Magellan Linux

Contents of /tags/mkinitrd-6_3_3/busybox/networking/ntpd.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1182 - (show annotations) (download)
Wed Dec 15 21:43:57 2010 UTC (13 years, 6 months ago) by niro
File MIME type: text/plain
File size: 71239 byte(s)
tagged 'mkinitrd-6_3_3'
1 /*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
6 * Licensed under GPLv2, see file LICENSE in this tarball for details.
7 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
9 * code which is based on ntp-4.2.6, whuch carries the following
10 * copyright notice:
11 *
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
29 */
30 #include "libbb.h"
31 #include <math.h>
32 #include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
33 #include <sys/timex.h>
34 #ifndef IPTOS_LOWDELAY
35 # define IPTOS_LOWDELAY 0x10
36 #endif
37 #ifndef IP_PKTINFO
38 # error "Sorry, your kernel has to support IP_PKTINFO"
39 #endif
40
41
42 /* Verbosity control (max level of -dddd options accepted).
43 * max 5 is very talkative (and bloated). 2 is non-bloated,
44 * production level setting.
45 */
46 #define MAX_VERBOSE 2
47
48
49 /* High-level description of the algorithm:
50 *
51 * We start running with very small poll_exp, BURSTPOLL,
52 * in order to quickly accumulate INITIAL_SAMLPES datapoints
53 * for each peer. Then, time is stepped if the offset is larger
54 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
55 * poll_exp to MINPOLL and enter frequency measurement step:
56 * we collect new datapoints but ignore them for WATCH_THRESHOLD
57 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
58 * offset and estimate frequency drift.
59 *
60 * (frequency measurement step seems to not be strictly needed,
61 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
62 * define set to 0)
63 *
64 * After this, we enter "steady state": we collect a datapoint,
65 * we select the best peer, if this datapoint is not a new one
66 * (IOW: if this datapoint isn't for selected peer), sleep
67 * and collect another one; otherwise, use its offset to update
68 * frequency drift, if offset is somewhat large, reduce poll_exp,
69 * otherwise increase poll_exp.
70 *
71 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
72 * happen, we assume that something "bad" happened (computer
73 * was hibernated, someone set totally wrong date, etc),
74 * then the time is stepped, all datapoints are discarded,
75 * and we go back to steady state.
76 */
77
78 #define RETRY_INTERVAL 5 /* on error, retry in N secs */
79 #define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */
80 #define INITIAL_SAMLPES 4 /* how many samples do we want for init */
81
82 /* Clock discipline parameters and constants */
83
84 /* Step threshold (sec). std ntpd uses 0.128.
85 * Using exact power of 2 (1/8) results in smaller code */
86 #define STEP_THRESHOLD 0.125
87 #define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
88 /* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
89 //UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */
90
91 #define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */
92 #define BURSTPOLL 0 /* initial poll */
93 #define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
94 #define BIGPOLL 10 /* drop to lower poll at any trouble (10: 17 min) */
95 #define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
96 /* Actively lower poll when we see such big offsets.
97 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
98 * if offset increases over 0.03 sec */
99 #define POLLDOWN_OFFSET (STEP_THRESHOLD / 4)
100 #define MINDISP 0.01 /* minimum dispersion (sec) */
101 #define MAXDISP 16 /* maximum dispersion (sec) */
102 #define MAXSTRAT 16 /* maximum stratum (infinity metric) */
103 #define MAXDIST 1 /* distance threshold (sec) */
104 #define MIN_SELECTED 1 /* minimum intersection survivors */
105 #define MIN_CLUSTERED 3 /* minimum cluster survivors */
106
107 #define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
108
109 /* Poll-adjust threshold.
110 * When we see that offset is small enough compared to discipline jitter,
111 * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT,
112 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
113 * and when it goes below -POLLADJ_LIMIT, we poll_exp--
114 * (bumped from 30 to 36 since otherwise I often see poll_exp going *2* steps down)
115 */
116 #define POLLADJ_LIMIT 36
117 /* If offset < POLLADJ_GATE * discipline_jitter, then we can increase
118 * poll interval (we think we can't improve timekeeping
119 * by staying at smaller poll).
120 */
121 #define POLLADJ_GATE 4
122 /* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
123 #define ALLAN 512
124 /* PLL loop gain */
125 #define PLL 65536
126 /* FLL loop gain [why it depends on MAXPOLL??] */
127 #define FLL (MAXPOLL + 1)
128 /* Parameter averaging constant */
129 #define AVG 4
130
131
132 enum {
133 NTP_VERSION = 4,
134 NTP_MAXSTRATUM = 15,
135
136 NTP_DIGESTSIZE = 16,
137 NTP_MSGSIZE_NOAUTH = 48,
138 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
139
140 /* Status Masks */
141 MODE_MASK = (7 << 0),
142 VERSION_MASK = (7 << 3),
143 VERSION_SHIFT = 3,
144 LI_MASK = (3 << 6),
145
146 /* Leap Second Codes (high order two bits of m_status) */
147 LI_NOWARNING = (0 << 6), /* no warning */
148 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
149 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
150 LI_ALARM = (3 << 6), /* alarm condition */
151
152 /* Mode values */
153 MODE_RES0 = 0, /* reserved */
154 MODE_SYM_ACT = 1, /* symmetric active */
155 MODE_SYM_PAS = 2, /* symmetric passive */
156 MODE_CLIENT = 3, /* client */
157 MODE_SERVER = 4, /* server */
158 MODE_BROADCAST = 5, /* broadcast */
159 MODE_RES1 = 6, /* reserved for NTP control message */
160 MODE_RES2 = 7, /* reserved for private use */
161 };
162
163 //TODO: better base selection
164 #define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
165
166 #define NUM_DATAPOINTS 8
167
168 typedef struct {
169 uint32_t int_partl;
170 uint32_t fractionl;
171 } l_fixedpt_t;
172
173 typedef struct {
174 uint16_t int_parts;
175 uint16_t fractions;
176 } s_fixedpt_t;
177
178 typedef struct {
179 uint8_t m_status; /* status of local clock and leap info */
180 uint8_t m_stratum;
181 uint8_t m_ppoll; /* poll value */
182 int8_t m_precision_exp;
183 s_fixedpt_t m_rootdelay;
184 s_fixedpt_t m_rootdisp;
185 uint32_t m_refid;
186 l_fixedpt_t m_reftime;
187 l_fixedpt_t m_orgtime;
188 l_fixedpt_t m_rectime;
189 l_fixedpt_t m_xmttime;
190 uint32_t m_keyid;
191 uint8_t m_digest[NTP_DIGESTSIZE];
192 } msg_t;
193
194 typedef struct {
195 double d_recv_time;
196 double d_offset;
197 double d_dispersion;
198 } datapoint_t;
199
200 typedef struct {
201 len_and_sockaddr *p_lsa;
202 char *p_dotted;
203 /* when to send new query (if p_fd == -1)
204 * or when receive times out (if p_fd >= 0): */
205 int p_fd;
206 int datapoint_idx;
207 uint32_t lastpkt_refid;
208 uint8_t lastpkt_status;
209 uint8_t lastpkt_stratum;
210 uint8_t reachable_bits;
211 double next_action_time;
212 double p_xmttime;
213 double lastpkt_recv_time;
214 double lastpkt_delay;
215 double lastpkt_rootdelay;
216 double lastpkt_rootdisp;
217 /* produced by filter algorithm: */
218 double filter_offset;
219 double filter_dispersion;
220 double filter_jitter;
221 datapoint_t filter_datapoint[NUM_DATAPOINTS];
222 /* last sent packet: */
223 msg_t p_xmt_msg;
224 } peer_t;
225
226
227 #define USING_KERNEL_PLL_LOOP 1
228 #define USING_INITIAL_FREQ_ESTIMATION 0
229
230 enum {
231 OPT_n = (1 << 0),
232 OPT_q = (1 << 1),
233 OPT_N = (1 << 2),
234 OPT_x = (1 << 3),
235 /* Insert new options above this line. */
236 /* Non-compat options: */
237 OPT_w = (1 << 4),
238 OPT_p = (1 << 5),
239 OPT_S = (1 << 6),
240 OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
241 };
242
243 struct globals {
244 double cur_time;
245 /* total round trip delay to currently selected reference clock */
246 double rootdelay;
247 /* reference timestamp: time when the system clock was last set or corrected */
248 double reftime;
249 /* total dispersion to currently selected reference clock */
250 double rootdisp;
251
252 double last_script_run;
253 char *script_name;
254 llist_t *ntp_peers;
255 #if ENABLE_FEATURE_NTPD_SERVER
256 int listen_fd;
257 #endif
258 unsigned verbose;
259 unsigned peer_cnt;
260 /* refid: 32-bit code identifying the particular server or reference clock
261 * in stratum 0 packets this is a four-character ASCII string,
262 * called the kiss code, used for debugging and monitoring
263 * in stratum 1 packets this is a four-character ASCII string
264 * assigned to the reference clock by IANA. Example: "GPS "
265 * in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6
266 */
267 uint32_t refid;
268 uint8_t ntp_status;
269 /* precision is defined as the larger of the resolution and time to
270 * read the clock, in log2 units. For instance, the precision of a
271 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
272 * system clock hardware representation is to the nanosecond.
273 *
274 * Delays, jitters of various kinds are clamper down to precision.
