <filename>arch/sparc/lib/checksum.S:</filename>
1324     </para>
1325    
1326     <programlisting>
1327     /* Sun, you just can't beat me, you just can't. Stop trying,
1328     * give up. I'm serious, I am going to kick the living shit
1329     * out of you, game over, lights out.
1330     */
1331     </programlisting>
1332     </chapter>
1333    
1334     <chapter id="credits">
1335     <title>Thanks</title>
1336    
1337     <para>
1338     Thanks to Andi Kleen for the idea, answering my questions, fixing
1339     my mistakes, filling content, etc. Philipp Rumpf for more spelling
1340     and clarity fixes, and some excellent non-obvious points. Werner
1341     Almesberger for giving me a great summary of
1342     <function>disable_irq()</function>, and Jes Sorensen and Andrea
1343     Arcangeli added caveats. Michael Elizabeth Chastain for checking
1344     and adding to the Configure section. <!-- Rusty insisted on this
1345     bit; I didn't do it! --> Telsa Gwynne for teaching me DocBook.
1346     </para>
1347     </chapter>
1348     </book>
1349