Magellan Linux

Annotation of /alx-src/trunk/kernel26-alx/linux/Documentation/DocBook/kernel-locking.tmpl

Parent Directory Parent Directory | Revision Log Revision Log


Revision 628 - (hide annotations) (download)
Wed Mar 4 10:48:58 2009 UTC (15 years, 2 months ago) by niro
File size: 66534 byte(s)
import linux sources based on 2.6.12-alx-r9:
 -using linux-2.6.12.6
 -using 2.6.12-ck6 patch set
 -using fbsplash-0.9.2-r3
 -using vesafb-tng-0.9-rc7
 -using squashfs-2.2
 -added cddvd-cmdfilter-drop.patch as ck dropped it
 -added via-epia-dri (cle266) patch
 -added zd1211-svn-32 wlan driver (http://zd1211.ath.cx/download/)
 -added debian patches to zd1211 for wep256 etc

1 niro 628 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3     "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4    
5     <book id="LKLockingGuide">
6     <bookinfo>
7     <title>Unreliable Guide To Locking</title>
8    
9     <authorgroup>
10     <author>
11     <firstname>Rusty</firstname>
12     <surname>Russell</surname>
13     <affiliation>
14     <address>
15     <email>rusty@rustcorp.com.au</email>
16     </address>
17     </affiliation>
18     </author>
19     </authorgroup>
20    
21     <copyright>
22     <year>2003</year>
23     <holder>Rusty Russell</holder>
24     </copyright>
25    
26     <legalnotice>
27     <para>
28     This documentation is free software; you can redistribute
29     it and/or modify it under the terms of the GNU General Public
30     License as published by the Free Software Foundation; either
31     version 2 of the License, or (at your option) any later
32     version.
33     </para>
34    
35     <para>
36     This program is distributed in the hope that it will be
37     useful, but WITHOUT ANY WARRANTY; without even the implied
38     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
39     See the GNU General Public License for more details.
40     </para>
41    
42     <para>
43     You should have received a copy of the GNU General Public
44     License along with this program; if not, write to the Free
45     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
46     MA 02111-1307 USA
47     </para>
48    
49     <para>
50     For more details see the file COPYING in the source
51     distribution of Linux.
52     </para>
53     </legalnotice>
54     </bookinfo>
55    
56     <toc></toc>
57     <chapter id="intro">
58     <title>Introduction</title>
59     <para>
60     Welcome, to Rusty's Remarkably Unreliable Guide to Kernel
61     Locking issues. This document describes the locking systems in
62     the Linux Kernel in 2.6.
63     </para>
64     <para>
65     With the wide availability of HyperThreading, and <firstterm
66     linkend="gloss-preemption">preemption </firstterm> in the Linux
67     Kernel, everyone hacking on the kernel needs to know the
68     fundamentals of concurrency and locking for
69     <firstterm linkend="gloss-smp"><acronym>SMP</acronym></firstterm>.
70     </para>
71     </chapter>
72    
73     <chapter id="races">
74     <title>The Problem With Concurrency</title>
75     <para>
76     (Skip this if you know what a Race Condition is).
77     </para>
78     <para>
79     In a normal program, you can increment a counter like so:
80     </para>
81     <programlisting>
82     very_important_count++;
83     </programlisting>
84    
85     <para>
86     This is what they would expect to happen:
87     </para>
88    
89     <table>
90     <title>Expected Results</title>
91    
92     <tgroup cols="2" align="left">
93    
94     <thead>
95     <row>
96     <entry>Instance 1</entry>
97     <entry>Instance 2</entry>
98     </row>
99     </thead>
100    
101     <tbody>
102     <row>
103     <entry>read very_important_count (5)</entry>
104     <entry></entry>
105     </row>
106     <row>
107     <entry>add 1 (6)</entry>
108     <entry></entry>
109     </row>
110     <row>
111     <entry>write very_important_count (6)</entry>
112     <entry></entry>
113     </row>
114     <row>
115     <entry></entry>
116     <entry>read very_important_count (6)</entry>
117     </row>
118     <row>
119     <entry></entry>
120     <entry>add 1 (7)</entry>
121     </row>
122     <row>
123     <entry></entry>
124     <entry>write very_important_count (7)</entry>
125     </row>
126     </tbody>
127    
128     </tgroup>
129     </table>
130    
131     <para>
132     This is what might happen:
133     </para>
134    
135     <table>
136     <title>Possible Results</title>
137    
138     <tgroup cols="2" align="left">
139     <thead>
140     <row>
141     <entry>Instance 1</entry>
142     <entry>Instance 2</entry>
143     </row>
144     </thead>
145    
146     <tbody>
147     <row>
148     <entry>read very_important_count (5)</entry>
149     <entry></entry>
150     </row>
151     <row>
152     <entry></entry>
153     <entry>read very_important_count (5)</entry>
154     </row>
155     <row>
156     <entry>add 1 (6)</entry>
157     <entry></entry>
158     </row>
159     <row>
160     <entry></entry>
161     <entry>add 1 (6)</entry>
162     </row>
163     <row>
164     <entry>write very_important_count (6)</entry>
165     <entry></entry>
166     </row>
167     <row>
168     <entry></entry>
169     <entry>write very_important_count (6)</entry>
170     </row>
171     </tbody>
172     </tgroup>
173     </table>
174    
175     <sect1 id="race-condition">
176     <title>Race Conditions and Critical Regions</title>
177     <para>
178     This overlap, where the result depends on the
179     relative timing of multiple tasks, is called a <firstterm>race condition</firstterm>.
180     The piece of code containing the concurrency issue is called a
181     <firstterm>critical region</firstterm>. And especially since Linux starting running
182     on SMP machines, they became one of the major issues in kernel
183     design and implementation.
184     </para>
185     <para>
186     Preemption can have the same effect, even if there is only one
187     CPU: by preempting one task during the critical region, we have
188     exactly the same race condition. In this case the thread which
189     preempts might run the critical region itself.
190     </para>
191     <para>
192     The solution is to recognize when these simultaneous accesses
193     occur, and use locks to make sure that only one instance can
194     enter the critical region at any time. There are many
195     friendly primitives in the Linux kernel to help you do this.
196     And then there are the unfriendly primitives, but I'll pretend
197     they don't exist.
198     </para>
199     </sect1>
200     </chapter>
201    
202     <chapter id="locks">
203     <title>Locking in the Linux Kernel</title>
204    
205     <para>
206     If I could give you one piece of advice: never sleep with anyone
207     crazier than yourself. But if I had to give you advice on
208     locking: <emphasis>keep it simple</emphasis>.
209     </para>
210    
211     <para>
212     Be reluctant to introduce new locks.
213     </para>
214    
215     <para>
216     Strangely enough, this last one is the exact reverse of my advice when
217     you <emphasis>have</emphasis> slept with someone crazier than yourself.
218     And you should think about getting a big dog.
219     </para>
220    
221     <sect1 id="lock-intro">
222     <title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title>
223    
224     <para>
225     There are two main types of kernel locks. The fundamental type
226     is the spinlock
227     (<filename class="headerfile">include/asm/spinlock.h</filename>),
228     which is a very simple single-holder lock: if you can't get the
229     spinlock, you keep trying (spinning) until you can. Spinlocks are
230     very small and fast, and can be used anywhere.
231     </para>
232     <para>
233     The second type is a semaphore
234     (<filename class="headerfile">include/asm/semaphore.h</filename>): it
235     can have more than one holder at any time (the number decided at
236     initialization time), although it is most commonly used as a
237     single-holder lock (a mutex). If you can't get a semaphore,
238     your task will put itself on the queue, and be woken up when the
239     semaphore is released. This means the CPU will do something
240     else while you are waiting, but there are many cases when you
241     simply can't sleep (see <xref linkend="sleeping-things"/>), and so
242     have to use a spinlock instead.
243     </para>
244     <para>
245     Neither type of lock is recursive: see
246     <xref linkend="deadlock"/>.
247     </para>
248     </sect1>
249    
250     <sect1 id="uniprocessor">
251     <title>Locks and Uniprocessor Kernels</title>
252    
253     <para>
254     For kernels compiled without <symbol>CONFIG_SMP</symbol>, and
255     without <symbol>CONFIG_PREEMPT</symbol> spinlocks do not exist at
256     all. This is an excellent design decision: when no-one else can
257     run at the same time, there is no reason to have a lock.
258     </para>
259    
260     <para>
261     If the kernel is compiled without <symbol>CONFIG_SMP</symbol>,
262     but <symbol>CONFIG_PREEMPT</symbol> is set, then spinlocks
263     simply disable preemption, which is sufficient to prevent any
264     races. For most purposes, we can think of preemption as
265     equivalent to SMP, and not worry about it separately.
266     </para>
267    
268     <para>
269     You should always test your locking code with <symbol>CONFIG_SMP</symbol>
270     and <symbol>CONFIG_PREEMPT</symbol> enabled, even if you don't have an SMP test box, because it
271     will still catch some kinds of locking bugs.