275 *
276 * If precision_sec is too large, discipline_jitter gets clamped to it
277 * and if offset is much smaller than discipline_jitter, poll interval
278 * grows even though we really can benefit from staying at smaller one,
279 * collecting non-lagged datapoits and correcting the offset.
280 * (Lagged datapoits exist when poll_exp is large but we still have
281 * systematic offset error - the time distance between datapoints
282 * is significat and older datapoints have smaller offsets.
283 * This makes our offset estimation a bit smaller than reality)
284 * Due to this effect, setting G_precision_sec close to
285 * STEP_THRESHOLD isn't such a good idea - offsets may grow
286 * too big and we will step. I observed it with -6.
287 *
288 * OTOH, setting precision too small would result in futile attempts
289 * to syncronize to the unachievable precision.
290 *
291 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
292 */
293 #define G_precision_exp -8
294 #define G_precision_sec (1.0 / (1 << (- G_precision_exp)))
295 uint8_t stratum;
296 /* Bool. After set to 1, never goes back to 0: */
297 smallint initial_poll_complete;
298
299 #define STATE_NSET 0 /* initial state, "nothing is set" */
300 //#define STATE_FSET 1 /* frequency set from file */
301 #define STATE_SPIK 2 /* spike detected */
302 //#define STATE_FREQ 3 /* initial frequency */
303 #define STATE_SYNC 4 /* clock synchronized (normal operation) */
304 uint8_t discipline_state; // doc calls it c.state
305 uint8_t poll_exp; // s.poll
306 int polladj_count; // c.count
307 long kernel_freq_drift;
308 peer_t *last_update_peer;
309 double last_update_offset; // c.last
310 double last_update_recv_time; // s.t
311 double discipline_jitter; // c.jitter
312 //double cluster_offset; // s.offset
313 //double cluster_jitter; // s.jitter
314 #if !USING_KERNEL_PLL_LOOP
315 double discipline_freq_drift; // c.freq
316 /* Maybe conditionally calculate wander? it's used only for logging */
317 double discipline_wander; // c.wander
318 #endif
319 };
320 #define G (*ptr_to_globals)
321
322 static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
323
324
325 #define VERB1 if (MAX_VERBOSE && G.verbose)
326 #define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
327 #define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
328 #define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
329 #define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
330
331
332 static double LOG2D(int a)
333 {
334 if (a < 0)
335 return 1.0 / (1UL << -a);
336 return 1UL << a;
337 }
338 static ALWAYS_INLINE double SQUARE(double x)
339 {
340 return x * x;
341 }
342 static ALWAYS_INLINE double MAXD(double a, double b)
343 {
344 if (a > b)
345 return a;
346 return b;
347 }
348 static ALWAYS_INLINE double MIND(double a, double b)
349 {
350 if (a < b)
351 return a;
352 return b;
353 }
354 static NOINLINE double my_SQRT(double X)
355 {
356 union {
357 float f;
358 int32_t i;
359 } v;
360 double invsqrt;
361 double Xhalf = X * 0.5;
362
363 /* Fast and good approximation to 1/sqrt(X), black magic */
364 v.f = X;
365 /*v.i = 0x5f3759df - (v.i >> 1);*/
366 v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
367 invsqrt = v.f; /* better than 0.2% accuracy */
368
369 /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
370 * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
371 * f'(x) = -2/(x*x*x)
372 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
373 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
374 */
375 invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
376 /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
377 /* With 4 iterations, more than half results will be exact,
378 * at 6th iterations result stabilizes with about 72% results exact.
379 * We are well satisfied with 0.05% accuracy.
380 */
381
382 return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
383 }
384 static ALWAYS_INLINE double SQRT(double X)
385 {
386 /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
387 if (sizeof(float) != 4)
388 return sqrt(X);
389
390 /* This avoids needing libm, saves about 0.5k on x86-32 */
391 return my_SQRT(X);
392 }
393
394 static double
395 gettime1900d(void)
396 {
397 struct timeval tv;
398 gettimeofday(&tv, NULL); /* never fails */
399 G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
400 return G.cur_time;
401 }
402
403 static void
404 d_to_tv(double d, struct timeval *tv)
405 {
406 tv->tv_sec = (long)d;
407 tv->tv_usec = (d - tv->tv_sec) * 1000000;
408 }
409
410 static double
411 lfp_to_d(l_fixedpt_t lfp)
412 {
413 double ret;
414 lfp.int_partl = ntohl(lfp.int_partl);
415 lfp.fractionl = ntohl(lfp.fractionl);
416 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
417 return ret;
418 }
419 static double
420 sfp_to_d(s_fixedpt_t sfp)
421 {
422 double ret;
423 sfp.int_parts = ntohs(sfp.int_parts);
424 sfp.fractions = ntohs(sfp.fractions);
425 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
426 return ret;
427 }
428 #if ENABLE_FEATURE_NTPD_SERVER
429 static l_fixedpt_t
430 d_to_lfp(double d)
431 {
432 l_fixedpt_t lfp;
433 lfp.int_partl = (uint32_t)d;
434 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
435 lfp.int_partl = htonl(lfp.int_partl);
436 lfp.fractionl = htonl(lfp.fractionl);
437 return lfp;
438 }
439 static s_fixedpt_t
440 d_to_sfp(double d)
441 {
442 s_fixedpt_t sfp;
443 sfp.int_parts = (uint16_t)d;
444 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
445 sfp.int_parts = htons(sfp.int_parts);
446 sfp.fractions = htons(sfp.fractions);
447 return sfp;
448 }
449 #endif
450
451 static double
452 dispersion(const datapoint_t *dp)
453 {
454 return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
455 }
456
457 static double
458 root_distance(peer_t *p)
459 {
460 /* The root synchronization distance is the maximum error due to
461 * all causes of the local clock relative to the primary server.
462 * It is defined as half the total delay plus total dispersion
463 * plus peer jitter.
464 */
465 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
466 + p->lastpkt_rootdisp
467 + p->filter_dispersion
468 + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
469 + p->filter_jitter;
470 }
471
472 static void
473 set_next(peer_t *p, unsigned t)
474 {
475 p->next_action_time = G.cur_time + t;
476 }
477
478 /*
479 * Peer clock filter and its helpers
480 */
481 static void
482 filter_datapoints(peer_t *p)
483 {
484 int i, idx;
485 int got_newest;
486 double minoff, maxoff, wavg, sum, w;
487 double x = x; /* for compiler */
488 double oldest_off = oldest_off;
489 double oldest_age = oldest_age;
490 double newest_off = newest_off;
491 double newest_age = newest_age;
492
493 minoff = maxoff = p->filter_datapoint[0].d_offset;
494 for (i = 1; i < NUM_DATAPOINTS; i++) {
495 if (minoff > p->filter_datapoint[i].d_offset)
496 minoff = p->filter_datapoint[i].d_offset;
497 if (maxoff < p->filter_datapoint[i].d_offset)
498 maxoff = p->filter_datapoint[i].d_offset;
499 }
500
501 idx = p->datapoint_idx; /* most recent datapoint */
502 /* Average offset:
503 * Drop two outliers and take weighted average of the rest:
504 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
505 * we use older6/32, not older6/64 since sum of weights should be 1:
506 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
507 */
508 wavg = 0;
509 w = 0.5;
510 /* n-1
511 * --- dispersion(i)
512 * filter_dispersion = \ -------------
513 * / (i+1)
514 * --- 2
515 * i=0
516 */
517 got_newest = 0;
518 sum = 0;
519 for (i = 0; i < NUM_DATAPOINTS; i++) {
520 VERB4 {
521 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
522 i,
523 p->filter_datapoint[idx].d_offset,
524 p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx]),
525 G.cur_time - p->filter_datapoint[idx].d_recv_time,
526 (minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset)
527 ? " (outlier by offset)" : ""
528 );
529 }
530
531 sum += dispersion(&p->filter_datapoint[idx]) / (2 << i);
532
533 if (minoff == p->filter_datapoint[idx].d_offset) {
534 minoff -= 1; /* so that we don't match it ever again */
535 } else
536 if (maxoff == p->filter_datapoint[idx].d_offset) {
537 maxoff += 1;
538 } else {
539 oldest_off = p->filter_datapoint[idx].d_offset;
540 oldest_age = G.cur_time - p->filter_datapoint[idx].d_recv_time;
541 if (!got_newest) {
542 got_newest = 1;
543 newest_off = oldest_off;
544 newest_age = oldest_age;
545 }
546 x = oldest_off * w;
547 wavg += x;
548 w /= 2;
549 }
550
551 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
552 }
553 p->filter_dispersion = sum;
554 wavg += x; /* add another older6/64 to form older6/32 */
555 /* Fix systematic underestimation with large poll intervals.
