Magellan Linux

Annotation of /alx-src/trunk/kernel26-alx/linux/Documentation/DocBook/mtdnand.tmpl

Parent Directory Parent Directory | Revision Log Revision Log


Revision 628 - (hide annotations) (download)
Wed Mar 4 10:48:58 2009 UTC (15 years, 2 months ago) by niro
File size: 44952 byte(s)
import linux sources based on 2.6.12-alx-r9:
 -using linux-2.6.12.6
 -using 2.6.12-ck6 patch set
 -using fbsplash-0.9.2-r3
 -using vesafb-tng-0.9-rc7
 -using squashfs-2.2
 -added cddvd-cmdfilter-drop.patch as ck dropped it
 -added via-epia-dri (cle266) patch
 -added zd1211-svn-32 wlan driver (http://zd1211.ath.cx/download/)
 -added debian patches to zd1211 for wep256 etc

1 niro 628 <?xml version="1.0" encoding="UTF-8"?>
2     <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3     "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
4    
5     <book id="MTD-NAND-Guide">
6     <bookinfo>
7     <title>MTD NAND Driver Programming Interface</title>
8    
9     <authorgroup>
10     <author>
11     <firstname>Thomas</firstname>
12     <surname>Gleixner</surname>
13     <affiliation>
14     <address>
15     <email>tglx@linutronix.de</email>
16     </address>
17     </affiliation>
18     </author>
19     </authorgroup>
20    
21     <copyright>
22     <year>2004</year>
23     <holder>Thomas Gleixner</holder>
24     </copyright>
25    
26     <legalnotice>
27     <para>
28     This documentation is free software; you can redistribute
29     it and/or modify it under the terms of the GNU General Public
30     License version 2 as published by the Free Software Foundation.
31     </para>
32    
33     <para>
34     This program is distributed in the hope that it will be
35     useful, but WITHOUT ANY WARRANTY; without even the implied
36     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
37     See the GNU General Public License for more details.
38     </para>
39    
40     <para>
41     You should have received a copy of the GNU General Public
42     License along with this program; if not, write to the Free
43     Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
44     MA 02111-1307 USA
45     </para>
46    
47     <para>
48     For more details see the file COPYING in the source
49     distribution of Linux.
50     </para>
51     </legalnotice>
52     </bookinfo>
53    
54     <toc></toc>
55    
56     <chapter id="intro">
57     <title>Introduction</title>
58     <para>
59     The generic NAND driver supports almost all NAND and AG-AND based
60     chips and connects them to the Memory Technology Devices (MTD)
61     subsystem of the Linux Kernel.
62     </para>
63     <para>
64     This documentation is provided for developers who want to implement
65     board drivers or filesystem drivers suitable for NAND devices.
66     </para>
67     </chapter>
68    
69     <chapter id="bugs">
70     <title>Known Bugs And Assumptions</title>
71     <para>
72     None.
73     </para>
74     </chapter>
75    
76     <chapter id="dochints">
77     <title>Documentation hints</title>
78     <para>
79     The function and structure docs are autogenerated. Each function and
80     struct member has a short description which is marked with an [XXX] identifier.
81     The following chapters explain the meaning of those identifiers.
82     </para>
83     <sect1>
84     <title>Function identifiers [XXX]</title>
85     <para>
86     The functions are marked with [XXX] identifiers in the short
87     comment. The identifiers explain the usage and scope of the
88     functions. Following identifiers are used:
89     </para>
90     <itemizedlist>
91     <listitem><para>
92     [MTD Interface]</para><para>
93     These functions provide the interface to the MTD kernel API.
94     They are not replacable and provide functionality
95     which is complete hardware independent.
96     </para></listitem>
97     <listitem><para>
98     [NAND Interface]</para><para>
99     These functions are exported and provide the interface to the NAND kernel API.
100     </para></listitem>
101     <listitem><para>
102     [GENERIC]</para><para>
103     Generic functions are not replacable and provide functionality
104     which is complete hardware independent.
105     </para></listitem>
106     <listitem><para>
107     [DEFAULT]</para><para>
108     Default functions provide hardware related functionality which is suitable
109     for most of the implementations. These functions can be replaced by the
110     board driver if neccecary. Those functions are called via pointers in the
111     NAND chip description structure. The board driver can set the functions which
112     should be replaced by board dependend functions before calling nand_scan().
113     If the function pointer is NULL on entry to nand_scan() then the pointer
114     is set to the default function which is suitable for the detected chip type.
115     </para></listitem>
116     </itemizedlist>
117     </sect1>
118     <sect1>
119     <title>Struct member identifiers [XXX]</title>
120     <para>
121     The struct members are marked with [XXX] identifiers in the
122     comment. The identifiers explain the usage and scope of the
123     members. Following identifiers are used:
124     </para>
125     <itemizedlist>
126     <listitem><para>
127     [INTERN]</para><para>
128     These members are for NAND driver internal use only and must not be
129     modified. Most of these values are calculated from the chip geometry
130     information which is evaluated during nand_scan().
131     </para></listitem>
132     <listitem><para>
133     [REPLACEABLE]</para><para>
134     Replaceable members hold hardware related functions which can be
135     provided by the board driver. The board driver can set the functions which
136     should be replaced by board dependend functions before calling nand_scan().
137     If the function pointer is NULL on entry to nand_scan() then the pointer
138     is set to the default function which is suitable for the detected chip type.
139     </para></listitem>
140     <listitem><para>
141     [BOARDSPECIFIC]</para><para>
142     Board specific members hold hardware related information which must
143     be provided by the board driver. The board driver must set the function
144     pointers and datafields before calling nand_scan().
145     </para></listitem>
146     <listitem><para>
147     [OPTIONAL]</para><para>
148     Optional members can hold information relevant for the board driver. The
149     generic NAND driver code does not use this information.
150     </para></listitem>
151     </itemizedlist>
152     </sect1>
153     </chapter>
154    
155     <chapter id="basicboarddriver">
156     <title>Basic board driver</title>
157     <para>
158     For most boards it will be sufficient to provide just the
159     basic functions and fill out some really board dependend
160     members in the nand chip description structure.
161     See drivers/mtd/nand/skeleton for reference.
162     </para>
163     <sect1>
164     <title>Basic defines</title>
165     <para>
166     At least you have to provide a mtd structure and
167     a storage for the ioremap'ed chip address.
