Magellan Linux

Annotation of /alx-src/trunk/kernel26-alx/linux/Documentation/RCU/listRCU.txt

Parent Directory Parent Directory | Revision Log Revision Log


Revision 628 - (hide annotations) (download)
Wed Mar 4 10:48:58 2009 UTC (15 years, 2 months ago) by niro
File MIME type: text/plain
File size: 10836 byte(s)
import linux sources based on 2.6.12-alx-r9:
 -using linux-2.6.12.6
 -using 2.6.12-ck6 patch set
 -using fbsplash-0.9.2-r3
 -using vesafb-tng-0.9-rc7
 -using squashfs-2.2
 -added cddvd-cmdfilter-drop.patch as ck dropped it
 -added via-epia-dri (cle266) patch
 -added zd1211-svn-32 wlan driver (http://zd1211.ath.cx/download/)
 -added debian patches to zd1211 for wep256 etc

1 niro 628 Using RCU to Protect Read-Mostly Linked Lists
2    
3    
4     One of the best applications of RCU is to protect read-mostly linked lists
5     ("struct list_head" in list.h). One big advantage of this approach
6     is that all of the required memory barriers are included for you in
7     the list macros. This document describes several applications of RCU,
8     with the best fits first.
9    
10    
11     Example 1: Read-Side Action Taken Outside of Lock, No In-Place Updates
12    
13     The best applications are cases where, if reader-writer locking were
14     used, the read-side lock would be dropped before taking any action
15     based on the results of the search. The most celebrated example is
16     the routing table. Because the routing table is tracking the state of
17     equipment outside of the computer, it will at times contain stale data.
18     Therefore, once the route has been computed, there is no need to hold
19     the routing table static during transmission of the packet. After all,
20     you can hold the routing table static all you want, but that won't keep
21     the external Internet from changing, and it is the state of the external
22     Internet that really matters. In addition, routing entries are typically
23     added or deleted, rather than being modified in place.
24    
25     A straightforward example of this use of RCU may be found in the
26     system-call auditing support. For example, a reader-writer locked
27     implementation of audit_filter_task() might be as follows:
28    
29     static enum audit_state audit_filter_task(struct task_struct *tsk)
30     {
31     struct audit_entry *e;
32     enum audit_state state;
33    
34     read_lock(&auditsc_lock);
35     /* Note: audit_netlink_sem held by caller. */
36     list_for_each_entry(e, &audit_tsklist, list) {
37     if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
38     read_unlock(&auditsc_lock);
39     return state;
40     }
41     }
42     read_unlock(&auditsc_lock);
43     return AUDIT_BUILD_CONTEXT;
44     }
45    
46     Here the list is searched under the lock, but the lock is dropped before
47     the corresponding value is returned. By the time that this value is acted
48     on, the list may well have been modified. This makes sense, since if
49     you are turning auditing off, it is OK to audit a few extra system calls.
50    
51     This means that RCU can be easily applied to the read side, as follows:
52    
53     static enum audit_state audit_filter_task(struct task_struct *tsk)
54     {
55     struct audit_entry *e;
56     enum audit_state state;
57    
58     rcu_read_lock();
59     /* Note: audit_netlink_sem held by caller. */
60     list_for_each_entry_rcu(e, &audit_tsklist, list) {
61     if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
62     rcu_read_unlock();
63     return state;
64     }
65     }
66     rcu_read_unlock();
67     return AUDIT_BUILD_CONTEXT;
68     }
69    
70     The read_lock() and read_unlock() calls have become rcu_read_lock()
71     and rcu_read_unlock(), respectively, and the list_for_each_entry() has
72     become list_for_each_entry_rcu(). The _rcu() list-traversal primitives
73     insert the read-side memory barriers that are required on DEC Alpha CPUs.