556 * Imagine that we still have a bit of uncorrected drift,
557 * and poll interval is big (say, 100 sec). Offsets form a progression:
558 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
559 * The algorithm above drops 0.0 and 0.7 as outliers,
560 * and then we have this estimation, ~25% off from 0.7:
561 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
562 */
563 x = oldest_age - newest_age;
564 if (x != 0) {
565 x = newest_age / x; /* in above example, 100 / (600 - 100) */
566 if (x < 1) { /* paranoia check */
567 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
568 wavg += x;
569 }
570 }
571 p->filter_offset = wavg;
572
573 /* +----- -----+ ^ 1/2
574 * | n-1 |
575 * | --- |
576 * | 1 \ 2 |
577 * filter_jitter = | --- * / (avg-offset_j) |
578 * | n --- |
579 * | j=0 |
580 * +----- -----+
581 * where n is the number of valid datapoints in the filter (n > 1);
582 * if filter_jitter < precision then filter_jitter = precision
583 */
584 sum = 0;
585 for (i = 0; i < NUM_DATAPOINTS; i++) {
586 sum += SQUARE(wavg - p->filter_datapoint[i].d_offset);
587 }
588 sum = SQRT(sum / NUM_DATAPOINTS);
589 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
590
591 VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f",
592 p->filter_offset, x,
593 p->filter_dispersion,
594 p->filter_jitter);
595
596 }
597
598 static void
599 reset_peer_stats(peer_t *p, double offset)
600 {
601 int i;
602 bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
603
604 for (i = 0; i < NUM_DATAPOINTS; i++) {
605 if (small_ofs) {
606 p->filter_datapoint[i].d_recv_time += offset;
607 if (p->filter_datapoint[i].d_offset != 0) {
608 p->filter_datapoint[i].d_offset += offset;
609 }
610 } else {
611 p->filter_datapoint[i].d_recv_time = G.cur_time;
612 p->filter_datapoint[i].d_offset = 0;
613 p->filter_datapoint[i].d_dispersion = MAXDISP;
614 }
615 }
616 if (small_ofs) {
617 p->lastpkt_recv_time += offset;
618 } else {
619 p->reachable_bits = 0;
620 p->lastpkt_recv_time = G.cur_time;
621 }
622 filter_datapoints(p); /* recalc p->filter_xxx */
623 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
624 }
625
626 static void
627 add_peers(char *s)
628 {
629 peer_t *p;
630
631 p = xzalloc(sizeof(*p));
632 p->p_lsa = xhost2sockaddr(s, 123);
633 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
634 p->p_fd = -1;
635 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
636 p->next_action_time = G.cur_time; /* = set_next(p, 0); */
637 reset_peer_stats(p, 16 * STEP_THRESHOLD);
638
639 llist_add_to(&G.ntp_peers, p);
640 G.peer_cnt++;
641 }
642
643 static int
644 do_sendto(int fd,
645 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
646 msg_t *msg, ssize_t len)
647 {
648 ssize_t ret;
649
650 errno = 0;
651 if (!from) {
652 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
653 } else {
654 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
655 }
656 if (ret != len) {
657 bb_perror_msg("send failed");
658 return -1;
659 }
660 return 0;
661 }
662
663 static void
664 send_query_to_peer(peer_t *p)
665 {
666 /* Why do we need to bind()?
667 * See what happens when we don't bind:
668 *
669 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
670 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
671 * gettimeofday({1259071266, 327885}, NULL) = 0
672 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
673 * ^^^ we sent it from some source port picked by kernel.
674 * time(NULL) = 1259071266
675 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
676 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
677 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
678 * ^^^ this recv will receive packets to any local port!
679 *
680 * Uncomment this and use strace to see it in action:
681 */
682 #define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
683
684 if (p->p_fd == -1) {
685 int fd, family;
686 len_and_sockaddr *local_lsa;
687
688 family = p->p_lsa->u.sa.sa_family;
689 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
690 /* local_lsa has "null" address and port 0 now.
691 * bind() ensures we have a *particular port* selected by kernel
692 * and remembered in p->p_fd, thus later recv(p->p_fd)
693 * receives only packets sent to this port.
694 */
695 PROBE_LOCAL_ADDR
696 xbind(fd, &local_lsa->u.sa, local_lsa->len);
697 PROBE_LOCAL_ADDR
698 #if ENABLE_FEATURE_IPV6
699 if (family == AF_INET)
700 #endif
701 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
702 free(local_lsa);
703 }
704
705 /*
706 * Send out a random 64-bit number as our transmit time. The NTP
707 * server will copy said number into the originate field on the
708 * response that it sends us. This is totally legal per the SNTP spec.
709 *
710 * The impact of this is two fold: we no longer send out the current
711 * system time for the world to see (which may aid an attacker), and
712 * it gives us a (not very secure) way of knowing that we're not
713 * getting spoofed by an attacker that can't capture our traffic
714 * but can spoof packets from the NTP server we're communicating with.
715 *
716 * Save the real transmit timestamp locally.
717 */
718 p->p_xmt_msg.m_xmttime.int_partl = random();
719 p->p_xmt_msg.m_xmttime.fractionl = random();
720 p->p_xmttime = gettime1900d();
721
722 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
723 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
724 ) {
725 close(p->p_fd);
726 p->p_fd = -1;
727 set_next(p, RETRY_INTERVAL);
728 return;
729 }
730
731 p->reachable_bits <<= 1;
732 VERB1 bb_error_msg("sent query to %s", p->p_dotted);
733 set_next(p, RESPONSE_INTERVAL);
734 }
735
736
737 /* Note that there is no provision to prevent several run_scripts
738 * to be done in quick succession. In fact, it happens rather often
739 * if initial syncronization results in a step.
740 * You will see "step" and then "stratum" script runs, sometimes
741 * as close as only 0.002 seconds apart.
742 * Script should be ready to deal with this.
743 */
744 static void run_script(const char *action, double offset)
745 {
746 char *argv[3];
747 char *env1, *env2, *env3, *env4;
748
749 if (!G.script_name)
750 return;
751
752 argv[0] = (char*) G.script_name;
753 argv[1] = (char*) action;
754 argv[2] = NULL;
755
756 VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
757
758 env1 = xasprintf("%s=%u", "stratum", G.stratum);
759 putenv(env1);
760 env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
761 putenv(env2);
762 env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
763 putenv(env3);
764 env4 = xasprintf("%s=%f", "offset", offset);
765 putenv(env4);
766 /* Other items of potential interest: selected peer,
767 * rootdelay, reftime, rootdisp, refid, ntp_status,
768 * last_update_offset, last_update_recv_time, discipline_jitter,
769 * how many peers have reachable_bits = 0?
770 */
771
772 /* Don't want to wait: it may run hwclock --systohc, and that
773 * may take some time (seconds): */
774 /*spawn_and_wait(argv);*/
775 spawn(argv);
776
777 unsetenv("stratum");
778 unsetenv("freq_drift_ppm");
779 unsetenv("poll_interval");
780 unsetenv("offset");
781 free(env1);
782 free(env2);
783 free(env3);
784 free(env4);
785
786 G.last_script_run = G.cur_time;
787 }
788
789 static NOINLINE void
790 step_time(double offset)
791 {
792 llist_t *item;
793 double dtime;
794 struct timeval tv;
795 char buf[80];
796 time_t tval;
797
798 gettimeofday(&tv, NULL); /* never fails */
799 dtime = offset + tv.tv_sec;
800 dtime += 1.0e-6 * tv.tv_usec;
801 d_to_tv(dtime, &tv);
802
803 if (settimeofday(&tv, NULL) == -1)
804 bb_perror_msg_and_die("settimeofday");
805
806 tval = tv.tv_sec;
807 strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval));
808
809 bb_error_msg("setting clock to %s (offset %fs)", buf, offset);
810
811 /* Correct various fields which contain time-relative values: */
812
813 /* p->lastpkt_recv_time, p->next_action_time and such: */
814 for (item = G.ntp_peers; item != NULL; item = item->link) {
815 peer_t *pp = (peer_t *) item->data;
816 reset_peer_stats(pp, offset);
817 //bb_error_msg("offset:%f pp->next_action_time:%f -> %f",
818 // offset, pp->next_action_time, pp->next_action_time + offset);
819 pp->next_action_time += offset;
820 }
821 /* Globals: */
822 G.cur_time += offset;
823 G.last_update_recv_time += offset;
824 G.last_script_run += offset;
825 }
826
827
828 /*
829 * Selection and clustering, and their helpers
830 */
831 typedef struct {
832 peer_t *p;
833 int type;
834 double edge;
835 double opt_rd; /* optimization */
836 } point_t;
837 static int
838 compare_point_edge(const void *aa, const void *bb)
839 {
840 const point_t *a = aa;
841 const point_t *b = bb;
842 if (a->edge < b->edge) {
843 return -1;
844 }
845 return (a->edge > b->edge);
846 }
847 typedef struct {
848 peer_t *p;
849 double metric;
850 } survivor_t;
851 static int
852 compare_survivor_metric(const void *aa, const void *bb)
853 {
854 const survivor_t *a = aa;
855 const survivor_t *b = bb;
856 if (a->metric < b->metric) {
857 return -1;
858 }
859 return (a->metric > b->metric);
860 }
861 static int
862 fit(peer_t *p, double rd)
863 {
864 if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
865 /* One or zero bits in reachable_bits */
866 VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
867 return 0;
868 }
869 #if 0 /* we filter out such packets earlier */
870 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
871 || p->lastpkt_stratum >= MAXSTRAT
872 ) {
873 VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
874 return 0;
875 }
876 #endif
877 /* rd is root_distance(p) */
878 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
879 VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
880 return 0;
881 }
882 //TODO
883 // /* Do we have a loop? */
884 // if (p->refid == p->dstaddr || p->refid == s.refid)
885 // return 0;
886 return 1;
887 }
888 static peer_t*
889 select_and_cluster(void)
890 {
891 peer_t *p;
892 llist_t *item;
893 int i, j;
894 int size = 3 * G.peer_cnt;
895 /* for selection algorithm */
896 point_t point[size];
897 unsigned num_points, num_candidates;
898 double low, high;
899 unsigned num_falsetickers;
900 /* for cluster algorithm */
901 survivor_t survivor[size];
902 unsigned num_survivors;
903
904 /* Selection */
905
906 num_points = 0;
907 item = G.ntp_peers;
908 if (G.initial_poll_complete) while (item != NULL) {
909 double rd, offset;
910
911 p = (peer_t *) item->data;
912 rd = root_distance(p);
913 offset = p->filter_offset;
914 if (!fit(p, rd)) {
915 item = item->link;
916 continue;
917 }
918
919 VERB4 bb_error_msg("interval: [%f %f %f] %s",
920 offset - rd,
921 offset,
922 offset + rd,
923 p->p_dotted
924 );
925 point[num_points].p = p;
926 point[num_points].type = -1;
927 point[num_points].edge = offset - rd;
928 point[num_points].opt_rd = rd;
929 num_points++;
930 point[num_points].p = p;
931 point[num_points].type = 0;
932 point[num_points].edge = offset;
933 point[num_points].opt_rd = rd;
934 num_points++;
935 point[num_points].p = p;
936 point[num_points].type = 1;
937 point[num_points].edge = offset + rd;
938 point[num_points].opt_rd = rd;
939 num_points++;
940 item = item->link;
941 }
942 num_candidates = num_points / 3;
943 if (num_candidates == 0) {
944 VERB3 bb_error_msg("no valid datapoints, no peer selected");
945 return NULL;
946 }
947 //TODO: sorting does not seem to be done in reference code
948 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
949
950 /* Start with the assumption that there are no falsetickers.