168     You can allocate the mtd structure using kmalloc
169     or you can allocate it statically.
170     In case of static allocation you have to allocate
171     a nand_chip structure too.
172     </para>
173     <para>
174     Kmalloc based example
175     </para>
176     <programlisting>
177     static struct mtd_info *board_mtd;
178     static unsigned long baseaddr;
179     </programlisting>
180     <para>
181     Static example
182     </para>
183     <programlisting>
184     static struct mtd_info board_mtd;
185     static struct nand_chip board_chip;
186     static unsigned long baseaddr;
187     </programlisting>
188     </sect1>
189     <sect1>
190     <title>Partition defines</title>
191     <para>
192     If you want to divide your device into parititions, then
193     enable the configuration switch CONFIG_MTD_PARITIONS and define
194     a paritioning scheme suitable to your board.
195     </para>
196     <programlisting>
197     #define NUM_PARTITIONS 2
198     static struct mtd_partition partition_info[] = {
199     { .name = "Flash partition 1",
200     .offset = 0,
201     .size = 8 * 1024 * 1024 },
202     { .name = "Flash partition 2",
203     .offset = MTDPART_OFS_NEXT,
204     .size = MTDPART_SIZ_FULL },
205     };
206     </programlisting>
207     </sect1>
208     <sect1>
209     <title>Hardware control function</title>
210     <para>
211     The hardware control function provides access to the
212     control pins of the NAND chip(s).
213     The access can be done by GPIO pins or by address lines.
214     If you use address lines, make sure that the timing
215     requirements are met.
216     </para>
217     <para>
218     <emphasis>GPIO based example</emphasis>
219     </para>
220     <programlisting>
221     static void board_hwcontrol(struct mtd_info *mtd, int cmd)
222     {
223     switch(cmd){
224     case NAND_CTL_SETCLE: /* Set CLE pin high */ break;
225     case NAND_CTL_CLRCLE: /* Set CLE pin low */ break;
226     case NAND_CTL_SETALE: /* Set ALE pin high */ break;
227     case NAND_CTL_CLRALE: /* Set ALE pin low */ break;
228     case NAND_CTL_SETNCE: /* Set nCE pin low */ break;
229     case NAND_CTL_CLRNCE: /* Set nCE pin high */ break;
230     }
231     }
232     </programlisting>
233     <para>
234     <emphasis>Address lines based example.</emphasis> It's assumed that the
235     nCE pin is driven by a chip select decoder.
236     </para>
237     <programlisting>
238     static void board_hwcontrol(struct mtd_info *mtd, int cmd)
239     {
240     struct nand_chip *this = (struct nand_chip *) mtd->priv;
241     switch(cmd){
242     case NAND_CTL_SETCLE: this->IO_ADDR_W |= CLE_ADRR_BIT; break;
243     case NAND_CTL_CLRCLE: this->IO_ADDR_W &amp;= ~CLE_ADRR_BIT; break;
244     case NAND_CTL_SETALE: this->IO_ADDR_W |= ALE_ADRR_BIT; break;
245     case NAND_CTL_CLRALE: this->IO_ADDR_W &amp;= ~ALE_ADRR_BIT; break;
246     }
247     }
248     </programlisting>
249     </sect1>
250     <sect1>
251     <title>Device ready function</title>
252     <para>
253     If the hardware interface has the ready busy pin of the NAND chip connected to a
254     GPIO or other accesible I/O pin, this function is used to read back the state of the
255     pin. The function has no arguments and should return 0, if the device is busy (R/B pin
256     is low) and 1, if the device is ready (R/B pin is high).
257     If the hardware interface does not give access to the ready busy pin, then
258     the function must not be defined and the function pointer this->dev_ready is set to NULL.
259     </para>
260     </sect1>
261     <sect1>
262     <title>Init function</title>
263     <para>
264     The init function allocates memory and sets up all the board
265     specific parameters and function pointers. When everything
266     is set up nand_scan() is called. This function tries to
267     detect and identify then chip. If a chip is found all the
268     internal data fields are initialized accordingly.
269     The structure(s) have to be zeroed out first and then filled with the neccecary
270     information about the device.
271     </para>
272     <programlisting>
273     int __init board_init (void)
274     {
275     struct nand_chip *this;
276     int err = 0;
277    
278     /* Allocate memory for MTD device structure and private data */
279     board_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip), GFP_KERNEL);
280     if (!board_mtd) {
281     printk ("Unable to allocate NAND MTD device structure.\n");
282     err = -ENOMEM;
283     goto out;
284     }
285    
286     /* Initialize structures */
287     memset ((char *) board_mtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip));
288    
289     /* map physical adress */
290     baseaddr = (unsigned long)ioremap(CHIP_PHYSICAL_ADDRESS, 1024);
291     if(!baseaddr){
292     printk("Ioremap to access NAND chip failed\n");
293     err = -EIO;
294     goto out_mtd;
295     }
296    
297     /* Get pointer to private data */
298     this = (struct nand_chip *) ();
299     /* Link the private data with the MTD structure */
300     board_mtd->priv = this;
301    
302     /* Set address of NAND IO lines */
303     this->IO_ADDR_R = baseaddr;
304     this->IO_ADDR_W = baseaddr;
305     /* Reference hardware control function */
306     this->hwcontrol = board_hwcontrol;
307     /* Set command delay time, see datasheet for correct value */
308     this->chip_delay = CHIP_DEPENDEND_COMMAND_DELAY;
309     /* Assign the device ready function, if available */
310     this->dev_ready = board_dev_ready;
311     this->eccmode = NAND_ECC_SOFT;
312    
313     /* Scan to find existance of the device */
314     if (nand_scan (board_mtd, 1)) {
315     err = -ENXIO;
316     goto out_ior;
317     }
318    
319     add_mtd_partitions(board_mtd, partition_info, NUM_PARTITIONS);
320     goto out;
321    
322     out_ior:
323     iounmap((void *)baseaddr);
324     out_mtd:
325     kfree (board_mtd);
326     out:
327     return err;
328     }
329     module_init(board_init);
330     </programlisting>
331     </sect1>
332     <sect1>
333     <title>Exit function</title>
334     <para>
335     The exit function is only neccecary if the driver is
336     compiled as a module. It releases all resources which
337     are held by the chip driver and unregisters the partitions
338     in the MTD layer.