74    
75     The changes to the update side are also straightforward. A reader-writer
76     lock might be used as follows for deletion and insertion:
77    
78     static inline int audit_del_rule(struct audit_rule *rule,
79     struct list_head *list)
80     {
81     struct audit_entry *e;
82    
83     write_lock(&auditsc_lock);
84     list_for_each_entry(e, list, list) {
85     if (!audit_compare_rule(rule, &e->rule)) {
86     list_del(&e->list);
87     write_unlock(&auditsc_lock);
88     return 0;
89     }
90     }
91     write_unlock(&auditsc_lock);
92     return -EFAULT; /* No matching rule */
93     }
94    
95     static inline int audit_add_rule(struct audit_entry *entry,
96     struct list_head *list)
97     {
98     write_lock(&auditsc_lock);
99     if (entry->rule.flags & AUDIT_PREPEND) {
100     entry->rule.flags &= ~AUDIT_PREPEND;
101     list_add(&entry->list, list);
102     } else {
103     list_add_tail(&entry->list, list);
104     }
105     write_unlock(&auditsc_lock);
106     return 0;
107     }
108    
109     Following are the RCU equivalents for these two functions:
110    
111     static inline int audit_del_rule(struct audit_rule *rule,
112     struct list_head *list)
113     {
114     struct audit_entry *e;
115    
116     /* Do not use the _rcu iterator here, since this is the only
117     * deletion routine. */
118     list_for_each_entry(e, list, list) {
119     if (!audit_compare_rule(rule, &e->rule)) {
120     list_del_rcu(&e->list);
121     call_rcu(&e->rcu, audit_free_rule, e);
122     return 0;
123     }
124     }
125     return -EFAULT; /* No matching rule */
126     }
127    
128     static inline int audit_add_rule(struct audit_entry *entry,
129     struct list_head *list)
130     {
131     if (entry->rule.flags & AUDIT_PREPEND) {
132     entry->rule.flags &= ~AUDIT_PREPEND;
133     list_add_rcu(&entry->list, list);
134     } else {
135     list_add_tail_rcu(&entry->list, list);
136     }
137     return 0;
138     }
139    
140     Normally, the write_lock() and write_unlock() would be replaced by
141     a spin_lock() and a spin_unlock(), but in this case, all callers hold
142     audit_netlink_sem, so no additional locking is required. The auditsc_lock
143     can therefore be eliminated, since use of RCU eliminates the need for
144     writers to exclude readers. Normally, the write_lock() calls would
145     be converted into spin_lock() calls.
146    
147     The list_del(), list_add(), and list_add_tail() primitives have been
148     replaced by list_del_rcu(), list_add_rcu(), and list_add_tail_rcu().
149     The _rcu() list-manipulation primitives add memory barriers that are
150     needed on weakly ordered CPUs (most of them!). The list_del_rcu()
151     primitive omits the pointer poisoning debug-assist code that would
152     otherwise cause concurrent readers to fail spectacularly.
153    
154     So, when readers can tolerate stale data and when entries are either added
155     or deleted, without in-place modification, it is very easy to use RCU!
156    
157    
158     Example 2: Handling In-Place Updates
159    
160     The system-call auditing code does not update auditing rules in place.
161     However, if it did, reader-writer-locked code to do so might look as
162     follows (presumably, the field_count is only permitted to decrease,
163     otherwise, the added fields would need to be filled in):
164    
165     static inline int audit_upd_rule(struct audit_rule *rule,
166     struct list_head *list,
167     __u32 newaction,
168     __u32 newfield_count)
169     {
170     struct audit_entry *e;
171     struct audit_newentry *ne;
172    
173     write_lock(&auditsc_lock);
174     /* Note: audit_netlink_sem held by caller. */
175     list_for_each_entry(e, list, list) {
176     if (!audit_compare_rule(rule, &e->rule)) {
177     e->rule.action = newaction;
178     e->rule.file_count = newfield_count;
179     write_unlock(&auditsc_lock);
180     return 0;
181     }
182     }
183     write_unlock(&auditsc_lock);
184     return -EFAULT; /* No matching rule */
185     }
186    
187     The RCU version creates a copy, updates the copy, then replaces the old
188     entry with the newly updated entry. This sequence of actions, allowing
189     concurrent reads while doing a copy to perform an update, is what gives
190     RCU ("read-copy update") its name. The RCU code is as follows:
191    
192     static inline int audit_upd_rule(struct audit_rule *rule,
193     struct list_head *list,
194     __u32 newaction,
195     __u32 newfield_count)
196     {
197     struct audit_entry *e;
198     struct audit_newentry *ne;
199    
200     list_for_each_entry(e, list, list) {
201     if (!audit_compare_rule(rule, &e->rule)) {
202     ne = kmalloc(sizeof(*entry), GFP_ATOMIC);
203     if (ne == NULL)
204     return -ENOMEM;
205     audit_copy_rule(&ne->rule, &e->rule);
206     ne->rule.action = newaction;
207     ne->rule.file_count = newfield_count;
208     list_replace_rcu(e, ne);
209     call_rcu(&e->rcu, audit_free_rule, e);
210     return 0;
211     }
212     }
213     return -EFAULT; /* No matching rule */
214     }
215    
216     Again, this assumes that the caller holds audit_netlink_sem. Normally,
217     the reader-writer lock would become a spinlock in this sort of code.