272     </para>
273    
274     <para>
275     Semaphores still exist, because they are required for
276     synchronization between <firstterm linkend="gloss-usercontext">user
277     contexts</firstterm>, as we will see below.
278     </para>
279     </sect1>
280    
281     <sect1 id="usercontextlocking">
282     <title>Locking Only In User Context</title>
283    
284     <para>
285     If you have a data structure which is only ever accessed from
286     user context, then you can use a simple semaphore
287     (<filename>linux/asm/semaphore.h</filename>) to protect it. This
288     is the most trivial case: you initialize the semaphore to the number
289     of resources available (usually 1), and call
290     <function>down_interruptible()</function> to grab the semaphore, and
291     <function>up()</function> to release it. There is also a
292     <function>down()</function>, which should be avoided, because it
293     will not return if a signal is received.
294     </para>
295    
296     <para>
297     Example: <filename>linux/net/core/netfilter.c</filename> allows
298     registration of new <function>setsockopt()</function> and
299     <function>getsockopt()</function> calls, with
300     <function>nf_register_sockopt()</function>. Registration and
301     de-registration are only done on module load and unload (and boot
302     time, where there is no concurrency), and the list of registrations
303     is only consulted for an unknown <function>setsockopt()</function>
304     or <function>getsockopt()</function> system call. The
305     <varname>nf_sockopt_mutex</varname> is perfect to protect this,
306     especially since the setsockopt and getsockopt calls may well
307     sleep.
308     </para>
309     </sect1>
310    
311     <sect1 id="lock-user-bh">
312     <title>Locking Between User Context and Softirqs</title>
313    
314     <para>
315     If a <firstterm linkend="gloss-softirq">softirq</firstterm> shares
316     data with user context, you have two problems. Firstly, the current
317     user context can be interrupted by a softirq, and secondly, the
318     critical region could be entered from another CPU. This is where
319     <function>spin_lock_bh()</function>
320     (<filename class="headerfile">include/linux/spinlock.h</filename>) is
321     used. It disables softirqs on that CPU, then grabs the lock.
322     <function>spin_unlock_bh()</function> does the reverse. (The
323     '_bh' suffix is a historical reference to "Bottom Halves", the
324     old name for software interrupts. It should really be
325     called spin_lock_softirq()' in a perfect world).
326     </para>
327    
328     <para>
329     Note that you can also use <function>spin_lock_irq()</function>
330     or <function>spin_lock_irqsave()</function> here, which stop
331     hardware interrupts as well: see <xref linkend="hardirq-context"/>.
332     </para>
333    
334     <para>
335     This works perfectly for <firstterm linkend="gloss-up"><acronym>UP
336     </acronym></firstterm> as well: the spin lock vanishes, and this macro
337     simply becomes <function>local_bh_disable()</function>
338     (<filename class="headerfile">include/linux/interrupt.h</filename>), which
339     protects you from the softirq being run.
340     </para>
341     </sect1>
342    
343     <sect1 id="lock-user-tasklet">
344     <title>Locking Between User Context and Tasklets</title>
345    
346     <para>
347     This is exactly the same as above, because <firstterm
348     linkend="gloss-tasklet">tasklets</firstterm> are actually run
349     from a softirq.
350     </para>
351     </sect1>
352    
353     <sect1 id="lock-user-timers">
354     <title>Locking Between User Context and Timers</title>
355    
356     <para>
357     This, too, is exactly the same as above, because <firstterm
358     linkend="gloss-timers">timers</firstterm> are actually run from
359     a softirq. From a locking point of view, tasklets and timers
360     are identical.
361     </para>
362     </sect1>
363    
364     <sect1 id="lock-tasklets">
365     <title>Locking Between Tasklets/Timers</title>
366    
367     <para>
368     Sometimes a tasklet or timer might want to share data with
369     another tasklet or timer.
370     </para>
371    
372     <sect2 id="lock-tasklets-same">
373     <title>The Same Tasklet/Timer</title>
374     <para>
375     Since a tasklet is never run on two CPUs at once, you don't
376     need to worry about your tasklet being reentrant (running
377     twice at once), even on SMP.
378     </para>
379     </sect2>
380    
381     <sect2 id="lock-tasklets-different">
382     <title>Different Tasklets/Timers</title>
383     <para>
384     If another tasklet/timer wants
385     to share data with your tasklet or timer , you will both need to use
386     <function>spin_lock()</function> and
387     <function>spin_unlock()</function> calls.
388     <function>spin_lock_bh()</function> is
389     unnecessary here, as you are already in a tasklet, and
390     none will be run on the same CPU.
391     </para>
392     </sect2>
393     </sect1>
394    
395     <sect1 id="lock-softirqs">
396     <title>Locking Between Softirqs</title>
397    
398     <para>
399     Often a softirq might
400     want to share data with itself or a tasklet/timer.
401     </para>
402    
403     <sect2 id="lock-softirqs-same">
404     <title>The Same Softirq</title>
405    
406     <para>
407     The same softirq can run on the other CPUs: you can use a
408     per-CPU array (see <xref linkend="per-cpu"/>) for better
409     performance. If you're going so far as to use a softirq,
410     you probably care about scalable performance enough
411     to justify the extra complexity.
412     </para>
413    
414     <para>
415     You'll need to use <function>spin_lock()</function> and
416     <function>spin_unlock()</function> for shared data.
417     </para>
418     </sect2>
419    
420     <sect2 id="lock-softirqs-different">
421     <title>Different Softirqs</title>
422    
423     <para>
424     You'll need to use <function>spin_lock()</function> and
425     <function>spin_unlock()</function> for shared data, whether it
426     be a timer, tasklet, different softirq or the same or another
427     softirq: any of them could be running on a different CPU.
428     </para>
429     </sect2>
430     </sect1>
431     </chapter>
432    
433     <chapter id="hardirq-context">
434     <title>Hard IRQ Context</title>
435    
436     <para>
437     Hardware interrupts usually communicate with a
438     tasklet or softirq. Frequently this involves putting work in a
439     queue, which the softirq will take out.
440     </para>
441    
442     <sect1 id="hardirq-softirq">
443     <title>Locking Between Hard IRQ and Softirqs/Tasklets</title>
444    
445     <para>
446     If a hardware irq handler shares data with a softirq, you have
447     two concerns. Firstly, the softirq processing can be
448     interrupted by a hardware interrupt, and secondly, the
449     critical region could be entered by a hardware interrupt on
450     another CPU. This is where <function>spin_lock_irq()</function> is
451     used. It is defined to disable interrupts on that cpu, then grab
452     the lock. <function>spin_unlock_irq()</function> does the reverse.
453     </para>
454    
455     <para>
456     The irq handler does not to use
457     <function>spin_lock_irq()</function>, because the softirq cannot
458     run while the irq handler is running: it can use
459     <function>spin_lock()</function>, which is slightly faster. The
460     only exception would be if a different hardware irq handler uses
461     the same lock: <function>spin_lock_irq()</function> will stop
462     that from interrupting us.
463     </para>
464    
465     <para>
466     This works perfectly for UP as well: the spin lock vanishes,
467     and this macro simply becomes <function>local_irq_disable()</function>
468     (<filename class="headerfile">include/asm/smp.h</filename>), which
469     protects you from the softirq/tasklet/BH being run.
470     </para>
471    
472     <para>
473     <function>spin_lock_irqsave()</function>
474     (<filename>include/linux/spinlock.h</filename>) is a variant
475     which saves whether interrupts were on or off in a flags word,
476     which is passed to <function>spin_unlock_irqrestore()</function>. This
477     means that the same code can be used inside an hard irq handler (where
478     interrupts are already off) and in softirqs (where the irq
479     disabling is required).
480     </para>
481    
482     <para>
483     Note that softirqs (and hence tasklets and timers) are run on
484     return from hardware interrupts, so
485     <function>spin_lock_irq()</function> also stops these. In that
486     sense, <function>spin_lock_irqsave()</function> is the most
487     general and powerful locking function.
488     </para>
489    
490     </sect1>
491     <sect1 id="hardirq-hardirq">
492     <title>Locking Between Two Hard IRQ Handlers</title>
493     <para>
494     It is rare to have to share data between two IRQ handlers, but
495     if you do, <function>spin_lock_irqsave()</function> should be
496     used: it is architecture-specific whether all interrupts are
497     disabled inside irq handlers themselves.
498     </para>
499     </sect1>
500    
501     </chapter>
502    
503     <chapter id="cheatsheet">
504     <title>Cheat Sheet For Locking</title>
505     <para>
506     Pete Zaitcev gives the following summary:
507     </para>
508     <itemizedlist>
509     <listitem>
510     <para>
511     If you are in a process context (any syscall) and want to
512     lock other process out, use a semaphore. You can take a semaphore
513     and sleep (<function>copy_from_user*(</function> or
514     <function>kmalloc(x,GFP_KERNEL)</function>).
515     </para>
516     </listitem>
517     <listitem>
518     <para>
519     Otherwise (== data can be touched in an interrupt), use
520     <function>spin_lock_irqsave()</function> and
521     <function>spin_unlock_irqrestore()</function>.