339     </para>
340     <programlisting>
341     #ifdef MODULE
342     static void __exit board_cleanup (void)
343     {
344     /* Release resources, unregister device */
345     nand_release (board_mtd);
346    
347     /* unmap physical adress */
348     iounmap((void *)baseaddr);
349    
350     /* Free the MTD device structure */
351     kfree (board_mtd);
352     }
353     module_exit(board_cleanup);
354     #endif
355     </programlisting>
356     </sect1>
357     </chapter>
358    
359     <chapter id="boarddriversadvanced">
360     <title>Advanced board driver functions</title>
361     <para>
362     This chapter describes the advanced functionality of the NAND
363     driver. For a list of functions which can be overridden by the board
364     driver see the documentation of the nand_chip structure.
365     </para>
366     <sect1>
367     <title>Multiple chip control</title>
368     <para>
369     The nand driver can control chip arrays. Therefor the
370     board driver must provide an own select_chip function. This
371     function must (de)select the requested chip.
372     The function pointer in the nand_chip structure must
373     be set before calling nand_scan(). The maxchip parameter
374     of nand_scan() defines the maximum number of chips to
375     scan for. Make sure that the select_chip function can
376     handle the requested number of chips.
377     </para>
378     <para>
379     The nand driver concatenates the chips to one virtual
380     chip and provides this virtual chip to the MTD layer.
381     </para>
382     <para>
383     <emphasis>Note: The driver can only handle linear chip arrays
384     of equally sized chips. There is no support for
385     parallel arrays which extend the buswidth.</emphasis>
386     </para>
387     <para>
388     <emphasis>GPIO based example</emphasis>
389     </para>
390     <programlisting>
391     static void board_select_chip (struct mtd_info *mtd, int chip)
392     {
393     /* Deselect all chips, set all nCE pins high */
394     GPIO(BOARD_NAND_NCE) |= 0xff;
395     if (chip >= 0)
396     GPIO(BOARD_NAND_NCE) &amp;= ~ (1 &lt;&lt; chip);
397     }
398     </programlisting>
399     <para>
400     <emphasis>Address lines based example.</emphasis>
401     Its assumed that the nCE pins are connected to an
402     address decoder.
403     </para>
404     <programlisting>
405     static void board_select_chip (struct mtd_info *mtd, int chip)
406     {
407     struct nand_chip *this = (struct nand_chip *) mtd->priv;
408    
409     /* Deselect all chips */
410     this->IO_ADDR_R &amp;= ~BOARD_NAND_ADDR_MASK;
411     this->IO_ADDR_W &amp;= ~BOARD_NAND_ADDR_MASK;
412     switch (chip) {
413     case 0:
414     this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIP0;
415     this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIP0;
416     break;
417     ....
418     case n:
419     this->IO_ADDR_R |= BOARD_NAND_ADDR_CHIPn;
420     this->IO_ADDR_W |= BOARD_NAND_ADDR_CHIPn;
421     break;
422     }
423     }
424     </programlisting>
425     </sect1>
426     <sect1>
427     <title>Hardware ECC support</title>
428     <sect2>
429     <title>Functions and constants</title>
430     <para>
431     The nand driver supports three different types of
432     hardware ECC.
433     <itemizedlist>
434     <listitem><para>NAND_ECC_HW3_256</para><para>
435     Hardware ECC generator providing 3 bytes ECC per
436     256 byte.
437     </para> </listitem>
438     <listitem><para>NAND_ECC_HW3_512</para><para>
439     Hardware ECC generator providing 3 bytes ECC per
440     512 byte.
441     </para> </listitem>
442     <listitem><para>NAND_ECC_HW6_512</para><para>
443     Hardware ECC generator providing 6 bytes ECC per
444     512 byte.
445     </para> </listitem>
446     <listitem><para>NAND_ECC_HW8_512</para><para>
447     Hardware ECC generator providing 6 bytes ECC per
448     512 byte.
449     </para> </listitem>
450     </itemizedlist>
451     If your hardware generator has a different functionality
452     add it at the appropriate place in nand_base.c
453     </para>
454     <para>
455     The board driver must provide following functions:
456     <itemizedlist>
457     <listitem><para>enable_hwecc</para><para>
458     This function is called before reading / writing to
459     the chip. Reset or initialize the hardware generator
460     in this function. The function is called with an
461     argument which let you distinguish between read
462     and write operations.
463     </para> </listitem>
464     <listitem><para>calculate_ecc</para><para>
465     This function is called after read / write from / to
466     the chip. Transfer the ECC from the hardware to
467     the buffer. If the option NAND_HWECC_SYNDROME is set
468     then the function is only called on write. See below.
469     </para> </listitem>
470     <listitem><para>correct_data</para><para>
471     In case of an ECC error this function is called for
472     error detection and correction. Return 1 respectively 2
473     in case the error can be corrected. If the error is
474     not correctable return -1. If your hardware generator
475     matches the default algorithm of the nand_ecc software
476     generator then use the correction function provided
477     by nand_ecc instead of implementing duplicated code.
478     </para> </listitem>
479     </itemizedlist>
480     </para>
481     </sect2>
482     <sect2>
483     <title>Hardware ECC with syndrome calculation</title>
484     <para>
485     Many hardware ECC implementations provide Reed-Solomon
486     codes and calculate an error syndrome on read. The syndrome
487     must be converted to a standard Reed-Solomon syndrome
488     before calling the error correction code in the generic
489     Reed-Solomon library.
490     </para>
491     <para>
492     The ECC bytes must be placed immidiately after the data
493     bytes in order to make the syndrome generator work. This
494     is contrary to the usual layout used by software ECC. The
495     seperation of data and out of band area is not longer
496     possible. The nand driver code handles this layout and
497     the remaining free bytes in the oob area are managed by
498     the autoplacement code. Provide a matching oob-layout
499     in this case. See rts_from4.c and diskonchip.c for
500     implementation reference. In those cases we must also
501     use bad block tables on FLASH, because the ECC layout is
502     interferring with the bad block marker positions.
503     See bad block table support for details.
504     </para>
505     </sect2>
506     </sect1>
507     <sect1>
508     <title>Bad block table support</title>
509     <para>
510     Most NAND chips mark the bad blocks at a defined
511     position in the spare area. Those blocks must
512     not be erased under any circumstances as the bad
513     block information would be lost.