951 * Attempt to find a nonempty intersection interval containing
952 * the midpoints of all truechimers.
953 * If a nonempty interval cannot be found, increase the number
954 * of assumed falsetickers by one and try again.
955 * If a nonempty interval is found and the number of falsetickers
956 * is less than the number of truechimers, a majority has been found
957 * and the midpoint of each truechimer represents
958 * the candidates available to the cluster algorithm.
959 */
960 num_falsetickers = 0;
961 while (1) {
962 int c;
963 unsigned num_midpoints = 0;
964
965 low = 1 << 9;
966 high = - (1 << 9);
967 c = 0;
968 for (i = 0; i < num_points; i++) {
969 /* We want to do:
970 * if (point[i].type == -1) c++;
971 * if (point[i].type == 1) c--;
972 * and it's simpler to do it this way:
973 */
974 c -= point[i].type;
975 if (c >= num_candidates - num_falsetickers) {
976 /* If it was c++ and it got big enough... */
977 low = point[i].edge;
978 break;
979 }
980 if (point[i].type == 0)
981 num_midpoints++;
982 }
983 c = 0;
984 for (i = num_points-1; i >= 0; i--) {
985 c += point[i].type;
986 if (c >= num_candidates - num_falsetickers) {
987 high = point[i].edge;
988 break;
989 }
990 if (point[i].type == 0)
991 num_midpoints++;
992 }
993 /* If the number of midpoints is greater than the number
994 * of allowed falsetickers, the intersection contains at
995 * least one truechimer with no midpoint - bad.
996 * Also, interval should be nonempty.
997 */
998 if (num_midpoints <= num_falsetickers && low < high)
999 break;
1000 num_falsetickers++;
1001 if (num_falsetickers * 2 >= num_candidates) {
1002 VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
1003 num_falsetickers, num_candidates);
1004 return NULL;
1005 }
1006 }
1007 VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1008 low, high, num_candidates, num_falsetickers);
1009
1010 /* Clustering */
1011
1012 /* Construct a list of survivors (p, metric)
1013 * from the chime list, where metric is dominated
1014 * first by stratum and then by root distance.
1015 * All other things being equal, this is the order of preference.
1016 */
1017 num_survivors = 0;
1018 for (i = 0; i < num_points; i++) {
1019 if (point[i].edge < low || point[i].edge > high)
1020 continue;
1021 p = point[i].p;
1022 survivor[num_survivors].p = p;
1023 /* x.opt_rd == root_distance(p); */
1024 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1025 VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
1026 num_survivors, survivor[num_survivors].metric, p->p_dotted);
1027 num_survivors++;
1028 }
1029 /* There must be at least MIN_SELECTED survivors to satisfy the
1030 * correctness assertions. Ordinarily, the Byzantine criteria
1031 * require four survivors, but for the demonstration here, one
1032 * is acceptable.
1033 */
1034 if (num_survivors < MIN_SELECTED) {
1035 VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
1036 num_survivors, MIN_SELECTED);
1037 return NULL;
1038 }
1039
1040 //looks like this is ONLY used by the fact that later we pick survivor[0].
1041 //we can avoid sorting then, just find the minimum once!
1042 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1043
1044 /* For each association p in turn, calculate the selection
1045 * jitter p->sjitter as the square root of the sum of squares
1046 * (p->offset - q->offset) over all q associations. The idea is
1047 * to repeatedly discard the survivor with maximum selection
1048 * jitter until a termination condition is met.
1049 */
1050 while (1) {
1051 unsigned max_idx = max_idx;
1052 double max_selection_jitter = max_selection_jitter;
1053 double min_jitter = min_jitter;
1054
1055 if (num_survivors <= MIN_CLUSTERED) {
1056 VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more",
1057 num_survivors, MIN_CLUSTERED);
1058 break;
1059 }
1060
1061 /* To make sure a few survivors are left
1062 * for the clustering algorithm to chew on,
1063 * we stop if the number of survivors
1064 * is less than or equal to MIN_CLUSTERED (3).
1065 */
1066 for (i = 0; i < num_survivors; i++) {
1067 double selection_jitter_sq;
1068
1069 p = survivor[i].p;
1070 if (i == 0 || p->filter_jitter < min_jitter)
1071 min_jitter = p->filter_jitter;
1072
1073 selection_jitter_sq = 0;
1074 for (j = 0; j < num_survivors; j++) {
1075 peer_t *q = survivor[j].p;
1076 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1077 }
1078 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1079 max_selection_jitter = selection_jitter_sq;
1080 max_idx = i;
1081 }
1082 VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
1083 i, selection_jitter_sq);
1084 }
1085 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1086 VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1087 max_idx, max_selection_jitter, min_jitter);
1088
1089 /* If the maximum selection jitter is less than the
1090 * minimum peer jitter, then tossing out more survivors
1091 * will not lower the minimum peer jitter, so we might
1092 * as well stop.
1093 */
1094 if (max_selection_jitter < min_jitter) {
1095 VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1096 max_selection_jitter, min_jitter, num_survivors);
1097 break;
1098 }
1099
1100 /* Delete survivor[max_idx] from the list
1101 * and go around again.
1102 */
1103 VERB5 bb_error_msg("dropping survivor %d", max_idx);
1104 num_survivors--;
1105 while (max_idx < num_survivors) {
1106 survivor[max_idx] = survivor[max_idx + 1];
1107 max_idx++;
1108 }
1109 }
1110
1111 if (0) {
1112 /* Combine the offsets of the clustering algorithm survivors
1113 * using a weighted average with weight determined by the root
1114 * distance. Compute the selection jitter as the weighted RMS
1115 * difference between the first survivor and the remaining
1116 * survivors. In some cases the inherent clock jitter can be
1117 * reduced by not using this algorithm, especially when frequent
1118 * clockhopping is involved. bbox: thus we don't do it.
1119 */
1120 double x, y, z, w;
1121 y = z = w = 0;
1122 for (i = 0; i < num_survivors; i++) {
1123 p = survivor[i].p;
1124 x = root_distance(p);
1125 y += 1 / x;
1126 z += p->filter_offset / x;
1127 w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1128 }
1129 //G.cluster_offset = z / y;
1130 //G.cluster_jitter = SQRT(w / y);
1131 }
1132
1133 /* Pick the best clock. If the old system peer is on the list
1134 * and at the same stratum as the first survivor on the list,
1135 * then don't do a clock hop. Otherwise, select the first
1136 * survivor on the list as the new system peer.
1137 */
1138 p = survivor[0].p;
1139 if (G.last_update_peer
1140 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1141 ) {
1142 /* Starting from 1 is ok here */
1143 for (i = 1; i < num_survivors; i++) {
1144 if (G.last_update_peer == survivor[i].p) {
1145 VERB4 bb_error_msg("keeping old synced peer");
1146 p = G.last_update_peer;
1147 goto keep_old;
1148 }
1149 }
1150 }
1151 G.last_update_peer = p;
1152 keep_old:
1153 VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f",
1154 p->p_dotted,
1155 p->filter_offset,
1156 G.cur_time - p->lastpkt_recv_time
1157 );
1158 return p;
1159 }
1160
1161
1162 /*
1163 * Local clock discipline and its helpers
1164 */
1165 static void
1166 set_new_values(int disc_state, double offset, double recv_time)
1167 {
1168 /* Enter new state and set state variables. Note we use the time
1169 * of the last clock filter sample, which must be earlier than
1170 * the current time.