522     </para>
523     </listitem>
524     <listitem>
525     <para>
526     Avoid holding spinlock for more than 5 lines of code and
527     across any function call (except accessors like
528     <function>readb</function>).
529     </para>
530     </listitem>
531     </itemizedlist>
532    
533     <sect1 id="minimum-lock-reqirements">
534     <title>Table of Minimum Requirements</title>
535    
536     <para> The following table lists the <emphasis>minimum</emphasis>
537     locking requirements between various contexts. In some cases,
538     the same context can only be running on one CPU at a time, so
539     no locking is required for that context (eg. a particular
540     thread can only run on one CPU at a time, but if it needs
541     shares data with another thread, locking is required).
542     </para>
543     <para>
544     Remember the advice above: you can always use
545     <function>spin_lock_irqsave()</function>, which is a superset
546     of all other spinlock primitives.
547     </para>
548     <table>
549     <title>Table of Locking Requirements</title>
550     <tgroup cols="11">
551     <tbody>
552     <row>
553     <entry></entry>
554     <entry>IRQ Handler A</entry>
555     <entry>IRQ Handler B</entry>
556     <entry>Softirq A</entry>
557     <entry>Softirq B</entry>
558     <entry>Tasklet A</entry>
559     <entry>Tasklet B</entry>
560     <entry>Timer A</entry>
561     <entry>Timer B</entry>
562     <entry>User Context A</entry>
563     <entry>User Context B</entry>
564     </row>
565    
566     <row>
567     <entry>IRQ Handler A</entry>
568     <entry>None</entry>
569     </row>
570    
571     <row>
572     <entry>IRQ Handler B</entry>
573     <entry>spin_lock_irqsave</entry>
574     <entry>None</entry>
575     </row>
576    
577     <row>
578     <entry>Softirq A</entry>
579     <entry>spin_lock_irq</entry>
580     <entry>spin_lock_irq</entry>
581     <entry>spin_lock</entry>
582     </row>
583    
584     <row>
585     <entry>Softirq B</entry>
586     <entry>spin_lock_irq</entry>
587     <entry>spin_lock_irq</entry>
588     <entry>spin_lock</entry>
589     <entry>spin_lock</entry>
590     </row>
591    
592     <row>
593     <entry>Tasklet A</entry>
594     <entry>spin_lock_irq</entry>
595     <entry>spin_lock_irq</entry>
596     <entry>spin_lock</entry>
597     <entry>spin_lock</entry>
598     <entry>None</entry>
599     </row>
600    
601     <row>
602     <entry>Tasklet B</entry>
603     <entry>spin_lock_irq</entry>
604     <entry>spin_lock_irq</entry>
605     <entry>spin_lock</entry>
606     <entry>spin_lock</entry>
607     <entry>spin_lock</entry>
608     <entry>None</entry>
609     </row>
610    
611     <row>
612     <entry>Timer A</entry>
613     <entry>spin_lock_irq</entry>
614     <entry>spin_lock_irq</entry>
615     <entry>spin_lock</entry>
616     <entry>spin_lock</entry>
617     <entry>spin_lock</entry>
618     <entry>spin_lock</entry>
619     <entry>None</entry>
620     </row>
621    
622     <row>
623     <entry>Timer B</entry>
624     <entry>spin_lock_irq</entry>
625     <entry>spin_lock_irq</entry>
626     <entry>spin_lock</entry>
627     <entry>spin_lock</entry>
628     <entry>spin_lock</entry>
629     <entry>spin_lock</entry>
630     <entry>spin_lock</entry>
631     <entry>None</entry>
632     </row>
633    
634     <row>
635     <entry>User Context A</entry>
636     <entry>spin_lock_irq</entry>
637     <entry>spin_lock_irq</entry>
638     <entry>spin_lock_bh</entry>
639     <entry>spin_lock_bh</entry>
640     <entry>spin_lock_bh</entry>
641     <entry>spin_lock_bh</entry>
642     <entry>spin_lock_bh</entry>
643     <entry>spin_lock_bh</entry>
644     <entry>None</entry>
645     </row>
646    
647     <row>
648     <entry>User Context B</entry>
649     <entry>spin_lock_irq</entry>
650     <entry>spin_lock_irq</entry>
651     <entry>spin_lock_bh</entry>
652     <entry>spin_lock_bh</entry>
653     <entry>spin_lock_bh</entry>
654     <entry>spin_lock_bh</entry>
655     <entry>spin_lock_bh</entry>
656     <entry>spin_lock_bh</entry>
657     <entry>down_interruptible</entry>
658     <entry>None</entry>
659     </row>
660    
661     </tbody>
662     </tgroup>
663     </table>
664     </sect1>
665     </chapter>
666    
667     <chapter id="Examples">
668     <title>Common Examples</title>
669     <para>
670     Let's step through a simple example: a cache of number to name
671     mappings. The cache keeps a count of how often each of the objects is
672     used, and when it gets full, throws out the least used one.
673    
674     </para>
675    
676     <sect1 id="examples-usercontext">
677     <title>All In User Context</title>
678     <para>
679     For our first example, we assume that all operations are in user
680     context (ie. from system calls), so we can sleep. This means we can
681     use a semaphore to protect the cache and all the objects within
682     it. Here's the code:
683     </para>
684    
685     <programlisting>
686     #include &lt;linux/list.h&gt;
687     #include &lt;linux/slab.h&gt;
688     #include &lt;linux/string.h&gt;
689     #include &lt;asm/semaphore.h&gt;
690     #include &lt;asm/errno.h&gt;
691    
692     struct object
693     {
694     struct list_head list;
695     int id;
696     char name[32];
697     int popularity;
698     };
699    
700     /* Protects the cache, cache_num, and the objects within it */
701     static DECLARE_MUTEX(cache_lock);
702     static LIST_HEAD(cache);
703     static unsigned int cache_num = 0;
704     #define MAX_CACHE_SIZE 10
705    
706     /* Must be holding cache_lock */
707     static struct object *__cache_find(int id)
708     {
709     struct object *i;
710    
711     list_for_each_entry(i, &amp;cache, list)
712     if (i-&gt;id == id) {
713     i-&gt;popularity++;
714     return i;
715     }
716     return NULL;
717     }
718    
719     /* Must be holding cache_lock */
720     static void __cache_delete(struct object *obj)
721     {
722     BUG_ON(!obj);
723     list_del(&amp;obj-&gt;list);
724     kfree(obj);
725     cache_num--;
726     }
727    
728     /* Must be holding cache_lock */
729     static void __cache_add(struct object *obj)
730     {
731     list_add(&amp;obj-&gt;list, &amp;cache);
732     if (++cache_num > MAX_CACHE_SIZE) {
733     struct object *i, *outcast = NULL;
734     list_for_each_entry(i, &amp;cache, list) {
735     if (!outcast || i-&gt;popularity &lt; outcast-&gt;popularity)
736     outcast = i;
737     }
738     __cache_delete(outcast);
739     }
740     }
741    
742     int cache_add(int id, const char *name)
743     {
744     struct object *obj;
745    
746     if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
747     return -ENOMEM;
748    
749     strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
750     obj-&gt;id = id;
751     obj-&gt;popularity = 0;
752    
753     down(&amp;cache_lock);
754     __cache_add(obj);
755     up(&amp;cache_lock);
756     return 0;
757     }
758    
759     void cache_delete(int id)
760     {
761     down(&amp;cache_lock);
762     __cache_delete(__cache_find(id));
763     up(&amp;cache_lock);
764     }
765    
766     int cache_find(int id, char *name)
767     {
768     struct object *obj;
769     int ret = -ENOENT;
770    
771     down(&amp;cache_lock);
772     obj = __cache_find(id);
773     if (obj) {
774     ret = 0;
775     strcpy(name, obj-&gt;name);
776     }
777     up(&amp;cache_lock);
778     return ret;
779     }
780     </programlisting>
781    
782     <para>
783     Note that we always make sure we have the cache_lock when we add,
784     delete, or look up the cache: both the cache infrastructure itself and
785     the contents of the objects are protected by the lock. In this case
786     it's easy, since we copy the data for the user, and never let them
787     access the objects directly.
788     </para>
789     <para>
790     There is a slight (and common) optimization here: in
791     <function>cache_add</function> we set up the fields of the object
792     before grabbing the lock. This is safe, as no-one else can access it
793     until we put it in cache.
794     </para>
795     </sect1>
796    
797     <sect1 id="examples-interrupt">
798     <title>Accessing From Interrupt Context</title>
799     <para>
800     Now consider the case where <function>cache_find</function> can be
801     called from interrupt context: either a hardware interrupt or a
802     softirq. An example would be a timer which deletes object from the
803     cache.
804     </para>
805     <para>
806     The change is shown below, in standard patch format: the
807     <symbol>-</symbol> are lines which are taken away, and the
808     <symbol>+</symbol> are lines which are added.