514     It is possible to check the bad block mark each
515     time when the blocks are accessed by reading the
516     spare area of the first page in the block. This
517     is time consuming so a bad block table is used.
518     </para>
519     <para>
520     The nand driver supports various types of bad block
521     tables.
522     <itemizedlist>
523     <listitem><para>Per device</para><para>
524     The bad block table contains all bad block information
525     of the device which can consist of multiple chips.
526     </para> </listitem>
527     <listitem><para>Per chip</para><para>
528     A bad block table is used per chip and contains the
529     bad block information for this particular chip.
530     </para> </listitem>
531     <listitem><para>Fixed offset</para><para>
532     The bad block table is located at a fixed offset
533     in the chip (device). This applies to various
534     DiskOnChip devices.
535     </para> </listitem>
536     <listitem><para>Automatic placed</para><para>
537     The bad block table is automatically placed and
538     detected either at the end or at the beginning
539     of a chip (device)
540     </para> </listitem>
541     <listitem><para>Mirrored tables</para><para>
542     The bad block table is mirrored on the chip (device) to
543     allow updates of the bad block table without data loss.
544     </para> </listitem>
545     </itemizedlist>
546     </para>
547     <para>
548     nand_scan() calls the function nand_default_bbt().
549     nand_default_bbt() selects appropriate default
550     bad block table desriptors depending on the chip information
551     which was retrieved by nand_scan().
552     </para>
553     <para>
554     The standard policy is scanning the device for bad
555     blocks and build a ram based bad block table which
556     allows faster access than always checking the
557     bad block information on the flash chip itself.
558     </para>
559     <sect2>
560     <title>Flash based tables</title>
561     <para>
562     It may be desired or neccecary to keep a bad block table in FLASH.
563     For AG-AND chips this is mandatory, as they have no factory marked
564     bad blocks. They have factory marked good blocks. The marker pattern
565     is erased when the block is erased to be reused. So in case of
566     powerloss before writing the pattern back to the chip this block
567     would be lost and added to the bad blocks. Therefor we scan the
568     chip(s) when we detect them the first time for good blocks and
569     store this information in a bad block table before erasing any
570     of the blocks.
571     </para>
572     <para>
573     The blocks in which the tables are stored are procteted against
574     accidental access by marking them bad in the memory bad block
575     table. The bad block table managment functions are allowed
576     to circumvernt this protection.
577     </para>
578     <para>
579     The simplest way to activate the FLASH based bad block table support
580     is to set the option NAND_USE_FLASH_BBT in the option field of
581     the nand chip structure before calling nand_scan(). For AG-AND
582     chips is this done by default.
583     This activates the default FLASH based bad block table functionality
584     of the NAND driver. The default bad block table options are
585     <itemizedlist>
586     <listitem><para>Store bad block table per chip</para></listitem>
587     <listitem><para>Use 2 bits per block</para></listitem>
588     <listitem><para>Automatic placement at the end of the chip</para></listitem>
589     <listitem><para>Use mirrored tables with version numbers</para></listitem>
590     <listitem><para>Reserve 4 blocks at the end of the chip</para></listitem>
591     </itemizedlist>
592     </para>
593     </sect2>
594     <sect2>
595     <title>User defined tables</title>
596     <para>
597     User defined tables are created by filling out a
598     nand_bbt_descr structure and storing the pointer in the
599     nand_chip structure member bbt_td before calling nand_scan().
600     If a mirror table is neccecary a second structure must be
601     created and a pointer to this structure must be stored
602     in bbt_md inside the nand_chip structure. If the bbt_md
603     member is set to NULL then only the main table is used
604     and no scan for the mirrored table is performed.
605     </para>
606     <para>
607     The most important field in the nand_bbt_descr structure
608     is the options field. The options define most of the
609     table properties. Use the predefined constants from
610     nand.h to define the options.
611     <itemizedlist>
612     <listitem><para>Number of bits per block</para>
613     <para>The supported number of bits is 1, 2, 4, 8.</para></listitem>
614     <listitem><para>Table per chip</para>
615     <para>Setting the constant NAND_BBT_PERCHIP selects that
616     a bad block table is managed for each chip in a chip array.
617     If this option is not set then a per device bad block table
618     is used.</para></listitem>
619     <listitem><para>Table location is absolute</para>
620     <para>Use the option constant NAND_BBT_ABSPAGE and
621     define the absolute page number where the bad block
622     table starts in the field pages. If you have selected bad block
623     tables per chip and you have a multi chip array then the start page
624     must be given for each chip in the chip array. Note: there is no scan
625     for a table ident pattern performed, so the fields
626     pattern, veroffs, offs, len can be left uninitialized</para></listitem>
627     <listitem><para>Table location is automatically detected</para>
628     <para>The table can either be located in the first or the last good
629     blocks of the chip (device). Set NAND_BBT_LASTBLOCK to place
630     the bad block table at the end of the chip (device). The
631     bad block tables are marked and identified by a pattern which
632     is stored in the spare area of the first page in the block which
633     holds the bad block table. Store a pointer to the pattern
634     in the pattern field. Further the length of the pattern has to be
635     stored in len and the offset in the spare area must be given
636     in the offs member of the nand_bbt_descr stucture. For mirrored
637     bad block tables different patterns are mandatory.</para></listitem>
638     <listitem><para>Table creation</para>
639     <para>Set the option NAND_BBT_CREATE to enable the table creation
640     if no table can be found during the scan. Usually this is done only
641     once if a new chip is found. </para></listitem>
642     <listitem><para>Table write support</para>
643     <para>Set the option NAND_BBT_WRITE to enable the table write support.
644     This allows the update of the bad block table(s) in case a block has
645     to be marked bad due to wear. The MTD interface function block_markbad
646     is calling the update function of the bad block table. If the write
647     support is enabled then the table is updated on FLASH.</para>
648     <para>
649     Note: Write support should only be enabled for mirrored tables with
650     version control.
651     </para></listitem>
652     <listitem><para>Table version control</para>
653     <para>Set the option NAND_BBT_VERSION to enable the table version control.