1171 */
1172 VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1173 disc_state, offset, recv_time);
1174 G.discipline_state = disc_state;
1175 G.last_update_offset = offset;
1176 G.last_update_recv_time = recv_time;
1177 }
1178 /* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1179 static NOINLINE int
1180 update_local_clock(peer_t *p)
1181 {
1182 int rc;
1183 struct timex tmx;
1184 /* Note: can use G.cluster_offset instead: */
1185 double offset = p->filter_offset;
1186 double recv_time = p->lastpkt_recv_time;
1187 double abs_offset;
1188 #if !USING_KERNEL_PLL_LOOP
1189 double freq_drift;
1190 #endif
1191 double since_last_update;
1192 double etemp, dtemp;
1193
1194 abs_offset = fabs(offset);
1195
1196 #if 0
1197 /* If needed, -S script can do it by looking at $offset
1198 * env var and killing parent */
1199 /* If the offset is too large, give up and go home */
1200 if (abs_offset > PANIC_THRESHOLD) {
1201 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1202 }
1203 #endif
1204
1205 /* If this is an old update, for instance as the result
1206 * of a system peer change, avoid it. We never use
1207 * an old sample or the same sample twice.
1208 */
1209 if (recv_time <= G.last_update_recv_time) {
1210 VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1211 G.last_update_recv_time, recv_time);
1212 return 0; /* "leave poll interval as is" */
1213 }
1214
1215 /* Clock state machine transition function. This is where the
1216 * action is and defines how the system reacts to large time
1217 * and frequency errors.
1218 */
1219 since_last_update = recv_time - G.reftime;
1220 #if !USING_KERNEL_PLL_LOOP
1221 freq_drift = 0;
1222 #endif
1223 #if USING_INITIAL_FREQ_ESTIMATION
1224 if (G.discipline_state == STATE_FREQ) {
1225 /* Ignore updates until the stepout threshold */
1226 if (since_last_update < WATCH_THRESHOLD) {
1227 VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1228 WATCH_THRESHOLD - since_last_update);
1229 return 0; /* "leave poll interval as is" */
1230 }
1231 # if !USING_KERNEL_PLL_LOOP
1232 freq_drift = (offset - G.last_update_offset) / since_last_update;
1233 # endif
1234 }
1235 #endif
1236
1237 /* There are two main regimes: when the
1238 * offset exceeds the step threshold and when it does not.
1239 */
1240 if (abs_offset > STEP_THRESHOLD) {
1241 switch (G.discipline_state) {
1242 case STATE_SYNC:
1243 /* The first outlyer: ignore it, switch to SPIK state */
1244 VERB3 bb_error_msg("offset:%f - spike detected", offset);
1245 G.discipline_state = STATE_SPIK;
1246 return -1; /* "decrease poll interval" */
1247
1248 case STATE_SPIK:
1249 /* Ignore succeeding outlyers until either an inlyer
1250 * is found or the stepout threshold is exceeded.
1251 */
1252 if (since_last_update < WATCH_THRESHOLD) {
1253 VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1254 WATCH_THRESHOLD - since_last_update);
1255 return -1; /* "decrease poll interval" */
1256 }
1257 /* fall through: we need to step */
1258 } /* switch */
1259
1260 /* Step the time and clamp down the poll interval.
1261 *
1262 * In NSET state an initial frequency correction is
1263 * not available, usually because the frequency file has
1264 * not yet been written. Since the time is outside the
1265 * capture range, the clock is stepped. The frequency
1266 * will be set directly following the stepout interval.
1267 *
1268 * In FSET state the initial frequency has been set
1269 * from the frequency file. Since the time is outside
1270 * the capture range, the clock is stepped immediately,
1271 * rather than after the stepout interval. Guys get
1272 * nervous if it takes 17 minutes to set the clock for
1273 * the first time.
1274 *
1275 * In SPIK state the stepout threshold has expired and
1276 * the phase is still above the step threshold. Note
1277 * that a single spike greater than the step threshold
1278 * is always suppressed, even at the longer poll
1279 * intervals.
1280 */
1281 VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset);
1282 step_time(offset);
1283 if (option_mask32 & OPT_q) {
1284 /* We were only asked to set time once. Done. */
1285 exit(0);
1286 }
1287
1288 G.polladj_count = 0;
1289 G.poll_exp = MINPOLL;
1290 G.stratum = MAXSTRAT;
1291
1292 run_script("step", offset);
1293
1294 #if USING_INITIAL_FREQ_ESTIMATION
1295 if (G.discipline_state == STATE_NSET) {
1296 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1297 return 1; /* "ok to increase poll interval" */
1298 }
1299 #endif
1300 set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time);
1301
1302 } else { /* abs_offset <= STEP_THRESHOLD */
1303
1304 if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
1305 VERB3 bb_error_msg("small offset:%f, disabling burst mode", offset);
1306 G.polladj_count = 0;
1307 G.poll_exp = MINPOLL;
1308 }
1309
1310 /* Compute the clock jitter as the RMS of exponentially
1311 * weighted offset differences. Used by the poll adjust code.
1312 */
1313 etemp = SQUARE(G.discipline_jitter);
1314 dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec));
1315 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1316 VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter);
1317
1318 switch (G.discipline_state) {
1319 case STATE_NSET:
1320 if (option_mask32 & OPT_q) {
1321 /* We were only asked to set time once.
1322 * The clock is precise enough, no need to step.
1323 */
1324 exit(0);
1325 }
1326 #if USING_INITIAL_FREQ_ESTIMATION
1327 /* This is the first update received and the frequency
1328 * has not been initialized. The first thing to do
1329 * is directly measure the oscillator frequency.
1330 */
1331 set_new_values(STATE_FREQ, offset, recv_time);
1332 #else
1333 set_new_values(STATE_SYNC, offset, recv_time);
1334 #endif
1335 VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
1336 return 0; /* "leave poll interval as is" */
1337
1338 #if 0 /* this is dead code for now */
1339 case STATE_FSET:
1340 /* This is the first update and the frequency
1341 * has been initialized. Adjust the phase, but
1342 * don't adjust the frequency until the next update.
1343 */
1344 set_new_values(STATE_SYNC, offset, recv_time);
1345 /* freq_drift remains 0 */
1346 break;
1347 #endif
1348
1349 #if USING_INITIAL_FREQ_ESTIMATION
1350 case STATE_FREQ:
1351 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1352 * Correct the phase and frequency and switch to SYNC state.
1353 * freq_drift was already estimated (see code above)
1354 */
1355 set_new_values(STATE_SYNC, offset, recv_time);
1356 break;
1357 #endif
1358
1359 default:
1360 #if !USING_KERNEL_PLL_LOOP
1361 /* Compute freq_drift due to PLL and FLL contributions.
1362 *
1363 * The FLL and PLL frequency gain constants
1364 * depend on the poll interval and Allan
1365 * intercept. The FLL is not used below one-half
1366 * the Allan intercept. Above that the loop gain
1367 * increases in steps to 1 / AVG.
1368 */
1369 if ((1 << G.poll_exp) > ALLAN / 2) {
1370 etemp = FLL - G.poll_exp;
1371 if (etemp < AVG)
1372 etemp = AVG;
1373 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1374 }
1375 /* For the PLL the integration interval
1376 * (numerator) is the minimum of the update
1377 * interval and poll interval. This allows
1378 * oversampling, but not undersampling.
1379 */
1380 etemp = MIND(since_last_update, (1 << G.poll_exp));
1381 dtemp = (4 * PLL) << G.poll_exp;
1382 freq_drift += offset * etemp / SQUARE(dtemp);
1383 #endif
1384 set_new_values(STATE_SYNC, offset, recv_time);
1385 break;
1386 }
1387 if (G.stratum != p->lastpkt_stratum + 1) {
1388 G.stratum = p->lastpkt_stratum + 1;
1389 run_script("stratum", offset);
1390 }
1391 }
1392
1393 G.reftime = G.cur_time;
1394 G.ntp_status = p->lastpkt_status;
1395 G.refid = p->lastpkt_refid;
1396 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1397 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1398 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1399 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1400 VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1401
1402 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1403 * (Any other state does not reach this, they all return earlier)
1404 * By this time, freq_drift and G.last_update_offset are set
1405 * to values suitable for adjtimex.
1406 */
1407 #if !USING_KERNEL_PLL_LOOP
1408 /* Calculate the new frequency drift and frequency stability (wander).
1409 * Compute the clock wander as the RMS of exponentially weighted
1410 * frequency differences. This is not used directly, but can,
1411 * along with the jitter, be a highly useful monitoring and
1412 * debugging tool.
1413 */
1414 dtemp = G.discipline_freq_drift + freq_drift;
1415 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1416 etemp = SQUARE(G.discipline_wander);
1417 dtemp = SQUARE(dtemp);
1418 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1419
1420 VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1421 G.discipline_freq_drift,
1422 (long)(G.discipline_freq_drift * 65536e6),
1423 freq_drift,
1424 G.discipline_wander);
1425 #endif
1426 VERB3 {
1427 memset(&tmx, 0, sizeof(tmx));
1428 if (adjtimex(&tmx) < 0)
1429 bb_perror_msg_and_die("adjtimex");
1430 VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1431 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1432 }
1433
1434 memset(&tmx, 0, sizeof(tmx));
1435 #if 0
1436 //doesn't work, offset remains 0 (!) in kernel:
1437 //ntpd: set adjtimex freq:1786097 tmx.offset:77487
1438 //ntpd: prev adjtimex freq:1786097 tmx.offset:0
1439 //ntpd: cur adjtimex freq:1786097 tmx.offset:0
1440 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1441 /* 65536 is one ppm */
1442 tmx.freq = G.discipline_freq_drift * 65536e6;
1443 tmx.offset = G.last_update_offset * 1000000; /* usec */
1444 #endif
1445 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1446 tmx.offset = (G.last_update_offset * 1000000); /* usec */
1447 /* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */
1448 tmx.status = STA_PLL;
1449 if (G.ntp_status & LI_PLUSSEC)
1450 tmx.status |= STA_INS;
1451 if (G.ntp_status & LI_MINUSSEC)
1452 tmx.status |= STA_DEL;
1453 tmx.constant = G.poll_exp - 4;
1454 //tmx.esterror = (u_int32)(clock_jitter * 1e6);
1455 //tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1456 rc = adjtimex(&tmx);
1457 if (rc < 0)
1458 bb_perror_msg_and_die("adjtimex");
1459 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1460 * Not sure why. Perhaps it is normal.