218    
219    
220     Example 3: Eliminating Stale Data
221    
222     The auditing examples above tolerate stale data, as do most algorithms
223     that are tracking external state. Because there is a delay from the
224     time the external state changes before Linux becomes aware of the change,
225     additional RCU-induced staleness is normally not a problem.
226    
227     However, there are many examples where stale data cannot be tolerated.
228     One example in the Linux kernel is the System V IPC (see the ipc_lock()
229     function in ipc/util.c). This code checks a "deleted" flag under a
230     per-entry spinlock, and, if the "deleted" flag is set, pretends that the
231     entry does not exist. For this to be helpful, the search function must
232     return holding the per-entry spinlock, as ipc_lock() does in fact do.
233    
234     Quick Quiz: Why does the search function need to return holding the
235     per-entry lock for this deleted-flag technique to be helpful?
236    
237     If the system-call audit module were to ever need to reject stale data,
238     one way to accomplish this would be to add a "deleted" flag and a "lock"
239     spinlock to the audit_entry structure, and modify audit_filter_task()
240     as follows:
241    
242     static enum audit_state audit_filter_task(struct task_struct *tsk)
243     {
244     struct audit_entry *e;
245     enum audit_state state;
246    
247     rcu_read_lock();
248     list_for_each_entry_rcu(e, &audit_tsklist, list) {
249     if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
250     spin_lock(&e->lock);
251     if (e->deleted) {
252     spin_unlock(&e->lock);
253     rcu_read_unlock();
254     return AUDIT_BUILD_CONTEXT;
255     }
256     rcu_read_unlock();
257     return state;
258     }
259     }
260     rcu_read_unlock();
261     return AUDIT_BUILD_CONTEXT;
262     }
263    
264     Note that this example assumes that entries are only added and deleted.
265     Additional mechanism is required to deal correctly with the
266     update-in-place performed by audit_upd_rule(). For one thing,
267     audit_upd_rule() would need additional memory barriers to ensure
268     that the list_add_rcu() was really executed before the list_del_rcu().
269    
270     The audit_del_rule() function would need to set the "deleted"
271     flag under the spinlock as follows:
272    
273     static inline int audit_del_rule(struct audit_rule *rule,
274     struct list_head *list)
275     {
276     struct audit_entry *e;
277    
278     /* Do not use the _rcu iterator here, since this is the only
279     * deletion routine. */
280     list_for_each_entry(e, list, list) {
281     if (!audit_compare_rule(rule, &e->rule)) {
282     spin_lock(&e->lock);
283     list_del_rcu(&e->list);
284     e->deleted = 1;
285     spin_unlock(&e->lock);
286     call_rcu(&e->rcu, audit_free_rule, e);
287     return 0;
288     }
289     }
290     return -EFAULT; /* No matching rule */
291     }
292    
293    
294     Summary
295    
296     Read-mostly list-based data structures that can tolerate stale data are
297     the most amenable to use of RCU. The simplest case is where entries are
298     either added or deleted from the data structure (or atomically modified
299     in place), but non-atomic in-place modifications can be handled by making
300     a copy, updating the copy, then replacing the original with the copy.
301     If stale data cannot be tolerated, then a "deleted" flag may be used
302     in conjunction with a per-entry spinlock in order to allow the search
303     function to reject newly deleted data.
304    
305    
306     Answer to Quick Quiz
307    
308     If the search function drops the per-entry lock before returning, then
309     the caller will be processing stale data in any case. If it is really
310     OK to be processing stale data, then you don't need a "deleted" flag.
311     If processing stale data really is a problem, then you need to hold the
312     per-entry lock across all of the code that uses the value looked up.