654     It's highly recommended to enable this for mirrored tables with write
655     support. It makes sure that the risk of loosing the bad block
656     table information is reduced to the loss of the information about the
657     one worn out block which should be marked bad. The version is stored in
658     4 consecutive bytes in the spare area of the device. The position of
659     the version number is defined by the member veroffs in the bad block table
660     descriptor.</para></listitem>
661     <listitem><para>Save block contents on write</para>
662     <para>
663     In case that the block which holds the bad block table does contain
664     other useful information, set the option NAND_BBT_SAVECONTENT. When
665     the bad block table is written then the whole block is read the bad
666     block table is updated and the block is erased and everything is
667     written back. If this option is not set only the bad block table
668     is written and everything else in the block is ignored and erased.
669     </para></listitem>
670     <listitem><para>Number of reserved blocks</para>
671     <para>
672     For automatic placement some blocks must be reserved for
673     bad block table storage. The number of reserved blocks is defined
674     in the maxblocks member of the babd block table description structure.
675     Reserving 4 blocks for mirrored tables should be a reasonable number.
676     This also limits the number of blocks which are scanned for the bad
677     block table ident pattern.
678     </para></listitem>
679     </itemizedlist>
680     </para>
681     </sect2>
682     </sect1>
683     <sect1>
684     <title>Spare area (auto)placement</title>
685     <para>
686     The nand driver implements different possibilities for
687     placement of filesystem data in the spare area,
688     <itemizedlist>
689     <listitem><para>Placement defined by fs driver</para></listitem>
690     <listitem><para>Automatic placement</para></listitem>
691     </itemizedlist>
692     The default placement function is automatic placement. The
693     nand driver has built in default placement schemes for the
694     various chiptypes. If due to hardware ECC functionality the
695     default placement does not fit then the board driver can
696     provide a own placement scheme.
697     </para>
698     <para>
699     File system drivers can provide a own placement scheme which
700     is used instead of the default placement scheme.
701     </para>
702     <para>
703     Placement schemes are defined by a nand_oobinfo structure
704     <programlisting>
705     struct nand_oobinfo {
706     int useecc;
707     int eccbytes;
708     int eccpos[24];
709     int oobfree[8][2];
710     };
711     </programlisting>
712     <itemizedlist>
713     <listitem><para>useecc</para><para>
714     The useecc member controls the ecc and placement function. The header
715     file include/mtd/mtd-abi.h contains constants to select ecc and
716     placement. MTD_NANDECC_OFF switches off the ecc complete. This is
717     not recommended and available for testing and diagnosis only.
718     MTD_NANDECC_PLACE selects caller defined placement, MTD_NANDECC_AUTOPLACE
719     selects automatic placement.
720     </para></listitem>
721     <listitem><para>eccbytes</para><para>
722     The eccbytes member defines the number of ecc bytes per page.
723     </para></listitem>
724     <listitem><para>eccpos</para><para>
725     The eccpos array holds the byte offsets in the spare area where
726     the ecc codes are placed.
727     </para></listitem>
728     <listitem><para>oobfree</para><para>
729     The oobfree array defines the areas in the spare area which can be
730     used for automatic placement. The information is given in the format
731     {offset, size}. offset defines the start of the usable area, size the
732     length in bytes. More than one area can be defined. The list is terminated
733     by an {0, 0} entry.
734     </para></listitem>
735     </itemizedlist>
736     </para>
737     <sect2>
738     <title>Placement defined by fs driver</title>
739     <para>
740     The calling function provides a pointer to a nand_oobinfo
741     structure which defines the ecc placement. For writes the
742     caller must provide a spare area buffer along with the
743     data buffer. The spare area buffer size is (number of pages) *
744     (size of spare area). For reads the buffer size is
745     (number of pages) * ((size of spare area) + (number of ecc
746     steps per page) * sizeof (int)). The driver stores the
747     result of the ecc check for each tuple in the spare buffer.
748     The storage sequence is
749     </para>
750     <para>
751     &lt;spare data page 0&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
752     </para>
753     <para>
754     ...
755     </para>
756     <para>
757     &lt;spare data page n&gt;&lt;ecc result 0&gt;...&lt;ecc result n&gt;
758     </para>
759     <para>
760     This is a legacy mode used by YAFFS1.
761     </para>
762     <para>
763     If the spare area buffer is NULL then only the ECC placement is
764     done according to the given scheme in the nand_oobinfo structure.
765     </para>
766     </sect2>
767     <sect2>
768     <title>Automatic placement</title>
769     <para>
770     Automatic placement uses the built in defaults to place the
771     ecc bytes in the spare area. If filesystem data have to be stored /
772     read into the spare area then the calling function must provide a
773     buffer. The buffer size per page is determined by the oobfree array in
774     the nand_oobinfo structure.
775     </para>
776     <para>
777     If the spare area buffer is NULL then only the ECC placement is
778     done according to the default builtin scheme.
779     </para>
780     </sect2>
781     <sect2>
782     <title>User space placement selection</title>
783     <para>
784     All non ecc functions like mtd->read and mtd->write use an internal
785     structure, which can be set by an ioctl. This structure is preset
786     to the autoplacement default.
787     <programlisting>
788     ioctl (fd, MEMSETOOBSEL, oobsel);
789     </programlisting>
790     oobsel is a pointer to a user supplied structure of type
791     nand_oobconfig. The contents of this structure must match the
792     criteria of the filesystem, which will be used. See an example in utils/nandwrite.c.
793     </para>
794     </sect2>
795     </sect1>
796     <sect1>
797     <title>Spare area autoplacement default schemes</title>
798     <sect2>
799     <title>256 byte pagesize</title>
800     <informaltable><tgroup cols="3"><tbody>
801     <row>
802     <entry>Offset</entry>
803     <entry>Content</entry>
804     <entry>Comment</entry>
805     </row>
806     <row>
807     <entry>0x00</entry>
808     <entry>ECC byte 0</entry>
809     <entry>Error correction code byte 0</entry>
810     </row>
811     <row>
812     <entry>0x01</entry>
813     <entry>ECC byte 1</entry>
814     <entry>Error correction code byte 1</entry>
815     </row>
816     <row>
817     <entry>0x02</entry>
818     <entry>ECC byte 2</entry>
819     <entry>Error correction code byte 2</entry>
820     </row>
821     <row>
822     <entry>0x03</entry>
823     <entry>Autoplace 0</entry>
824     <entry></entry>
825     </row>
826     <row>
827     <entry>0x04</entry>
828     <entry>Autoplace 1</entry>
829     <entry></entry>
830     </row>
831     <row>
832     <entry>0x05</entry>
833     <entry>Bad block marker</entry>
834     <entry>If any bit in this byte is zero, then this block is bad.