809     </para>
810     <programlisting>
811     --- cache.c.usercontext 2003-12-09 13:58:54.000000000 +1100
812     +++ cache.c.interrupt 2003-12-09 14:07:49.000000000 +1100
813     @@ -12,7 +12,7 @@
814     int popularity;
815     };
816    
817     -static DECLARE_MUTEX(cache_lock);
818     +static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
819     static LIST_HEAD(cache);
820     static unsigned int cache_num = 0;
821     #define MAX_CACHE_SIZE 10
822     @@ -55,6 +55,7 @@
823     int cache_add(int id, const char *name)
824     {
825     struct object *obj;
826     + unsigned long flags;
827    
828     if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL)
829     return -ENOMEM;
830     @@ -63,30 +64,33 @@
831     obj-&gt;id = id;
832     obj-&gt;popularity = 0;
833    
834     - down(&amp;cache_lock);
835     + spin_lock_irqsave(&amp;cache_lock, flags);
836     __cache_add(obj);
837     - up(&amp;cache_lock);
838     + spin_unlock_irqrestore(&amp;cache_lock, flags);
839     return 0;
840     }
841    
842     void cache_delete(int id)
843     {
844     - down(&amp;cache_lock);
845     + unsigned long flags;
846     +
847     + spin_lock_irqsave(&amp;cache_lock, flags);
848     __cache_delete(__cache_find(id));
849     - up(&amp;cache_lock);
850     + spin_unlock_irqrestore(&amp;cache_lock, flags);
851     }
852    
853     int cache_find(int id, char *name)
854     {
855     struct object *obj;
856     int ret = -ENOENT;
857     + unsigned long flags;
858    
859     - down(&amp;cache_lock);
860     + spin_lock_irqsave(&amp;cache_lock, flags);
861     obj = __cache_find(id);
862     if (obj) {
863     ret = 0;
864     strcpy(name, obj-&gt;name);
865     }
866     - up(&amp;cache_lock);
867     + spin_unlock_irqrestore(&amp;cache_lock, flags);
868     return ret;
869     }
870     </programlisting>
871    
872     <para>
873     Note that the <function>spin_lock_irqsave</function> will turn off
874     interrupts if they are on, otherwise does nothing (if we are already
875     in an interrupt handler), hence these functions are safe to call from
876     any context.
877     </para>
878     <para>
879     Unfortunately, <function>cache_add</function> calls
880     <function>kmalloc</function> with the <symbol>GFP_KERNEL</symbol>
881     flag, which is only legal in user context. I have assumed that
882     <function>cache_add</function> is still only called in user context,
883     otherwise this should become a parameter to
884     <function>cache_add</function>.
885     </para>
886     </sect1>
887     <sect1 id="examples-refcnt">
888     <title>Exposing Objects Outside This File</title>
889     <para>
890     If our objects contained more information, it might not be sufficient
891     to copy the information in and out: other parts of the code might want
892     to keep pointers to these objects, for example, rather than looking up
893     the id every time. This produces two problems.
894     </para>
895     <para>
896     The first problem is that we use the <symbol>cache_lock</symbol> to
897     protect objects: we'd need to make this non-static so the rest of the
898     code can use it. This makes locking trickier, as it is no longer all
899     in one place.
900     </para>
901     <para>
902     The second problem is the lifetime problem: if another structure keeps
903     a pointer to an object, it presumably expects that pointer to remain
904     valid. Unfortunately, this is only guaranteed while you hold the
905     lock, otherwise someone might call <function>cache_delete</function>
906     and even worse, add another object, re-using the same address.
907     </para>
908     <para>
909     As there is only one lock, you can't hold it forever: no-one else would
910     get any work done.
911     </para>
912     <para>
913     The solution to this problem is to use a reference count: everyone who
914     has a pointer to the object increases it when they first get the
915     object, and drops the reference count when they're finished with it.
916     Whoever drops it to zero knows it is unused, and can actually delete it.
917     </para>
918     <para>
919     Here is the code:
920     </para>
921    
922     <programlisting>
923     --- cache.c.interrupt 2003-12-09 14:25:43.000000000 +1100
924     +++ cache.c.refcnt 2003-12-09 14:33:05.000000000 +1100
925     @@ -7,6 +7,7 @@
926     struct object
927     {
928     struct list_head list;
929     + unsigned int refcnt;
930     int id;
931     char name[32];
932     int popularity;
933     @@ -17,6 +18,35 @@
934     static unsigned int cache_num = 0;
935     #define MAX_CACHE_SIZE 10
936    
937     +static void __object_put(struct object *obj)
938     +{
939     + if (--obj-&gt;refcnt == 0)
940     + kfree(obj);
941     +}
942     +
943     +static void __object_get(struct object *obj)
944     +{
945     + obj-&gt;refcnt++;
946     +}
947     +
948     +void object_put(struct object *obj)
949     +{
950     + unsigned long flags;
951     +
952     + spin_lock_irqsave(&amp;cache_lock, flags);
953     + __object_put(obj);
954     + spin_unlock_irqrestore(&amp;cache_lock, flags);
955     +}
956     +
957     +void object_get(struct object *obj)
958     +{
959     + unsigned long flags;
960     +
961     + spin_lock_irqsave(&amp;cache_lock, flags);
962     + __object_get(obj);
963     + spin_unlock_irqrestore(&amp;cache_lock, flags);
964     +}
965     +
966     /* Must be holding cache_lock */
967     static struct object *__cache_find(int id)
968     {
969     @@ -35,6 +65,7 @@
970     {
971     BUG_ON(!obj);
972     list_del(&amp;obj-&gt;list);
973     + __object_put(obj);
974     cache_num--;
975     }
976    
977     @@ -63,6 +94,7 @@
978     strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
979     obj-&gt;id = id;
980     obj-&gt;popularity = 0;
981     + obj-&gt;refcnt = 1; /* The cache holds a reference */
982    
983     spin_lock_irqsave(&amp;cache_lock, flags);
984     __cache_add(obj);
985     @@ -79,18 +111,15 @@
986     spin_unlock_irqrestore(&amp;cache_lock, flags);
987     }
988    
989     -int cache_find(int id, char *name)
990     +struct object *cache_find(int id)
991     {
992     struct object *obj;
993     - int ret = -ENOENT;
994     unsigned long flags;
995    
996     spin_lock_irqsave(&amp;cache_lock, flags);
997     obj = __cache_find(id);
998     - if (obj) {
999     - ret = 0;
1000     - strcpy(name, obj-&gt;name);
1001     - }
1002     + if (obj)
1003     + __object_get(obj);
1004     spin_unlock_irqrestore(&amp;cache_lock, flags);
1005     - return ret;
1006     + return obj;
1007     }
1008     </programlisting>
1009    
1010     <para>
1011     We encapsulate the reference counting in the standard 'get' and 'put'
1012     functions. Now we can return the object itself from
1013     <function>cache_find</function> which has the advantage that the user
1014     can now sleep holding the object (eg. to
1015     <function>copy_to_user</function> to name to userspace).
1016     </para>
1017     <para>
1018     The other point to note is that I said a reference should be held for
1019     every pointer to the object: thus the reference count is 1 when first
1020     inserted into the cache. In some versions the framework does not hold
1021     a reference count, but they are more complicated.
1022     </para>
1023    
1024     <sect2 id="examples-refcnt-atomic">
1025     <title>Using Atomic Operations For The Reference Count</title>
1026     <para>
1027     In practice, <type>atomic_t</type> would usually be used for
1028     <structfield>refcnt</structfield>. There are a number of atomic
1029     operations defined in
1030    
1031     <filename class="headerfile">include/asm/atomic.h</filename>: these are
1032     guaranteed to be seen atomically from all CPUs in the system, so no
1033     lock is required. In this case, it is simpler than using spinlocks,
1034     although for anything non-trivial using spinlocks is clearer. The
1035     <function>atomic_inc</function> and
1036     <function>atomic_dec_and_test</function> are used instead of the
1037     standard increment and decrement operators, and the lock is no longer
1038     used to protect the reference count itself.