1461 */
1462 VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x",
1463 rc, tmx.freq, tmx.offset, tmx.constant, tmx.status);
1464 #if 0
1465 VERB3 {
1466 /* always gives the same output as above msg */
1467 memset(&tmx, 0, sizeof(tmx));
1468 if (adjtimex(&tmx) < 0)
1469 bb_perror_msg_and_die("adjtimex");
1470 VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1471 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1472 }
1473 #endif
1474 G.kernel_freq_drift = tmx.freq / 65536;
1475 VERB2 bb_error_msg("update peer:%s, offset:%f, clock drift:%ld ppm",
1476 p->p_dotted, G.last_update_offset, G.kernel_freq_drift);
1477
1478 return 1; /* "ok to increase poll interval" */
1479 }
1480
1481
1482 /*
1483 * We've got a new reply packet from a peer, process it
1484 * (helpers first)
1485 */
1486 static unsigned
1487 retry_interval(void)
1488 {
1489 /* Local problem, want to retry soon */
1490 unsigned interval, r;
1491 interval = RETRY_INTERVAL;
1492 r = random();
1493 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1494 VERB3 bb_error_msg("chose retry interval:%u", interval);
1495 return interval;
1496 }
1497 static unsigned
1498 poll_interval(int exponent)
1499 {
1500 unsigned interval, r;
1501 exponent = G.poll_exp + exponent;
1502 if (exponent < 0)
1503 exponent = 0;
1504 interval = 1 << exponent;
1505 r = random();
1506 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1507 VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1508 return interval;
1509 }
1510 static NOINLINE void
1511 recv_and_process_peer_pkt(peer_t *p)
1512 {
1513 int rc;
1514 ssize_t size;
1515 msg_t msg;
1516 double T1, T2, T3, T4;
1517 unsigned interval;
1518 datapoint_t *datapoint;
1519 peer_t *q;
1520
1521 /* We can recvfrom here and check from.IP, but some multihomed
1522 * ntp servers reply from their *other IP*.
1523 * TODO: maybe we should check at least what we can: from.port == 123?
1524 */
1525 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1526 if (size == -1) {
1527 bb_perror_msg("recv(%s) error", p->p_dotted);
1528 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1529 || errno == ENETUNREACH || errno == ENETDOWN
1530 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1531 || errno == EAGAIN
1532 ) {
1533 //TODO: always do this?
1534 interval = retry_interval();
1535 goto set_next_and_close_sock;
1536 }
1537 xfunc_die();
1538 }
1539
1540 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1541 bb_error_msg("malformed packet received from %s", p->p_dotted);
1542 goto bail;
1543 }
1544
1545 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1546 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1547 ) {
1548 goto bail;
1549 }
1550
1551 if ((msg.m_status & LI_ALARM) == LI_ALARM
1552 || msg.m_stratum == 0
1553 || msg.m_stratum > NTP_MAXSTRATUM
1554 ) {
1555 // TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1556 // "DENY", "RSTR" - peer does not like us at all
1557 // "RATE" - peer is overloaded, reduce polling freq
1558 interval = poll_interval(0);
1559 bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval);
1560 goto set_next_and_close_sock;
1561 }
1562
1563 // /* Verify valid root distance */
1564 // if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1565 // return; /* invalid header values */
1566
1567 p->lastpkt_status = msg.m_status;
1568 p->lastpkt_stratum = msg.m_stratum;
1569 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1570 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1571 p->lastpkt_refid = msg.m_refid;
1572
1573 /*
1574 * From RFC 2030 (with a correction to the delay math):
1575 *
1576 * Timestamp Name ID When Generated
1577 * ------------------------------------------------------------
1578 * Originate Timestamp T1 time request sent by client
1579 * Receive Timestamp T2 time request received by server
1580 * Transmit Timestamp T3 time reply sent by server
1581 * Destination Timestamp T4 time reply received by client
1582 *
1583 * The roundtrip delay and local clock offset are defined as
1584 *
1585 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1586 */
1587 T1 = p->p_xmttime;
1588 T2 = lfp_to_d(msg.m_rectime);
1589 T3 = lfp_to_d(msg.m_xmttime);
1590 T4 = G.cur_time;
1591
1592 p->lastpkt_recv_time = T4;
1593
1594 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1595 p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1596 datapoint = &p->filter_datapoint[p->datapoint_idx];
1597 datapoint->d_recv_time = T4;
1598 datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2;
1599 /* The delay calculation is a special case. In cases where the
1600 * server and client clocks are running at different rates and
1601 * with very fast networks, the delay can appear negative. In
1602 * order to avoid violating the Principle of Least Astonishment,
1603 * the delay is clamped not less than the system precision.
1604 */
1605 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
1606 if (p->lastpkt_delay < G_precision_sec)
1607 p->lastpkt_delay = G_precision_sec;
1608 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1609 if (!p->reachable_bits) {
1610 /* 1st datapoint ever - replicate offset in every element */
1611 int i;
1612 for (i = 1; i < NUM_DATAPOINTS; i++) {
1613 p->filter_datapoint[i].d_offset = datapoint->d_offset;
1614 }
1615 }
1616
1617 p->reachable_bits |= 1;
1618 if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1619 bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f status 0x%02x strat %d refid 0x%08x rootdelay %f",
1620 p->p_dotted,
1621 p->reachable_bits,
1622 datapoint->d_offset,
1623 p->lastpkt_delay,
1624 p->lastpkt_status,
1625 p->lastpkt_stratum,
1626 p->lastpkt_refid,
1627 p->lastpkt_rootdelay
1628 /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1629 * m_reftime, m_orgtime, m_rectime, m_xmttime
1630 */
1631 );
1632 }
1633
1634 /* Muck with statictics and update the clock */
1635 filter_datapoints(p);
1636 q = select_and_cluster();
1637 rc = -1;
1638 if (q) {
1639 rc = 0;
1640 if (!(option_mask32 & OPT_w)) {
1641 rc = update_local_clock(q);
1642 /* If drift is dangerously large, immediately
1643 * drop poll interval one step down.
1644 */
1645 if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
1646 VERB3 bb_error_msg("offset:%f > POLLDOWN_OFFSET", q->filter_offset);
1647 goto poll_down;
1648 }
1649 }
1650 }
1651 /* else: no peer selected, rc = -1: we want to poll more often */
1652
1653 if (rc != 0) {
1654 /* Adjust the poll interval by comparing the current offset
1655 * with the clock jitter. If the offset is less than
1656 * the clock jitter times a constant, then the averaging interval
1657 * is increased, otherwise it is decreased. A bit of hysteresis
1658 * helps calm the dance. Works best using burst mode.
1659 */
1660 VERB4 if (rc > 0) {
1661 bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s",
1662 q->filter_offset, POLLADJ_GATE * G.discipline_jitter,
1663 fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter
1664 ? "grows" : "falls"
1665 );
1666 }
1667 if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) {
1668 /* was += G.poll_exp but it is a bit
1669 * too optimistic for my taste at high poll_exp's */
1670 G.polladj_count += MINPOLL;
1671 if (G.polladj_count > POLLADJ_LIMIT) {
1672 G.polladj_count = 0;
1673 if (G.poll_exp < MAXPOLL) {
1674 G.poll_exp++;
1675 VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1676 G.discipline_jitter, G.poll_exp);
1677 }
1678 } else {
1679 VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1680 }
1681 } else {
1682 G.polladj_count -= G.poll_exp * 2;
1683 if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1684 poll_down:
1685 G.polladj_count = 0;
1686 if (G.poll_exp > MINPOLL) {
1687 llist_t *item;
1688
1689 G.poll_exp--;
1690 /* Correct p->next_action_time in each peer
1691 * which waits for sending, so that they send earlier.
1692 * Old pp->next_action_time are on the order
1693 * of t + (1 << old_poll_exp) + small_random,
1694 * we simply need to subtract ~half of that.
1695 */
1696 for (item = G.ntp_peers; item != NULL; item = item->link) {
1697 peer_t *pp = (peer_t *) item->data;
1698 if (pp->p_fd < 0)
1699 pp->next_action_time -= (1 << G.poll_exp);
1700 }
1701 VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1702 G.discipline_jitter, G.poll_exp);
1703 }
1704 } else {
1705 VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1706 }
1707 }
1708 }
1709
1710 /* Decide when to send new query for this peer */
1711 interval = poll_interval(0);
1712
1713 set_next_and_close_sock:
1714 set_next(p, interval);
1715 /* We do not expect any more packets from this peer for now.