835     This applies only to the first page in a block. In the remaining
836     pages this byte is reserved</entry>
837     </row>
838     <row>
839     <entry>0x06</entry>
840     <entry>Autoplace 2</entry>
841     <entry></entry>
842     </row>
843     <row>
844     <entry>0x07</entry>
845     <entry>Autoplace 3</entry>
846     <entry></entry>
847     </row>
848     </tbody></tgroup></informaltable>
849     </sect2>
850     <sect2>
851     <title>512 byte pagesize</title>
852     <informaltable><tgroup cols="3"><tbody>
853     <row>
854     <entry>Offset</entry>
855     <entry>Content</entry>
856     <entry>Comment</entry>
857     </row>
858     <row>
859     <entry>0x00</entry>
860     <entry>ECC byte 0</entry>
861     <entry>Error correction code byte 0 of the lower 256 Byte data in
862     this page</entry>
863     </row>
864     <row>
865     <entry>0x01</entry>
866     <entry>ECC byte 1</entry>
867     <entry>Error correction code byte 1 of the lower 256 Bytes of data
868     in this page</entry>
869     </row>
870     <row>
871     <entry>0x02</entry>
872     <entry>ECC byte 2</entry>
873     <entry>Error correction code byte 2 of the lower 256 Bytes of data
874     in this page</entry>
875     </row>
876     <row>
877     <entry>0x03</entry>
878     <entry>ECC byte 3</entry>
879     <entry>Error correction code byte 0 of the upper 256 Bytes of data
880     in this page</entry>
881     </row>
882     <row>
883     <entry>0x04</entry>
884     <entry>reserved</entry>
885     <entry>reserved</entry>
886     </row>
887     <row>
888     <entry>0x05</entry>
889     <entry>Bad block marker</entry>
890     <entry>If any bit in this byte is zero, then this block is bad.
891     This applies only to the first page in a block. In the remaining
892     pages this byte is reserved</entry>
893     </row>
894     <row>
895     <entry>0x06</entry>
896     <entry>ECC byte 4</entry>
897     <entry>Error correction code byte 1 of the upper 256 Bytes of data
898     in this page</entry>
899     </row>
900     <row>
901     <entry>0x07</entry>
902     <entry>ECC byte 5</entry>
903     <entry>Error correction code byte 2 of the upper 256 Bytes of data
904     in this page</entry>
905     </row>
906     <row>
907     <entry>0x08 - 0x0F</entry>
908     <entry>Autoplace 0 - 7</entry>
909     <entry></entry>
910     </row>
911     </tbody></tgroup></informaltable>
912     </sect2>
913     <sect2>
914     <title>2048 byte pagesize</title>
915     <informaltable><tgroup cols="3"><tbody>
916     <row>
917     <entry>Offset</entry>
918     <entry>Content</entry>
919     <entry>Comment</entry>
920     </row>
921     <row>
922     <entry>0x00</entry>
923     <entry>Bad block marker</entry>
924     <entry>If any bit in this byte is zero, then this block is bad.
925     This applies only to the first page in a block. In the remaining
926     pages this byte is reserved</entry>
927     </row>
928     <row>
929     <entry>0x01</entry>
930     <entry>Reserved</entry>
931     <entry>Reserved</entry>
932     </row>
933     <row>
934     <entry>0x02-0x27</entry>
935     <entry>Autoplace 0 - 37</entry>
936     <entry></entry>
937     </row>
938     <row>
939     <entry>0x28</entry>
940     <entry>ECC byte 0</entry>
941     <entry>Error correction code byte 0 of the first 256 Byte data in
942     this page</entry>
943     </row>
944     <row>
945     <entry>0x29</entry>
946     <entry>ECC byte 1</entry>
947     <entry>Error correction code byte 1 of the first 256 Bytes of data
948     in this page</entry>
949     </row>
950     <row>
951     <entry>0x2A</entry>
952     <entry>ECC byte 2</entry>
953     <entry>Error correction code byte 2 of the first 256 Bytes data in
954     this page</entry>
955     </row>
956     <row>
957     <entry>0x2B</entry>
958     <entry>ECC byte 3</entry>
959     <entry>Error correction code byte 0 of the second 256 Bytes of data
960     in this page</entry>
961     </row>
962     <row>
963     <entry>0x2C</entry>
964     <entry>ECC byte 4</entry>
965     <entry>Error correction code byte 1 of the second 256 Bytes of data
966     in this page</entry>
967     </row>
968     <row>
969     <entry>0x2D</entry>
970     <entry>ECC byte 5</entry>
971     <entry>Error correction code byte 2 of the second 256 Bytes of data
972     in this page</entry>
973     </row>
974     <row>
975     <entry>0x2E</entry>
976     <entry>ECC byte 6</entry>
977     <entry>Error correction code byte 0 of the third 256 Bytes of data
978     in this page</entry>
979     </row>
980     <row>
981     <entry>0x2F</entry>
982     <entry>ECC byte 7</entry>
983     <entry>Error correction code byte 1 of the third 256 Bytes of data
984     in this page</entry>
985     </row>
986     <row>
987     <entry>0x30</entry>
988     <entry>ECC byte 8</entry>
989     <entry>Error correction code byte 2 of the third 256 Bytes of data
990     in this page</entry>
991     </row>
992     <row>
993     <entry>0x31</entry>
994     <entry>ECC byte 9</entry>
995     <entry>Error correction code byte 0 of the fourth 256 Bytes of data
996     in this page</entry>
997     </row>
998     <row>
999     <entry>0x32</entry>
1000     <entry>ECC byte 10</entry>
1001     <entry>Error correction code byte 1 of the fourth 256 Bytes of data
1002     in this page</entry>
1003     </row>
1004     <row>
1005     <entry>0x33</entry>
1006     <entry>ECC byte 11</entry>
1007     <entry>Error correction code byte 2 of the fourth 256 Bytes of data
1008     in this page</entry>
1009     </row>
1010     <row>
1011     <entry>0x34</entry>
1012     <entry>ECC byte 12</entry>
1013     <entry>Error correction code byte 0 of the fifth 256 Bytes of data
1014     in this page</entry>
1015     </row>
1016     <row>