1039     </para>
1040    
1041     <programlisting>
1042     --- cache.c.refcnt 2003-12-09 15:00:35.000000000 +1100
1043     +++ cache.c.refcnt-atomic 2003-12-11 15:49:42.000000000 +1100
1044     @@ -7,7 +7,7 @@
1045     struct object
1046     {
1047     struct list_head list;
1048     - unsigned int refcnt;
1049     + atomic_t refcnt;
1050     int id;
1051     char name[32];
1052     int popularity;
1053     @@ -18,33 +18,15 @@
1054     static unsigned int cache_num = 0;
1055     #define MAX_CACHE_SIZE 10
1056    
1057     -static void __object_put(struct object *obj)
1058     -{
1059     - if (--obj-&gt;refcnt == 0)
1060     - kfree(obj);
1061     -}
1062     -
1063     -static void __object_get(struct object *obj)
1064     -{
1065     - obj-&gt;refcnt++;
1066     -}
1067     -
1068     void object_put(struct object *obj)
1069     {
1070     - unsigned long flags;
1071     -
1072     - spin_lock_irqsave(&amp;cache_lock, flags);
1073     - __object_put(obj);
1074     - spin_unlock_irqrestore(&amp;cache_lock, flags);
1075     + if (atomic_dec_and_test(&amp;obj-&gt;refcnt))
1076     + kfree(obj);
1077     }
1078    
1079     void object_get(struct object *obj)
1080     {
1081     - unsigned long flags;
1082     -
1083     - spin_lock_irqsave(&amp;cache_lock, flags);
1084     - __object_get(obj);
1085     - spin_unlock_irqrestore(&amp;cache_lock, flags);
1086     + atomic_inc(&amp;obj-&gt;refcnt);
1087     }
1088    
1089     /* Must be holding cache_lock */
1090     @@ -65,7 +47,7 @@
1091     {
1092     BUG_ON(!obj);
1093     list_del(&amp;obj-&gt;list);
1094     - __object_put(obj);
1095     + object_put(obj);
1096     cache_num--;
1097     }
1098    
1099     @@ -94,7 +76,7 @@
1100     strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name));
1101     obj-&gt;id = id;
1102     obj-&gt;popularity = 0;
1103     - obj-&gt;refcnt = 1; /* The cache holds a reference */
1104     + atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1105    
1106     spin_lock_irqsave(&amp;cache_lock, flags);
1107     __cache_add(obj);
1108     @@ -119,7 +101,7 @@
1109     spin_lock_irqsave(&amp;cache_lock, flags);
1110     obj = __cache_find(id);
1111     if (obj)
1112     - __object_get(obj);
1113     + object_get(obj);
1114     spin_unlock_irqrestore(&amp;cache_lock, flags);
1115     return obj;
1116     }
1117     </programlisting>
1118     </sect2>
1119     </sect1>
1120    
1121     <sect1 id="examples-lock-per-obj">
1122     <title>Protecting The Objects Themselves</title>
1123     <para>
1124     In these examples, we assumed that the objects (except the reference
1125     counts) never changed once they are created. If we wanted to allow
1126     the name to change, there are three possibilities:
1127     </para>
1128     <itemizedlist>
1129     <listitem>
1130     <para>
1131     You can make <symbol>cache_lock</symbol> non-static, and tell people
1132     to grab that lock before changing the name in any object.
1133     </para>
1134     </listitem>
1135     <listitem>
1136     <para>
1137     You can provide a <function>cache_obj_rename</function> which grabs
1138     this lock and changes the name for the caller, and tell everyone to
1139     use that function.
1140     </para>
1141     </listitem>
1142     <listitem>
1143     <para>
1144     You can make the <symbol>cache_lock</symbol> protect only the cache
1145     itself, and use another lock to protect the name.
1146     </para>
1147     </listitem>
1148     </itemizedlist>
1149    
1150     <para>
1151     Theoretically, you can make the locks as fine-grained as one lock for
1152     every field, for every object. In practice, the most common variants
1153     are:
1154     </para>
1155     <itemizedlist>
1156     <listitem>
1157     <para>
1158     One lock which protects the infrastructure (the <symbol>cache</symbol>
1159     list in this example) and all the objects. This is what we have done
1160     so far.
1161     </para>
1162     </listitem>
1163     <listitem>
1164     <para>
1165     One lock which protects the infrastructure (including the list
1166     pointers inside the objects), and one lock inside the object which
1167     protects the rest of that object.
1168     </para>
1169     </listitem>
1170     <listitem>
1171     <para>
1172     Multiple locks to protect the infrastructure (eg. one lock per hash
1173     chain), possibly with a separate per-object lock.
1174     </para>
1175     </listitem>
1176     </itemizedlist>
1177    
1178     <para>
1179     Here is the "lock-per-object" implementation:
1180     </para>
1181     <programlisting>
1182     --- cache.c.refcnt-atomic 2003-12-11 15:50:54.000000000 +1100
1183     +++ cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
1184     @@ -6,11 +6,17 @@
1185    
1186     struct object
1187     {
1188     + /* These two protected by cache_lock. */
1189     struct list_head list;
1190     + int popularity;
1191     +
1192     atomic_t refcnt;
1193     +
1194     + /* Doesn't change once created. */
1195     int id;
1196     +
1197     + spinlock_t lock; /* Protects the name */
1198     char name[32];
1199     - int popularity;
1200     };
1201    
1202     static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED;
1203     @@ -77,6 +84,7 @@
1204     obj-&gt;id = id;
1205     obj-&gt;popularity = 0;
1206     atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1207     + spin_lock_init(&amp;obj-&gt;lock);
1208    
1209     spin_lock_irqsave(&amp;cache_lock, flags);
1210     __cache_add(obj);
1211     </programlisting>
1212    
1213     <para>
1214     Note that I decide that the <structfield>popularity</structfield>
1215     count should be protected by the <symbol>cache_lock</symbol> rather
1216     than the per-object lock: this is because it (like the
1217     <structname>struct list_head</structname> inside the object) is
1218     logically part of the infrastructure. This way, I don't need to grab
1219     the lock of every object in <function>__cache_add</function> when
1220     seeking the least popular.
1221     </para>
1222    
1223     <para>
1224     I also decided that the <structfield>id</structfield> member is
1225     unchangeable, so I don't need to grab each object lock in
1226     <function>__cache_find()</function> to examine the
1227     <structfield>id</structfield>: the object lock is only used by a
1228     caller who wants to read or write the <structfield>name</structfield>
1229     field.
1230     </para>
1231    
1232     <para>
1233     Note also that I added a comment describing what data was protected by
1234     which locks. This is extremely important, as it describes the runtime
1235     behavior of the code, and can be hard to gain from just reading. And
1236     as Alan Cox says, <quote>Lock data, not code</quote>.
1237     </para>
1238     </sect1>
1239     </chapter>
1240    
1241     <chapter id="common-problems">
1242     <title>Common Problems</title>
1243     <sect1 id="deadlock">
1244     <title>Deadlock: Simple and Advanced</title>
1245    
1246     <para>
1247     There is a coding bug where a piece of code tries to grab a
1248     spinlock twice: it will spin forever, waiting for the lock to
1249     be released (spinlocks, rwlocks and semaphores are not
1250     recursive in Linux). This is trivial to diagnose: not a
1251     stay-up-five-nights-talk-to-fluffy-code-bunnies kind of
1252     problem.
1253     </para>
1254    
1255     <para>
1256     For a slightly more complex case, imagine you have a region
1257     shared by a softirq and user context. If you use a
1258     <function>spin_lock()</function> call to protect it, it is
1259     possible that the user context will be interrupted by the softirq
1260     while it holds the lock, and the softirq will then spin
1261     forever trying to get the same lock.
1262     </para>
1263    
1264     <para>
1265     Both of these are called deadlock, and as shown above, it can
1266     occur even with a single CPU (although not on UP compiles,
1267     since spinlocks vanish on kernel compiles with
1268     <symbol>CONFIG_SMP</symbol>=n. You'll still get data corruption
1269     in the second example).
1270     </para>
1271    
1272     <para>
1273     This complete lockup is easy to diagnose: on SMP boxes the
1274     watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set
1275     (<filename>include/linux/spinlock.h</filename>) will show this up
1276     immediately when it happens.
1277     </para>
1278    
1279     <para>
1280     A more complex problem is the so-called 'deadly embrace',
1281     involving two or more locks. Say you have a hash table: each
1282     entry in the table is a spinlock, and a chain of hashed
1283     objects. Inside a softirq handler, you sometimes want to
1284     alter an object from one place in the hash to another: you
1285     grab the spinlock of the old hash chain and the spinlock of
1286     the new hash chain, and delete the object from the old one,
1287     and insert it in the new one.
1288     </para>
1289    
1290     <para>
1291     There are two problems here. First, if your code ever
1292     tries to move the object to the same chain, it will deadlock
1293     with itself as it tries to lock it twice. Secondly, if the
1294     same softirq on another CPU is trying to move another object
1295     in the reverse direction, the following could happen:
1296     </para>
1297    
1298     <table>
1299     <title>Consequences</title>
1300    
1301     <tgroup cols="2" align="left">
1302    
1303     <thead>
1304     <row>
1305     <entry>CPU 1</entry>
1306     <entry>CPU 2</entry>
1307     </row>
1308     </thead>
1309    
1310     <tbody>
1311     <row>
1312     <entry>Grab lock A -&gt; OK</entry>
1313     <entry>Grab lock B -&gt; OK</entry>
1314     </row>
1315     <row>
1316     <entry>Grab lock B -&gt; spin</entry>
1317     <entry>Grab lock A -&gt; spin</entry>
1318     </row>
1319     </tbody>
1320     </tgroup>
1321     </table>
1322    
1323     <para>
1324     The two CPUs will spin forever, waiting for the other to give up
1325     their lock. It will look, smell, and feel like a crash.
