Magellan Linux

Annotation of /alx-src/trunk/kernel26-alx/linux/Documentation/RCU/arrayRCU.txt

Parent Directory Parent Directory | Revision Log Revision Log


Revision 628 - (hide annotations) (download)
Wed Mar 4 10:48:58 2009 UTC (15 years, 3 months ago) by niro
File MIME type: text/plain
File size: 4475 byte(s)
import linux sources based on 2.6.12-alx-r9:
 -using linux-2.6.12.6
 -using 2.6.12-ck6 patch set
 -using fbsplash-0.9.2-r3
 -using vesafb-tng-0.9-rc7
 -using squashfs-2.2
 -added cddvd-cmdfilter-drop.patch as ck dropped it
 -added via-epia-dri (cle266) patch
 -added zd1211-svn-32 wlan driver (http://zd1211.ath.cx/download/)
 -added debian patches to zd1211 for wep256 etc

1 niro 628 Using RCU to Protect Read-Mostly Arrays
2    
3    
4     Although RCU is more commonly used to protect linked lists, it can
5     also be used to protect arrays. Three situations are as follows:
6    
7     1. Hash Tables
8    
9     2. Static Arrays
10    
11     3. Resizeable Arrays
12    
13     Each of these situations are discussed below.
14    
15    
16     Situation 1: Hash Tables
17    
18     Hash tables are often implemented as an array, where each array entry
19     has a linked-list hash chain. Each hash chain can be protected by RCU
20     as described in the listRCU.txt document. This approach also applies
21     to other array-of-list situations, such as radix trees.
22    
23    
24     Situation 2: Static Arrays
25    
26     Static arrays, where the data (rather than a pointer to the data) is
27     located in each array element, and where the array is never resized,
28     have not been used with RCU. Rik van Riel recommends using seqlock in
29     this situation, which would also have minimal read-side overhead as long
30     as updates are rare.
31    
32     Quick Quiz: Why is it so important that updates be rare when
33     using seqlock?
34    
35    
36     Situation 3: Resizeable Arrays
37    
38     Use of RCU for resizeable arrays is demonstrated by the grow_ary()
39     function used by the System V IPC code. The array is used to map from
40     semaphore, message-queue, and shared-memory IDs to the data structure
41     that represents the corresponding IPC construct. The grow_ary()
42     function does not acquire any locks; instead its caller must hold the
43     ids->sem semaphore.
44    
45     The grow_ary() function, shown below, does some limit checks, allocates a
46     new ipc_id_ary, copies the old to the new portion of the new, initializes
47     the remainder of the new, updates the ids->entries pointer to point to
48     the new array, and invokes ipc_rcu_putref() to free up the old array.
49     Note that rcu_assign_pointer() is used to update the ids->entries pointer,
50     which includes any memory barriers required on whatever architecture
51     you are running on.
52    
53     static int grow_ary(struct ipc_ids* ids, int newsize)
54     {
55     struct ipc_id_ary* new;
56     struct ipc_id_ary* old;
57     int i;
58     int size = ids->entries->size;
59    
60     if(newsize > IPCMNI)
61     newsize = IPCMNI;
62     if(newsize <= size)
63     return newsize;
64    
65     new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize +
66     sizeof(struct ipc_id_ary));
67     if(new == NULL)
68     return size;
69     new->size = newsize;
70     memcpy(new->p, ids->entries->p,
71     sizeof(struct kern_ipc_perm *)*size +
72     sizeof(struct ipc_id_ary));
73     for(i=size;i<newsize;i++) {
74     new->p[i] = NULL;
75     }
76     old = ids->entries;
77    
78     /*
79     * Use rcu_assign_pointer() to make sure the memcpyed
80     * contents of the new array are visible before the new
81     * array becomes visible.
82     */
83     rcu_assign_pointer(ids->entries, new);
84    
85     ipc_rcu_putref(old);
86     return newsize;
87     }
88    
89     The ipc_rcu_putref() function decrements the array's reference count
90     and then, if the reference count has dropped to zero, uses call_rcu()
91     to free the array after a grace period has elapsed.
92    
93     The array is traversed by the ipc_lock() function. This function
94     indexes into the array under the protection of rcu_read_lock(),
95     using rcu_dereference() to pick up the pointer to the array so
96     that it may later safely be dereferenced -- memory barriers are
97     required on the Alpha CPU. Since the size of the array is stored
98     with the array itself, there can be no array-size mismatches, so
99     a simple check suffices. The pointer to the structure corresponding
100     to the desired IPC object is placed in "out", with NULL indicating
101     a non-existent entry. After acquiring "out->lock", the "out->deleted"
102     flag indicates whether the IPC object is in the process of being
103     deleted, and, if not, the pointer is returned.
104    
105     struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id)
106     {
107     struct kern_ipc_perm* out;
108     int lid = id % SEQ_MULTIPLIER;
109     struct ipc_id_ary* entries;
110    
111     rcu_read_lock();
112     entries = rcu_dereference(ids->entries);
113     if(lid >= entries->size) {
114     rcu_read_unlock();
115     return NULL;
116     }
117     out = entries->p[lid];
118     if(out == NULL) {
119     rcu_read_unlock();
120     return NULL;
121     }
122     spin_lock(&out->lock);
123    
124     /* ipc_rmid() may have already freed the ID while ipc_lock
125     * was spinning: here verify that the structure is still valid
126     */
127     if (out->deleted) {
128     spin_unlock(&out->lock);
129     rcu_read_unlock();
130     return NULL;
131     }
132     return out;
133     }
134    
135    
136     Answer to Quick Quiz:
137    
138     The reason that it is important that updates be rare when
139     using seqlock is that frequent updates can livelock readers.
140     One way to avoid this problem is to assign a seqlock for
141     each array entry rather than to the entire array.