1716 * Closing the socket informs kernel about it.
1717 * We open a new socket when we send a new query.
1718 */
1719 close(p->p_fd);
1720 p->p_fd = -1;
1721 bail:
1722 return;
1723 }
1724
1725 #if ENABLE_FEATURE_NTPD_SERVER
1726 static NOINLINE void
1727 recv_and_process_client_pkt(void /*int fd*/)
1728 {
1729 ssize_t size;
1730 uint8_t version;
1731 len_and_sockaddr *to;
1732 struct sockaddr *from;
1733 msg_t msg;
1734 uint8_t query_status;
1735 l_fixedpt_t query_xmttime;
1736
1737 to = get_sock_lsa(G.listen_fd);
1738 from = xzalloc(to->len);
1739
1740 size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1741 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1742 char *addr;
1743 if (size < 0) {
1744 if (errno == EAGAIN)
1745 goto bail;
1746 bb_perror_msg_and_die("recv");
1747 }
1748 addr = xmalloc_sockaddr2dotted_noport(from);
1749 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1750 free(addr);
1751 goto bail;
1752 }
1753
1754 query_status = msg.m_status;
1755 query_xmttime = msg.m_xmttime;
1756
1757 /* Build a reply packet */
1758 memset(&msg, 0, sizeof(msg));
1759 msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
1760 msg.m_status |= (query_status & VERSION_MASK);
1761 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1762 MODE_SERVER : MODE_SYM_PAS;
1763 msg.m_stratum = G.stratum;
1764 msg.m_ppoll = G.poll_exp;
1765 msg.m_precision_exp = G_precision_exp;
1766 /* this time was obtained between poll() and recv() */
1767 msg.m_rectime = d_to_lfp(G.cur_time);
1768 msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
1769 msg.m_reftime = d_to_lfp(G.reftime);
1770 msg.m_orgtime = query_xmttime;
1771 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1772 //simple code does not do this, fix simple code!
1773 msg.m_rootdisp = d_to_sfp(G.rootdisp);
1774 version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
1775 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1776
1777 /* We reply from the local address packet was sent to,
1778 * this makes to/from look swapped here: */
1779 do_sendto(G.listen_fd,
1780 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1781 &msg, size);
1782
1783 bail:
1784 free(to);
1785 free(from);
1786 }
1787 #endif
1788
1789 /* Upstream ntpd's options:
1790 *
1791 * -4 Force DNS resolution of host names to the IPv4 namespace.
1792 * -6 Force DNS resolution of host names to the IPv6 namespace.
1793 * -a Require cryptographic authentication for broadcast client,
1794 * multicast client and symmetric passive associations.
1795 * This is the default.
1796 * -A Do not require cryptographic authentication for broadcast client,
1797 * multicast client and symmetric passive associations.
1798 * This is almost never a good idea.
1799 * -b Enable the client to synchronize to broadcast servers.
1800 * -c conffile
1801 * Specify the name and path of the configuration file,
1802 * default /etc/ntp.conf
1803 * -d Specify debugging mode. This option may occur more than once,
1804 * with each occurrence indicating greater detail of display.
1805 * -D level
1806 * Specify debugging level directly.
1807 * -f driftfile
1808 * Specify the name and path of the frequency file.
1809 * This is the same operation as the "driftfile FILE"
1810 * configuration command.
1811 * -g Normally, ntpd exits with a message to the system log
1812 * if the offset exceeds the panic threshold, which is 1000 s
1813 * by default. This option allows the time to be set to any value
1814 * without restriction; however, this can happen only once.
1815 * If the threshold is exceeded after that, ntpd will exit
1816 * with a message to the system log. This option can be used
1817 * with the -q and -x options. See the tinker command for other options.
1818 * -i jaildir
1819 * Chroot the server to the directory jaildir. This option also implies
1820 * that the server attempts to drop root privileges at startup
1821 * (otherwise, chroot gives very little additional security).
1822 * You may need to also specify a -u option.
1823 * -k keyfile
1824 * Specify the name and path of the symmetric key file,
1825 * default /etc/ntp/keys. This is the same operation
1826 * as the "keys FILE" configuration command.
1827 * -l logfile
1828 * Specify the name and path of the log file. The default
1829 * is the system log file. This is the same operation as
1830 * the "logfile FILE" configuration command.
1831 * -L Do not listen to virtual IPs. The default is to listen.
1832 * -n Don't fork.
1833 * -N To the extent permitted by the operating system,
1834 * run the ntpd at the highest priority.
1835 * -p pidfile
1836 * Specify the name and path of the file used to record the ntpd
1837 * process ID. This is the same operation as the "pidfile FILE"
1838 * configuration command.
1839 * -P priority
1840 * To the extent permitted by the operating system,
1841 * run the ntpd at the specified priority.
1842 * -q Exit the ntpd just after the first time the clock is set.
1843 * This behavior mimics that of the ntpdate program, which is
1844 * to be retired. The -g and -x options can be used with this option.
1845 * Note: The kernel time discipline is disabled with this option.
1846 * -r broadcastdelay
1847 * Specify the default propagation delay from the broadcast/multicast
1848 * server to this client. This is necessary only if the delay
1849 * cannot be computed automatically by the protocol.
1850 * -s statsdir
1851 * Specify the directory path for files created by the statistics
1852 * facility. This is the same operation as the "statsdir DIR"
1853 * configuration command.
1854 * -t key
1855 * Add a key number to the trusted key list. This option can occur
1856 * more than once.
1857 * -u user[:group]
1858 * Specify a user, and optionally a group, to switch to.
1859 * -v variable
1860 * -V variable
1861 * Add a system variable listed by default.
1862 * -x Normally, the time is slewed if the offset is less than the step
1863 * threshold, which is 128 ms by default, and stepped if above
1864 * the threshold. This option sets the threshold to 600 s, which is
1865 * well within the accuracy window to set the clock manually.
1866 * Note: since the slew rate of typical Unix kernels is limited
1867 * to 0.5 ms/s, each second of adjustment requires an amortization
1868 * interval of 2000 s. Thus, an adjustment as much as 600 s
1869 * will take almost 14 days to complete. This option can be used
1870 * with the -g and -q options. See the tinker command for other options.
1871 * Note: The kernel time discipline is disabled with this option.
1872 */
1873
1874 /* By doing init in a separate function we decrease stack usage
1875 * in main loop.
1876 */
1877 static NOINLINE void ntp_init(char **argv)
1878 {
1879 unsigned opts;
1880 llist_t *peers;
1881
1882 srandom(getpid());
1883
1884 if (getuid())
1885 bb_error_msg_and_die(bb_msg_you_must_be_root);
1886
1887 /* Set some globals */
1888 G.stratum = MAXSTRAT;
1889 if (BURSTPOLL != 0)
1890 G.poll_exp = BURSTPOLL; /* speeds up initial sync */
1891 G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
1892
1893 /* Parse options */
1894 peers = NULL;
1895 opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
1896 opts = getopt32(argv,
1897 "nqNx" /* compat */
1898 "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
1899 "d" /* compat */
1900 "46aAbgL", /* compat, ignored */
1901 &peers, &G.script_name, &G.verbose);
1902 if (!(opts & (OPT_p|OPT_l)))
1903 bb_show_usage();
1904 // if (opts & OPT_x) /* disable stepping, only slew is allowed */
1905 // G.time_was_stepped = 1;
1906 while (peers)
1907 add_peers(llist_pop(&peers));
1908 if (!(opts & OPT_n)) {
1909 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
1910 logmode = LOGMODE_NONE;
1911 }
1912 #if ENABLE_FEATURE_NTPD_SERVER
1913 G.listen_fd = -1;
1914 if (opts & OPT_l) {
1915 G.listen_fd = create_and_bind_dgram_or_die(NULL, 123);
1916 socket_want_pktinfo(G.listen_fd);
1917 setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
1918 }
1919 #endif
1920 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
1921 if (opts & OPT_N)
1922 setpriority(PRIO_PROCESS, 0, -15);
1923
1924 bb_signals((1 << SIGTERM) | (1 << SIGINT), record_signo);
1925 /* Removed SIGHUP here: */
1926 bb_signals((1 << SIGPIPE) | (1 << SIGCHLD), SIG_IGN);
1927 }
1928
1929 int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
1930 int ntpd_main(int argc UNUSED_PARAM, char **argv)
1931 {
1932 #undef G
1933 struct globals G;
1934 struct pollfd *pfd;
1935 peer_t **idx2peer;
1936 unsigned cnt;
1937
1938 memset(&G, 0, sizeof(G));
1939 SET_PTR_TO_GLOBALS(&G);
1940
1941 ntp_init(argv);
1942
1943 /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
1944 cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
1945 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
1946 pfd = xzalloc(sizeof(pfd[0]) * cnt);
1947
1948 /* Countdown: we never sync before we sent INITIAL_SAMLPES+1
1949 * packets to each peer.
1950 * NB: if some peer is not responding, we may end up sending
1951 * fewer packets to it and more to other peers.
1952 * NB2: sync usually happens using INITIAL_SAMLPES packets,
1953 * since last reply does not come back instantaneously.