1326     </para>
1327     </sect1>
1328    
1329     <sect1 id="techs-deadlock-prevent">
1330     <title>Preventing Deadlock</title>
1331    
1332     <para>
1333     Textbooks will tell you that if you always lock in the same
1334     order, you will never get this kind of deadlock. Practice
1335     will tell you that this approach doesn't scale: when I
1336     create a new lock, I don't understand enough of the kernel
1337     to figure out where in the 5000 lock hierarchy it will fit.
1338     </para>
1339    
1340     <para>
1341     The best locks are encapsulated: they never get exposed in
1342     headers, and are never held around calls to non-trivial
1343     functions outside the same file. You can read through this
1344     code and see that it will never deadlock, because it never
1345     tries to grab another lock while it has that one. People
1346     using your code don't even need to know you are using a
1347     lock.
1348     </para>
1349    
1350     <para>
1351     A classic problem here is when you provide callbacks or
1352     hooks: if you call these with the lock held, you risk simple
1353     deadlock, or a deadly embrace (who knows what the callback
1354     will do?). Remember, the other programmers are out to get
1355     you, so don't do this.
1356     </para>
1357    
1358     <sect2 id="techs-deadlock-overprevent">
1359     <title>Overzealous Prevention Of Deadlocks</title>
1360    
1361     <para>
1362     Deadlocks are problematic, but not as bad as data
1363     corruption. Code which grabs a read lock, searches a list,
1364     fails to find what it wants, drops the read lock, grabs a
1365     write lock and inserts the object has a race condition.
1366     </para>
1367    
1368     <para>
1369     If you don't see why, please stay the fuck away from my code.
1370     </para>
1371     </sect2>
1372     </sect1>
1373    
1374     <sect1 id="racing-timers">
1375     <title>Racing Timers: A Kernel Pastime</title>
1376    
1377     <para>
1378     Timers can produce their own special problems with races.
1379     Consider a collection of objects (list, hash, etc) where each
1380     object has a timer which is due to destroy it.
1381     </para>
1382    
1383     <para>
1384     If you want to destroy the entire collection (say on module
1385     removal), you might do the following:
1386     </para>
1387    
1388     <programlisting>
1389     /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE
1390     HUNGARIAN NOTATION */
1391     spin_lock_bh(&amp;list_lock);
1392    
1393     while (list) {
1394     struct foo *next = list-&gt;next;
1395     del_timer(&amp;list-&gt;timer);
1396     kfree(list);
1397     list = next;
1398     }
1399    
1400     spin_unlock_bh(&amp;list_lock);
1401     </programlisting>
1402    
1403     <para>
1404     Sooner or later, this will crash on SMP, because a timer can
1405     have just gone off before the <function>spin_lock_bh()</function>,
1406     and it will only get the lock after we
1407     <function>spin_unlock_bh()</function>, and then try to free
1408     the element (which has already been freed!).
1409     </para>
1410    
1411     <para>
1412     This can be avoided by checking the result of
1413     <function>del_timer()</function>: if it returns
1414     <returnvalue>1</returnvalue>, the timer has been deleted.
1415     If <returnvalue>0</returnvalue>, it means (in this
1416     case) that it is currently running, so we can do:
1417     </para>
1418    
1419     <programlisting>
1420     retry:
1421     spin_lock_bh(&amp;list_lock);
1422    
1423     while (list) {
1424     struct foo *next = list-&gt;next;
1425     if (!del_timer(&amp;list-&gt;timer)) {
1426     /* Give timer a chance to delete this */
1427     spin_unlock_bh(&amp;list_lock);
1428     goto retry;
1429     }
1430     kfree(list);
1431     list = next;
1432     }
1433    
1434     spin_unlock_bh(&amp;list_lock);
1435     </programlisting>
1436    
1437     <para>
1438     Another common problem is deleting timers which restart
1439     themselves (by calling <function>add_timer()</function> at the end
1440     of their timer function). Because this is a fairly common case
1441     which is prone to races, you should use <function>del_timer_sync()</function>
1442     (<filename class="headerfile">include/linux/timer.h</filename>)
1443     to handle this case. It returns the number of times the timer
1444     had to be deleted before we finally stopped it from adding itself back
1445     in.
1446     </para>
1447     </sect1>
1448    
1449     </chapter>
1450    
1451     <chapter id="Efficiency">
1452     <title>Locking Speed</title>
1453    
1454     <para>
1455     There are three main things to worry about when considering speed of
1456     some code which does locking. First is concurrency: how many things
1457     are going to be waiting while someone else is holding a lock. Second
1458     is the time taken to actually acquire and release an uncontended lock.
1459     Third is using fewer, or smarter locks. I'm assuming that the lock is
1460     used fairly often: otherwise, you wouldn't be concerned about
1461     efficiency.
1462     </para>
1463     <para>
1464     Concurrency depends on how long the lock is usually held: you should
1465     hold the lock for as long as needed, but no longer. In the cache
1466     example, we always create the object without the lock held, and then
1467     grab the lock only when we are ready to insert it in the list.
1468     </para>
1469     <para>
1470     Acquisition times depend on how much damage the lock operations do to
1471     the pipeline (pipeline stalls) and how likely it is that this CPU was
1472     the last one to grab the lock (ie. is the lock cache-hot for this
1473     CPU): on a machine with more CPUs, this likelihood drops fast.
1474     Consider a 700MHz Intel Pentium III: an instruction takes about 0.7ns,
1475     an atomic increment takes about 58ns, a lock which is cache-hot on
1476     this CPU takes 160ns, and a cacheline transfer from another CPU takes
1477     an additional 170 to 360ns. (These figures from Paul McKenney's
1478     <ulink url="http://www.linuxjournal.com/article.php?sid=6993"> Linux
1479     Journal RCU article</ulink>).
1480     </para>
1481     <para>
1482     These two aims conflict: holding a lock for a short time might be done
1483     by splitting locks into parts (such as in our final per-object-lock
1484     example), but this increases the number of lock acquisitions, and the
1485     results are often slower than having a single lock. This is another
1486     reason to advocate locking simplicity.
1487     </para>
1488     <para>
1489     The third concern is addressed below: there are some methods to reduce
1490     the amount of locking which needs to be done.
1491     </para>
1492    
1493     <sect1 id="efficiency-rwlocks">
1494     <title>Read/Write Lock Variants</title>
1495    
1496     <para>
1497     Both spinlocks and semaphores have read/write variants:
1498     <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>.
1499     These divide users into two classes: the readers and the writers. If
1500     you are only reading the data, you can get a read lock, but to write to
1501     the data you need the write lock. Many people can hold a read lock,
1502     but a writer must be sole holder.
1503     </para>
1504    
1505     <para>
1506     If your code divides neatly along reader/writer lines (as our
1507     cache code does), and the lock is held by readers for
1508     significant lengths of time, using these locks can help. They
1509     are slightly slower than the normal locks though, so in practice
1510     <type>rwlock_t</type> is not usually worthwhile.
1511     </para>
1512     </sect1>
1513    
1514     <sect1 id="efficiency-read-copy-update">
1515     <title>Avoiding Locks: Read Copy Update</title>
1516    
1517     <para>
1518     There is a special method of read/write locking called Read Copy
1519     Update. Using RCU, the readers can avoid taking a lock
1520     altogether: as we expect our cache to be read more often than
1521     updated (otherwise the cache is a waste of time), it is a
1522     candidate for this optimization.
1523     </para>
1524    
1525     <para>
1526     How do we get rid of read locks? Getting rid of read locks
1527     means that writers may be changing the list underneath the
1528     readers. That is actually quite simple: we can read a linked
1529     list while an element is being added if the writer adds the
1530     element very carefully. For example, adding
1531     <symbol>new</symbol> to a single linked list called
1532     <symbol>list</symbol>:
1533     </para>
1534    
1535     <programlisting>
1536     new-&gt;next = list-&gt;next;
1537     wmb();
1538     list-&gt;next = new;
1539     </programlisting>
1540    
1541     <para>
1542     The <function>wmb()</function> is a write memory barrier. It
1543     ensures that the first operation (setting the new element's
1544     <symbol>next</symbol> pointer) is complete and will be seen by
1545     all CPUs, before the second operation is (putting the new
1546     element into the list). This is important, since modern
1547     compilers and modern CPUs can both reorder instructions unless
1548     told otherwise: we want a reader to either not see the new
1549     element at all, or see the new element with the
1550     <symbol>next</symbol> pointer correctly pointing at the rest of
1551     the list.
1552     </para>
1553     <para>
1554     Fortunately, there is a function to do this for standard
1555     <structname>struct list_head</structname> lists:
1556     <function>list_add_rcu()</function>
1557     (<filename>include/linux/list.h</filename>).
1558     </para>
1559     <para>
1560     Removing an element from the list is even simpler: we replace
1561     the pointer to the old element with a pointer to its successor,
1562     and readers will either see it, or skip over it.
1563     </para>
1564     <programlisting>
1565     list-&gt;next = old-&gt;next;
1566     </programlisting>
1567     <para>
1568     There is <function>list_del_rcu()</function>
1569     (<filename>include/linux/list.h</filename>) which does this (the
1570     normal version poisons the old object, which we don't want).