1017     <entry>0x35</entry>
1018     <entry>ECC byte 13</entry>
1019     <entry>Error correction code byte 1 of the fifth 256 Bytes of data
1020     in this page</entry>
1021     </row>
1022     <row>
1023     <entry>0x36</entry>
1024     <entry>ECC byte 14</entry>
1025     <entry>Error correction code byte 2 of the fifth 256 Bytes of data
1026     in this page</entry>
1027     </row>
1028     <row>
1029     <entry>0x37</entry>
1030     <entry>ECC byte 15</entry>
1031     <entry>Error correction code byte 0 of the sixt 256 Bytes of data
1032     in this page</entry>
1033     </row>
1034     <row>
1035     <entry>0x38</entry>
1036     <entry>ECC byte 16</entry>
1037     <entry>Error correction code byte 1 of the sixt 256 Bytes of data
1038     in this page</entry>
1039     </row>
1040     <row>
1041     <entry>0x39</entry>
1042     <entry>ECC byte 17</entry>
1043     <entry>Error correction code byte 2 of the sixt 256 Bytes of data
1044     in this page</entry>
1045     </row>
1046     <row>
1047     <entry>0x3A</entry>
1048     <entry>ECC byte 18</entry>
1049     <entry>Error correction code byte 0 of the seventh 256 Bytes of
1050     data in this page</entry>
1051     </row>
1052     <row>
1053     <entry>0x3B</entry>
1054     <entry>ECC byte 19</entry>
1055     <entry>Error correction code byte 1 of the seventh 256 Bytes of
1056     data in this page</entry>
1057     </row>
1058     <row>
1059     <entry>0x3C</entry>
1060     <entry>ECC byte 20</entry>
1061     <entry>Error correction code byte 2 of the seventh 256 Bytes of
1062     data in this page</entry>
1063     </row>
1064     <row>
1065     <entry>0x3D</entry>
1066     <entry>ECC byte 21</entry>
1067     <entry>Error correction code byte 0 of the eigth 256 Bytes of data
1068     in this page</entry>
1069     </row>
1070     <row>
1071     <entry>0x3E</entry>
1072     <entry>ECC byte 22</entry>
1073     <entry>Error correction code byte 1 of the eigth 256 Bytes of data
1074     in this page</entry>
1075     </row>
1076     <row>
1077     <entry>0x3F</entry>
1078     <entry>ECC byte 23</entry>
1079     <entry>Error correction code byte 2 of the eigth 256 Bytes of data
1080     in this page</entry>
1081     </row>
1082     </tbody></tgroup></informaltable>
1083     </sect2>
1084     </sect1>
1085     </chapter>
1086    
1087     <chapter id="filesystems">
1088     <title>Filesystem support</title>
1089     <para>
1090     The NAND driver provides all neccecary functions for a
1091     filesystem via the MTD interface.
1092     </para>
1093     <para>
1094     Filesystems must be aware of the NAND pecularities and
1095     restrictions. One major restrictions of NAND Flash is, that you cannot
1096     write as often as you want to a page. The consecutive writes to a page,
1097     before erasing it again, are restricted to 1-3 writes, depending on the
1098     manufacturers specifications. This applies similar to the spare area.
1099     </para>
1100     <para>
1101     Therefor NAND aware filesystems must either write in page size chunks
1102     or hold a writebuffer to collect smaller writes until they sum up to
1103     pagesize. Available NAND aware filesystems: JFFS2, YAFFS.
1104     </para>
1105     <para>
1106     The spare area usage to store filesystem data is controlled by
1107     the spare area placement functionality which is described in one
1108     of the earlier chapters.
1109     </para>
1110     </chapter>
1111     <chapter id="tools">
1112     <title>Tools</title>
1113     <para>
1114     The MTD project provides a couple of helpful tools to handle NAND Flash.
1115     <itemizedlist>
1116     <listitem><para>flasherase, flasheraseall: Erase and format FLASH partitions</para></listitem>
1117     <listitem><para>nandwrite: write filesystem images to NAND FLASH</para></listitem>
1118     <listitem><para>nanddump: dump the contents of a NAND FLASH partitions</para></listitem>
1119     </itemizedlist>
1120     </para>
1121     <para>
1122     These tools are aware of the NAND restrictions. Please use those tools
1123     instead of complaining about errors which are caused by non NAND aware
1124     access methods.
1125     </para>
1126     </chapter>
1127    
1128     <chapter id="defines">
1129     <title>Constants</title>
1130     <para>
1131     This chapter describes the constants which might be relevant for a driver developer.
1132     </para>
1133     <sect1>
1134     <title>Chip option constants</title>
1135     <sect2>
1136     <title>Constants for chip id table</title>
1137     <para>
1138     These constants are defined in nand.h. They are ored together to describe
1139     the chip functionality.
1140     <programlisting>
1141     /* Chip can not auto increment pages */
1142     #define NAND_NO_AUTOINCR 0x00000001
1143     /* Buswitdh is 16 bit */
1144     #define NAND_BUSWIDTH_16 0x00000002
1145     /* Device supports partial programming without padding */
1146     #define NAND_NO_PADDING 0x00000004
1147     /* Chip has cache program function */
1148     #define NAND_CACHEPRG 0x00000008
1149     /* Chip has copy back function */
1150     #define NAND_COPYBACK 0x00000010
1151     /* AND Chip which has 4 banks and a confusing page / block
1152     * assignment. See Renesas datasheet for further information */
1153     #define NAND_IS_AND 0x00000020
1154     /* Chip has a array of 4 pages which can be read without
1155     * additional ready /busy waits */
1156     #define NAND_4PAGE_ARRAY 0x00000040
1157     </programlisting>
1158     </para>
1159     </sect2>
1160     <sect2>
1161     <title>Constants for runtime options</title>
1162     <para>
1163     These constants are defined in nand.h. They are ored together to describe
1164     the functionality.