1954 */
1955 cnt = G.peer_cnt * (INITIAL_SAMLPES + 1);
1956
1957 while (!bb_got_signal) {
1958 llist_t *item;
1959 unsigned i, j;
1960 int nfds, timeout;
1961 double nextaction;
1962
1963 /* Nothing between here and poll() blocks for any significant time */
1964
1965 nextaction = G.cur_time + 3600;
1966
1967 i = 0;
1968 #if ENABLE_FEATURE_NTPD_SERVER
1969 if (G.listen_fd != -1) {
1970 pfd[0].fd = G.listen_fd;
1971 pfd[0].events = POLLIN;
1972 i++;
1973 }
1974 #endif
1975 /* Pass over peer list, send requests, time out on receives */
1976 for (item = G.ntp_peers; item != NULL; item = item->link) {
1977 peer_t *p = (peer_t *) item->data;
1978
1979 if (p->next_action_time <= G.cur_time) {
1980 if (p->p_fd == -1) {
1981 /* Time to send new req */
1982 if (--cnt == 0) {
1983 G.initial_poll_complete = 1;
1984 }
1985 send_query_to_peer(p);
1986 } else {
1987 /* Timed out waiting for reply */
1988 close(p->p_fd);
1989 p->p_fd = -1;
1990 timeout = poll_interval(-2); /* -2: try a bit sooner */
1991 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
1992 p->p_dotted, p->reachable_bits, timeout);
1993 set_next(p, timeout);
1994 }
1995 }
1996
1997 if (p->next_action_time < nextaction)
1998 nextaction = p->next_action_time;
1999
2000 if (p->p_fd >= 0) {
2001 /* Wait for reply from this peer */
2002 pfd[i].fd = p->p_fd;
2003 pfd[i].events = POLLIN;
2004 idx2peer[i] = p;
2005 i++;
2006 }
2007 }
2008
2009 timeout = nextaction - G.cur_time;
2010 if (timeout < 0)
2011 timeout = 0;
2012 timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2013
2014 /* Here we may block */
2015 VERB2 bb_error_msg("poll %us, sockets:%u, poll interval:%us", timeout, i, 1 << G.poll_exp);
2016 nfds = poll(pfd, i, timeout * 1000);
2017 gettime1900d(); /* sets G.cur_time */
2018 if (nfds <= 0) {
2019 if (G.script_name && G.cur_time - G.last_script_run > 11*60) {
2020 /* Useful for updating battery-backed RTC and such */
2021 run_script("periodic", G.last_update_offset);
2022 gettime1900d(); /* sets G.cur_time */
2023 }
2024 continue;
2025 }
2026
2027 /* Process any received packets */
2028 j = 0;
2029 #if ENABLE_FEATURE_NTPD_SERVER
2030 if (G.listen_fd != -1) {
2031 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2032 nfds--;
2033 recv_and_process_client_pkt(/*G.listen_fd*/);
2034 gettime1900d(); /* sets G.cur_time */
2035 }
2036 j = 1;
2037 }
2038 #endif
2039 for (; nfds != 0 && j < i; j++) {
2040 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2041 nfds--;
2042 recv_and_process_peer_pkt(idx2peer[j]);
2043 gettime1900d(); /* sets G.cur_time */
2044 }
2045 }
2046 } /* while (!bb_got_signal) */
2047
2048 kill_myself_with_sig(bb_got_signal);
2049 }
2050
2051
2052
2053
2054
2055
2056 /*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2057
2058 /*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2059
2060 #if 0
2061 static double
2062 direct_freq(double fp_offset)
2063 {
2064
2065 #ifdef KERNEL_PLL
2066 /*
2067 * If the kernel is enabled, we need the residual offset to
2068 * calculate the frequency correction.
2069 */
2070 if (pll_control && kern_enable) {
2071 memset(&ntv, 0, sizeof(ntv));
2072 ntp_adjtime(&ntv);
2073 #ifdef STA_NANO
2074 clock_offset = ntv.offset / 1e9;
2075 #else /* STA_NANO */
2076 clock_offset = ntv.offset / 1e6;
2077 #endif /* STA_NANO */
2078 drift_comp = FREQTOD(ntv.freq);
2079 }
2080 #endif /* KERNEL_PLL */
2081 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2082 wander_resid = 0;
2083 return drift_comp;
2084 }
2085
2086 static void
2087 set_freq(double freq) /* frequency update */
2088 {
2089 char tbuf[80];
2090
2091 drift_comp = freq;
2092
2093 #ifdef KERNEL_PLL
2094 /*
2095 * If the kernel is enabled, update the kernel frequency.
2096 */
2097 if (pll_control && kern_enable) {
2098 memset(&ntv, 0, sizeof(ntv));
2099 ntv.modes = MOD_FREQUENCY;
2100 ntv.freq = DTOFREQ(drift_comp);
2101 ntp_adjtime(&ntv);
2102 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2103 report_event(EVNT_FSET, NULL, tbuf);
2104 } else {
2105 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2106 report_event(EVNT_FSET, NULL, tbuf);
2107 }
2108 #else /* KERNEL_PLL */
2109 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2110 report_event(EVNT_FSET, NULL, tbuf);
2111 #endif /* KERNEL_PLL */
2112 }
2113
2114 ...
2115 ...
2116 ...
2117
2118 #ifdef KERNEL_PLL
2119 /*
2120 * This code segment works when clock adjustments are made using
2121 * precision time kernel support and the ntp_adjtime() system
2122 * call. This support is available in Solaris 2.6 and later,
2123 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2124 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2125 * DECstation 5000/240 and Alpha AXP, additional kernel
2126 * modifications provide a true microsecond clock and nanosecond
2127 * clock, respectively.
2128 *
2129 * Important note: The kernel discipline is used only if the
2130 * step threshold is less than 0.5 s, as anything higher can
2131 * lead to overflow problems. This might occur if some misguided
2132 * lad set the step threshold to something ridiculous.
2133 */
2134 if (pll_control && kern_enable) {
2135
2136 #define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2137
2138 /*
2139 * We initialize the structure for the ntp_adjtime()
2140 * system call. We have to convert everything to
2141 * microseconds or nanoseconds first. Do not update the
2142 * system variables if the ext_enable flag is set. In
2143 * this case, the external clock driver will update the
2144 * variables, which will be read later by the local
2145 * clock driver. Afterwards, remember the time and
2146 * frequency offsets for jitter and stability values and
2147 * to update the frequency file.
2148 */
2149 memset(&ntv, 0, sizeof(ntv));
2150 if (ext_enable) {
2151 ntv.modes = MOD_STATUS;
2152 } else {
2153 #ifdef STA_NANO
2154 ntv.modes = MOD_BITS | MOD_NANO;
2155 #else /* STA_NANO */
2156 ntv.modes = MOD_BITS;
2157 #endif /* STA_NANO */
2158 if (clock_offset < 0)
2159 dtemp = -.5;
2160 else
2161 dtemp = .5;
2162 #ifdef STA_NANO
2163 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2164 ntv.constant = sys_poll;
2165 #else /* STA_NANO */
2166 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2167 ntv.constant = sys_poll - 4;
2168 #endif /* STA_NANO */
2169 ntv.esterror = (u_int32)(clock_jitter * 1e6);
2170 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2171 ntv.status = STA_PLL;
2172
2173 /*
2174 * Enable/disable the PPS if requested.
2175 */
2176 if (pps_enable) {
2177 if (!(pll_status & STA_PPSTIME))
2178 report_event(EVNT_KERN,
2179 NULL, "PPS enabled");
2180 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2181 } else {
2182 if (pll_status & STA_PPSTIME)
2183 report_event(EVNT_KERN,
2184 NULL, "PPS disabled");
2185 ntv.status &= ~(STA_PPSTIME |
2186 STA_PPSFREQ);
2187 }
2188 if (sys_leap == LEAP_ADDSECOND)
2189 ntv.status |= STA_INS;
2190 else if (sys_leap == LEAP_DELSECOND)
2191 ntv.status |= STA_DEL;
2192 }
2193
2194 /*
2195 * Pass the stuff to the kernel. If it squeals, turn off
2196 * the pps. In any case, fetch the kernel offset,
2197 * frequency and jitter.
2198 */
2199 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2200 if (!(ntv.status & STA_PPSSIGNAL))
2201 report_event(EVNT_KERN, NULL,
2202 "PPS no signal");
2203 }
2204 pll_status = ntv.status;
2205 #ifdef STA_NANO
2206 clock_offset = ntv.offset / 1e9;
2207 #else /* STA_NANO */
2208 clock_offset = ntv.offset / 1e6;
2209 #endif /* STA_NANO */
2210 clock_frequency = FREQTOD(ntv.freq);
2211
2212 /*
2213 * If the kernel PPS is lit, monitor its performance.
2214 */
2215 if (ntv.status & STA_PPSTIME) {
2216 #ifdef STA_NANO
2217 clock_jitter = ntv.jitter / 1e9;
2218 #else /* STA_NANO */
2219 clock_jitter = ntv.jitter / 1e6;
2220 #endif /* STA_NANO */
2221 }
2222
2223 #if defined(STA_NANO) && NTP_API == 4
2224 /*
2225 * If the TAI changes, update the kernel TAI.
2226 */
2227 if (loop_tai != sys_tai) {
2228 loop_tai = sys_tai;
2229 ntv.modes = MOD_TAI;
2230 ntv.constant = sys_tai;
2231 ntp_adjtime(&ntv);
2232 }
2233 #endif /* STA_NANO */
2234 }
2235 #endif /* KERNEL_PLL */
2236 #endif