1571     </para>
1572     <para>
1573     The reader must also be careful: some CPUs can look through the
1574     <symbol>next</symbol> pointer to start reading the contents of
1575     the next element early, but don't realize that the pre-fetched
1576     contents is wrong when the <symbol>next</symbol> pointer changes
1577     underneath them. Once again, there is a
1578     <function>list_for_each_entry_rcu()</function>
1579     (<filename>include/linux/list.h</filename>) to help you. Of
1580     course, writers can just use
1581     <function>list_for_each_entry()</function>, since there cannot
1582     be two simultaneous writers.
1583     </para>
1584     <para>
1585     Our final dilemma is this: when can we actually destroy the
1586     removed element? Remember, a reader might be stepping through
1587     this element in the list right now: it we free this element and
1588     the <symbol>next</symbol> pointer changes, the reader will jump
1589     off into garbage and crash. We need to wait until we know that
1590     all the readers who were traversing the list when we deleted the
1591     element are finished. We use <function>call_rcu()</function> to
1592     register a callback which will actually destroy the object once
1593     the readers are finished.
1594     </para>
1595     <para>
1596     But how does Read Copy Update know when the readers are
1597     finished? The method is this: firstly, the readers always
1598     traverse the list inside
1599     <function>rcu_read_lock()</function>/<function>rcu_read_unlock()</function>
1600     pairs: these simply disable preemption so the reader won't go to
1601     sleep while reading the list.
1602     </para>
1603     <para>
1604     RCU then waits until every other CPU has slept at least once:
1605     since readers cannot sleep, we know that any readers which were
1606     traversing the list during the deletion are finished, and the
1607     callback is triggered. The real Read Copy Update code is a
1608     little more optimized than this, but this is the fundamental
1609     idea.
1610     </para>
1611    
1612     <programlisting>
1613     --- cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100
1614     +++ cache.c.rcupdate 2003-12-11 17:55:14.000000000 +1100
1615     @@ -1,15 +1,18 @@
1616     #include &lt;linux/list.h&gt;
1617     #include &lt;linux/slab.h&gt;
1618     #include &lt;linux/string.h&gt;
1619     +#include &lt;linux/rcupdate.h&gt;
1620     #include &lt;asm/semaphore.h&gt;
1621     #include &lt;asm/errno.h&gt;
1622    
1623     struct object
1624     {
1625     - /* These two protected by cache_lock. */
1626     + /* This is protected by RCU */
1627     struct list_head list;
1628     int popularity;
1629    
1630     + struct rcu_head rcu;
1631     +
1632     atomic_t refcnt;
1633    
1634     /* Doesn't change once created. */
1635     @@ -40,7 +43,7 @@
1636     {
1637     struct object *i;
1638    
1639     - list_for_each_entry(i, &amp;cache, list) {
1640     + list_for_each_entry_rcu(i, &amp;cache, list) {
1641     if (i-&gt;id == id) {
1642     i-&gt;popularity++;
1643     return i;
1644     @@ -49,19 +52,25 @@
1645     return NULL;
1646     }
1647    
1648     +/* Final discard done once we know no readers are looking. */
1649     +static void cache_delete_rcu(void *arg)
1650     +{
1651     + object_put(arg);
1652     +}
1653     +
1654     /* Must be holding cache_lock */
1655     static void __cache_delete(struct object *obj)
1656     {
1657     BUG_ON(!obj);
1658     - list_del(&amp;obj-&gt;list);
1659     - object_put(obj);
1660     + list_del_rcu(&amp;obj-&gt;list);
1661     cache_num--;
1662     + call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj);
1663     }
1664    
1665     /* Must be holding cache_lock */
1666     static void __cache_add(struct object *obj)
1667     {
1668     - list_add(&amp;obj-&gt;list, &amp;cache);
1669     + list_add_rcu(&amp;obj-&gt;list, &amp;cache);
1670     if (++cache_num > MAX_CACHE_SIZE) {
1671     struct object *i, *outcast = NULL;
1672     list_for_each_entry(i, &amp;cache, list) {
1673     @@ -85,6 +94,7 @@
1674     obj-&gt;popularity = 0;
1675     atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */
1676     spin_lock_init(&amp;obj-&gt;lock);
1677     + INIT_RCU_HEAD(&amp;obj-&gt;rcu);
1678    
1679     spin_lock_irqsave(&amp;cache_lock, flags);
1680     __cache_add(obj);
1681     @@ -104,12 +114,11 @@
1682     struct object *cache_find(int id)
1683     {
1684     struct object *obj;
1685     - unsigned long flags;
1686    
1687     - spin_lock_irqsave(&amp;cache_lock, flags);
1688     + rcu_read_lock();
1689     obj = __cache_find(id);
1690     if (obj)
1691     object_get(obj);
1692     - spin_unlock_irqrestore(&amp;cache_lock, flags);
1693     + rcu_read_unlock();
1694     return obj;
1695     }
1696     </programlisting>
1697    
1698     <para>
1699     Note that the reader will alter the
1700     <structfield>popularity</structfield> member in
1701     <function>__cache_find()</function>, and now it doesn't hold a lock.
1702     One solution would be to make it an <type>atomic_t</type>, but for
1703     this usage, we don't really care about races: an approximate result is
1704     good enough, so I didn't change it.
1705     </para>
1706    
1707     <para>
1708     The result is that <function>cache_find()</function> requires no
1709     synchronization with any other functions, so is almost as fast on SMP
1710     as it would be on UP.
1711     </para>
1712    
1713     <para>
1714     There is a furthur optimization possible here: remember our original
1715     cache code, where there were no reference counts and the caller simply
1716     held the lock whenever using the object? This is still possible: if
1717     you hold the lock, noone can delete the object, so you don't need to
1718     get and put the reference count.
1719     </para>
1720    
1721     <para>
1722     Now, because the 'read lock' in RCU is simply disabling preemption, a
1723     caller which always has preemption disabled between calling
1724     <function>cache_find()</function> and
1725     <function>object_put()</function> does not need to actually get and
1726     put the reference count: we could expose
1727     <function>__cache_find()</function> by making it non-static, and
1728     such callers could simply call that.
1729     </para>
1730     <para>
1731     The benefit here is that the reference count is not written to: the
1732     object is not altered in any way, which is much faster on SMP
1733     machines due to caching.
1734     </para>
1735     </sect1>
1736    
1737     <sect1 id="per-cpu">
1738     <title>Per-CPU Data</title>
1739    
1740     <para>
1741     Another technique for avoiding locking which is used fairly
1742     widely is to duplicate information for each CPU. For example,
1743     if you wanted to keep a count of a common condition, you could
1744     use a spin lock and a single counter. Nice and simple.
1745     </para>
1746    
1747     <para>
1748     If that was too slow (it's usually not, but if you've got a
1749     really big machine to test on and can show that it is), you
1750     could instead use a counter for each CPU, then none of them need
1751     an exclusive lock. See <function>DEFINE_PER_CPU()</function>,
1752     <function>get_cpu_var()</function> and
1753     <function>put_cpu_var()</function>
1754     (<filename class="headerfile">include/linux/percpu.h</filename>).
1755     </para>
1756    
1757     <para>
1758     Of particular use for simple per-cpu counters is the
1759     <type>local_t</type> type, and the
1760     <function>cpu_local_inc()</function> and related functions,
1761     which are more efficient than simple code on some architectures
1762     (<filename class="headerfile">include/asm/local.h</filename>).
1763     </para>
1764    
1765     <para>
1766     Note that there is no simple, reliable way of getting an exact
1767     value of such a counter, without introducing more locks. This
1768     is not a problem for some uses.
1769     </para>
1770     </sect1>
1771    
1772     <sect1 id="mostly-hardirq">
1773     <title>Data Which Mostly Used By An IRQ Handler</title>
1774    
1775     <para>
1776     If data is always accessed from within the same IRQ handler, you
1777     don't need a lock at all: the kernel already guarantees that the
1778     irq handler will not run simultaneously on multiple CPUs.
1779     </para>
1780     <para>
1781     Manfred Spraul points out that you can still do this, even if
1782     the data is very occasionally accessed in user context or
1783     softirqs/tasklets. The irq handler doesn't use a lock, and
1784     all other accesses are done as so:
1785     </para>
1786    
1787     <programlisting>
1788     spin_lock(&amp;lock);
1789     disable_irq(irq);
1790     ...
1791     enable_irq(irq);
1792     spin_unlock(&amp;lock);
1793     </programlisting>
1794     <para>
1795     The <function>disable_irq()</function> prevents the irq handler
1796     from running (and waits for it to finish if it's currently
1797     running on other CPUs). The spinlock prevents any other
1798     accesses happening at the same time. Naturally, this is slower
1799     than just a <function>spin_lock_irq()</function> call, so it
1800     only makes sense if this type of access happens extremely
1801     rarely.