1165     <programlisting>
1166     /* Use a flash based bad block table. This option is parsed by the
1167     * default bad block table function (nand_default_bbt). */
1168     #define NAND_USE_FLASH_BBT 0x00010000
1169     /* The hw ecc generator provides a syndrome instead a ecc value on read
1170     * This can only work if we have the ecc bytes directly behind the
1171     * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */
1172     #define NAND_HWECC_SYNDROME 0x00020000
1173     </programlisting>
1174     </para>
1175     </sect2>
1176     </sect1>
1177    
1178     <sect1>
1179     <title>ECC selection constants</title>
1180     <para>
1181     Use these constants to select the ECC algorithm.
1182     <programlisting>
1183     /* No ECC. Usage is not recommended ! */
1184     #define NAND_ECC_NONE 0
1185     /* Software ECC 3 byte ECC per 256 Byte data */
1186     #define NAND_ECC_SOFT 1
1187     /* Hardware ECC 3 byte ECC per 256 Byte data */
1188     #define NAND_ECC_HW3_256 2
1189     /* Hardware ECC 3 byte ECC per 512 Byte data */
1190     #define NAND_ECC_HW3_512 3
1191     /* Hardware ECC 6 byte ECC per 512 Byte data */
1192     #define NAND_ECC_HW6_512 4
1193     /* Hardware ECC 6 byte ECC per 512 Byte data */
1194     #define NAND_ECC_HW8_512 6
1195     </programlisting>
1196     </para>
1197     </sect1>
1198    
1199     <sect1>
1200     <title>Hardware control related constants</title>
1201     <para>
1202     These constants describe the requested hardware access function when
1203     the boardspecific hardware control function is called
1204     <programlisting>
1205     /* Select the chip by setting nCE to low */
1206     #define NAND_CTL_SETNCE 1
1207     /* Deselect the chip by setting nCE to high */
1208     #define NAND_CTL_CLRNCE 2
1209     /* Select the command latch by setting CLE to high */
1210     #define NAND_CTL_SETCLE 3
1211     /* Deselect the command latch by setting CLE to low */
1212     #define NAND_CTL_CLRCLE 4
1213     /* Select the address latch by setting ALE to high */
1214     #define NAND_CTL_SETALE 5
1215     /* Deselect the address latch by setting ALE to low */
1216     #define NAND_CTL_CLRALE 6
1217     /* Set write protection by setting WP to high. Not used! */
1218     #define NAND_CTL_SETWP 7
1219     /* Clear write protection by setting WP to low. Not used! */
1220     #define NAND_CTL_CLRWP 8
1221     </programlisting>
1222     </para>
1223     </sect1>
1224    
1225     <sect1>
1226     <title>Bad block table related constants</title>
1227     <para>
1228     These constants describe the options used for bad block
1229     table descriptors.
1230     <programlisting>
1231     /* Options for the bad block table descriptors */
1232    
1233     /* The number of bits used per block in the bbt on the device */
1234     #define NAND_BBT_NRBITS_MSK 0x0000000F
1235     #define NAND_BBT_1BIT 0x00000001
1236     #define NAND_BBT_2BIT 0x00000002
1237     #define NAND_BBT_4BIT 0x00000004
1238     #define NAND_BBT_8BIT 0x00000008
1239     /* The bad block table is in the last good block of the device */
1240     #define NAND_BBT_LASTBLOCK 0x00000010
1241     /* The bbt is at the given page, else we must scan for the bbt */
1242     #define NAND_BBT_ABSPAGE 0x00000020
1243     /* The bbt is at the given page, else we must scan for the bbt */
1244     #define NAND_BBT_SEARCH 0x00000040
1245     /* bbt is stored per chip on multichip devices */
1246     #define NAND_BBT_PERCHIP 0x00000080
1247     /* bbt has a version counter at offset veroffs */
1248     #define NAND_BBT_VERSION 0x00000100
1249     /* Create a bbt if none axists */
1250     #define NAND_BBT_CREATE 0x00000200
1251     /* Search good / bad pattern through all pages of a block */
1252     #define NAND_BBT_SCANALLPAGES 0x00000400
1253     /* Scan block empty during good / bad block scan */
1254     #define NAND_BBT_SCANEMPTY 0x00000800
1255     /* Write bbt if neccecary */
1256     #define NAND_BBT_WRITE 0x00001000
1257     /* Read and write back block contents when writing bbt */
1258     #define NAND_BBT_SAVECONTENT 0x00002000
1259     </programlisting>
1260     </para>
1261     </sect1>
1262    
1263     </chapter>
1264    
1265     <chapter id="structs">
1266     <title>Structures</title>
1267     <para>
1268     This chapter contains the autogenerated documentation of the structures which are
1269     used in the NAND driver and might be relevant for a driver developer. Each
1270     struct member has a short description which is marked with an [XXX] identifier.
1271     See the chapter "Documentation hints" for an explanation.
1272     </para>
1273     !Iinclude/linux/mtd/nand.h
1274     </chapter>
1275    
1276     <chapter id="pubfunctions">
1277     <title>Public Functions Provided</title>
1278     <para>
1279     This chapter contains the autogenerated documentation of the NAND kernel API functions
1280     which are exported. Each function has a short description which is marked with an [XXX] identifier.
1281     See the chapter "Documentation hints" for an explanation.
1282     </para>
1283     !Edrivers/mtd/nand/nand_base.c
1284     !Edrivers/mtd/nand/nand_bbt.c
1285     !Edrivers/mtd/nand/nand_ecc.c
1286     </chapter>
1287    
1288     <chapter id="intfunctions">
1289     <title>Internal Functions Provided</title>
1290     <para>
1291     This chapter contains the autogenerated documentation of the NAND driver internal functions.
1292     Each function has a short description which is marked with an [XXX] identifier.
1293     See the chapter "Documentation hints" for an explanation.
1294     The functions marked with [DEFAULT] might be relevant for a board driver developer.
1295     </para>
1296     !Idrivers/mtd/nand/nand_base.c
1297     !Idrivers/mtd/nand/nand_bbt.c
1298     !Idrivers/mtd/nand/nand_ecc.c
1299     </chapter>
1300    
1301     <chapter id="credits">
1302     <title>Credits</title>
1303     <para>
1304     The following people have contributed to the NAND driver:
1305     <orderedlist>
1306     <listitem><para>Steven J. Hill<email>sjhill@realitydiluted.com</email></para></listitem>
1307     <listitem><para>David Woodhouse<email>dwmw2@infradead.org</email></para></listitem>
1308     <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
1309     </orderedlist>
1310     A lot of users have provided bugfixes, improvements and helping hands for testing.
1311     Thanks a lot.
1312     </para>
1313     <para>
1314     The following people have contributed to this document:
1315     <orderedlist>
1316     <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem>
1317     </orderedlist>
1318     </para>
1319     </chapter>
1320     </book>