1802     </para>
1803     </sect1>
1804     </chapter>
1805    
1806     <chapter id="sleeping-things">
1807     <title>What Functions Are Safe To Call From Interrupts?</title>
1808    
1809     <para>
1810     Many functions in the kernel sleep (ie. call schedule())
1811     directly or indirectly: you can never call them while holding a
1812     spinlock, or with preemption disabled. This also means you need
1813     to be in user context: calling them from an interrupt is illegal.
1814     </para>
1815    
1816     <sect1 id="sleeping">
1817     <title>Some Functions Which Sleep</title>
1818    
1819     <para>
1820     The most common ones are listed below, but you usually have to
1821     read the code to find out if other calls are safe. If everyone
1822     else who calls it can sleep, you probably need to be able to
1823     sleep, too. In particular, registration and deregistration
1824     functions usually expect to be called from user context, and can
1825     sleep.
1826     </para>
1827    
1828     <itemizedlist>
1829     <listitem>
1830     <para>
1831     Accesses to
1832     <firstterm linkend="gloss-userspace">userspace</firstterm>:
1833     </para>
1834     <itemizedlist>
1835     <listitem>
1836     <para>
1837     <function>copy_from_user()</function>
1838     </para>
1839     </listitem>
1840     <listitem>
1841     <para>
1842     <function>copy_to_user()</function>
1843     </para>
1844     </listitem>
1845     <listitem>
1846     <para>
1847     <function>get_user()</function>
1848     </para>
1849     </listitem>
1850     <listitem>
1851     <para>
1852     <function> put_user()</function>
1853     </para>
1854     </listitem>
1855     </itemizedlist>
1856     </listitem>
1857    
1858     <listitem>
1859     <para>
1860     <function>kmalloc(GFP_KERNEL)</function>
1861     </para>
1862     </listitem>
1863    
1864     <listitem>
1865     <para>
1866     <function>down_interruptible()</function> and
1867     <function>down()</function>
1868     </para>
1869     <para>
1870     There is a <function>down_trylock()</function> which can be
1871     used inside interrupt context, as it will not sleep.
1872     <function>up()</function> will also never sleep.
1873     </para>
1874     </listitem>
1875     </itemizedlist>
1876     </sect1>
1877    
1878     <sect1 id="dont-sleep">
1879     <title>Some Functions Which Don't Sleep</title>
1880    
1881     <para>
1882     Some functions are safe to call from any context, or holding
1883     almost any lock.
1884     </para>
1885    
1886     <itemizedlist>
1887     <listitem>
1888     <para>
1889     <function>printk()</function>
1890     </para>
1891     </listitem>
1892     <listitem>
1893     <para>
1894     <function>kfree()</function>
1895     </para>
1896     </listitem>
1897     <listitem>
1898     <para>
1899     <function>add_timer()</function> and <function>del_timer()</function>
1900     </para>
1901     </listitem>
1902     </itemizedlist>
1903     </sect1>
1904     </chapter>
1905    
1906     <chapter id="references">
1907     <title>Further reading</title>
1908    
1909     <itemizedlist>
1910     <listitem>
1911     <para>
1912     <filename>Documentation/spinlocks.txt</filename>:
1913     Linus Torvalds' spinlocking tutorial in the kernel sources.
1914     </para>
1915     </listitem>
1916    
1917     <listitem>
1918     <para>
1919     Unix Systems for Modern Architectures: Symmetric
1920     Multiprocessing and Caching for Kernel Programmers:
1921     </para>
1922    
1923     <para>
1924     Curt Schimmel's very good introduction to kernel level
1925     locking (not written for Linux, but nearly everything
1926     applies). The book is expensive, but really worth every
1927     penny to understand SMP locking. [ISBN: 0201633388]
1928     </para>
1929     </listitem>
1930     </itemizedlist>
1931     </chapter>
1932    
1933     <chapter id="thanks">
1934     <title>Thanks</title>
1935    
1936     <para>
1937     Thanks to Telsa Gwynne for DocBooking, neatening and adding
1938     style.
1939     </para>
1940    
1941     <para>
1942     Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul
1943     Mackerras, Ruedi Aschwanden, Alan Cox, Manfred Spraul, Tim
1944     Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney,
1945     John Ashby for proofreading, correcting, flaming, commenting.
1946     </para>
1947    
1948     <para>
1949     Thanks to the cabal for having no influence on this document.
1950     </para>
1951     </chapter>
1952    
1953     <glossary id="glossary">
1954     <title>Glossary</title>
1955    
1956     <glossentry id="gloss-preemption">
1957     <glossterm>preemption</glossterm>
1958     <glossdef>
1959     <para>
1960     Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is
1961     unset, processes in user context inside the kernel would not
1962     preempt each other (ie. you had that CPU until you have it up,
1963     except for interrupts). With the addition of
1964     <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when
1965     in user context, higher priority tasks can "cut in": spinlocks
1966     were changed to disable preemption, even on UP.
1967     </para>
1968     </glossdef>
1969     </glossentry>
1970    
1971     <glossentry id="gloss-bh">
1972     <glossterm>bh</glossterm>
1973     <glossdef>
1974     <para>
1975     Bottom Half: for historical reasons, functions with
1976     '_bh' in them often now refer to any software interrupt, e.g.
1977     <function>spin_lock_bh()</function> blocks any software interrupt
1978     on the current CPU. Bottom halves are deprecated, and will
1979     eventually be replaced by tasklets. Only one bottom half will be
1980     running at any time.
1981     </para>
1982     </glossdef>
1983     </glossentry>
1984    
1985     <glossentry id="gloss-hwinterrupt">
1986     <glossterm>Hardware Interrupt / Hardware IRQ</glossterm>
1987     <glossdef>
1988     <para>
1989     Hardware interrupt request. <function>in_irq()</function> returns
1990     <returnvalue>true</returnvalue> in a hardware interrupt handler.
1991     </para>
1992     </glossdef>
1993     </glossentry>
1994    
1995     <glossentry id="gloss-interruptcontext">
1996     <glossterm>Interrupt Context</glossterm>
1997     <glossdef>
1998     <para>
1999     Not user context: processing a hardware irq or software irq.
2000     Indicated by the <function>in_interrupt()</function> macro
2001     returning <returnvalue>true</returnvalue>.
2002     </para>
2003     </glossdef>
2004     </glossentry>
2005    
2006     <glossentry id="gloss-smp">
2007     <glossterm><acronym>SMP</acronym></glossterm>
2008     <glossdef>
2009     <para>
2010     Symmetric Multi-Processor: kernels compiled for multiple-CPU
2011     machines. (CONFIG_SMP=y).
2012     </para>
2013     </glossdef>
2014     </glossentry>
2015    
2016     <glossentry id="gloss-softirq">
2017     <glossterm>Software Interrupt / softirq</glossterm>
2018     <glossdef>
2019     <para>
2020     Software interrupt handler. <function>in_irq()</function> returns
2021     <returnvalue>false</returnvalue>; <function>in_softirq()</function>
2022     returns <returnvalue>true</returnvalue>. Tasklets and softirqs
2023     both fall into the category of 'software interrupts'.
2024     </para>
2025     <para>
2026     Strictly speaking a softirq is one of up to 32 enumerated software
2027     interrupts which can run on multiple CPUs at once.
2028     Sometimes used to refer to tasklets as
2029     well (ie. all software interrupts).
2030     </para>
2031     </glossdef>
2032     </glossentry>
2033    
2034     <glossentry id="gloss-tasklet">
2035     <glossterm>tasklet</glossterm>
2036     <glossdef>
2037     <para>
2038     A dynamically-registrable software interrupt,
2039     which is guaranteed to only run on one CPU at a time.
2040     </para>
2041     </glossdef>
2042     </glossentry>
2043    
2044     <glossentry id="gloss-timers">
2045     <glossterm>timer</glossterm>
2046     <glossdef>
2047     <para>
2048     A dynamically-registrable software interrupt, which is run at
2049     (or close to) a given time. When running, it is just like a
2050     tasklet (in fact, they are called from the TIMER_SOFTIRQ).
2051     </para>
2052     </glossdef>
2053     </glossentry>
2054    
2055     <glossentry id="gloss-up">
2056     <glossterm><acronym>UP</acronym></glossterm>
2057     <glossdef>
2058     <para>
2059     Uni-Processor: Non-SMP. (CONFIG_SMP=n).
2060     </para>
2061     </glossdef>
2062     </glossentry>
2063    
2064     <glossentry id="gloss-usercontext">
2065     <glossterm>User Context</glossterm>
2066     <glossdef>
2067     <para>
2068     The kernel executing on behalf of a particular process (ie. a
2069     system call or trap) or kernel thread. You can tell which
2070     process with the <symbol>current</symbol> macro.) Not to
2071     be confused with userspace. Can be interrupted by software or
2072     hardware interrupts.
2073     </para>
2074     </glossdef>
2075     </glossentry>
2076    
2077     <glossentry id="gloss-userspace">
2078     <glossterm>Userspace</glossterm>
2079     <glossdef>
2080     <para>
2081     A process executing its own code outside the kernel.
2082     </para>
2083     </glossdef>
2084     </glossentry>
2085    
2086     </glossary>
2087     </book>
2088