Magellan Linux

Annotation of /trunk/mkinitrd-magellan/busybox/archival/gzip.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 532 - (hide annotations) (download)
Sat Sep 1 22:45:15 2007 UTC (16 years, 8 months ago) by niro
File MIME type: text/plain
File size: 67240 byte(s)
-import if magellan mkinitrd; it is a fork of redhats mkinitrd-5.0.8 with all magellan patches and features; deprecates magellan-src/mkinitrd

1 niro 532 /* vi: set sw=4 ts=4: */
2     /*
3     * Gzip implementation for busybox
4     *
5     * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6     *
7     * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8     * "this is a stripped down version of gzip I put into busybox, it does
9     * only standard in to standard out with -9 compression. It also requires
10     * the zcat module for some important functions."
11     *
12     * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13     * files as well as stdin/stdout, and to generally behave itself wrt
14     * command line handling.
15     *
16     * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
17     */
18    
19     /* big objects in bss:
20     * 00000020 b bl_count
21     * 00000074 b base_length
22     * 00000078 b base_dist
23     * 00000078 b static_dtree
24     * 0000009c b bl_tree
25     * 000000f4 b dyn_dtree
26     * 00000100 b length_code
27     * 00000200 b dist_code
28     * 0000023d b depth
29     * 00000400 b flag_buf
30     * 0000047a b heap
31     * 00000480 b static_ltree
32     * 000008f4 b dyn_ltree
33     */
34    
35     /* TODO: full support for -v for DESKTOP
36     * "/usr/bin/gzip -v a bogus aa" should say:
37     a: 85.1% -- replaced with a.gz
38     gzip: bogus: No such file or directory
39     aa: 85.1% -- replaced with aa.gz
40     */
41    
42     #include "busybox.h"
43    
44    
45     /* ===========================================================================
46     */
47     //#define DEBUG 1
48     /* Diagnostic functions */
49     #ifdef DEBUG
50     # define Assert(cond,msg) {if(!(cond)) bb_error_msg(msg);}
51     # define Trace(x) fprintf x
52     # define Tracev(x) {if (verbose) fprintf x ;}
53     # define Tracevv(x) {if (verbose > 1) fprintf x ;}
54     # define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
55     # define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x ;}
56     #else
57     # define Assert(cond,msg)
58     # define Trace(x)
59     # define Tracev(x)
60     # define Tracevv(x)
61     # define Tracec(c,x)
62     # define Tracecv(c,x)
63     #endif
64    
65    
66     /* ===========================================================================
67     */
68     #define SMALL_MEM
69    
70     /* Compression methods (see algorithm.doc) */
71     /* Only STORED and DEFLATED are supported by this BusyBox module */
72     #define STORED 0
73     /* methods 4 to 7 reserved */
74     #define DEFLATED 8
75    
76     #ifndef INBUFSIZ
77     # ifdef SMALL_MEM
78     # define INBUFSIZ 0x2000 /* input buffer size */
79     # else
80     # define INBUFSIZ 0x8000 /* input buffer size */
81     # endif
82     #endif
83    
84     #ifndef OUTBUFSIZ
85     # ifdef SMALL_MEM
86     # define OUTBUFSIZ 8192 /* output buffer size */
87     # else
88     # define OUTBUFSIZ 16384 /* output buffer size */
89     # endif
90     #endif
91    
92     #ifndef DIST_BUFSIZE
93     # ifdef SMALL_MEM
94     # define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
95     # else
96     # define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
97     # endif
98     #endif
99    
100     /* gzip flag byte */
101     #define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
102     #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
103     #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
104     #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
105     #define COMMENT 0x10 /* bit 4 set: file comment present */
106     #define RESERVED 0xC0 /* bit 6,7: reserved */
107    
108     /* internal file attribute */
109     #define UNKNOWN 0xffff
110     #define BINARY 0
111     #define ASCII 1
112    
113     #ifndef WSIZE
114     # define WSIZE 0x8000 /* window size--must be a power of two, and */
115     #endif /* at least 32K for zip's deflate method */
116    
117     #define MIN_MATCH 3
118     #define MAX_MATCH 258
119     /* The minimum and maximum match lengths */
120    
121     #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
122     /* Minimum amount of lookahead, except at the end of the input file.
123     * See deflate.c for comments about the MIN_MATCH+1.
124     */
125    
126     #define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
127     /* In order to simplify the code, particularly on 16 bit machines, match
128     * distances are limited to MAX_DIST instead of WSIZE.
129     */
130    
131     #ifndef MAX_PATH_LEN
132     # define MAX_PATH_LEN 1024 /* max pathname length */
133     #endif
134    
135     #define seekable() 0 /* force sequential output */
136     #define translate_eol 0 /* no option -a yet */
137    
138     #ifndef BITS
139     # define BITS 16
140     #endif
141     #define INIT_BITS 9 /* Initial number of bits per code */
142    
143     #define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
144     /* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
145     * It's a pity that old uncompress does not check bit 0x20. That makes
146     * extension of the format actually undesirable because old compress
147     * would just crash on the new format instead of giving a meaningful
148     * error message. It does check the number of bits, but it's more
149     * helpful to say "unsupported format, get a new version" than
150     * "can only handle 16 bits".
151     */
152    
153     #ifdef MAX_EXT_CHARS
154     # define MAX_SUFFIX MAX_EXT_CHARS
155     #else
156     # define MAX_SUFFIX 30
157     #endif
158    
159    
160     /* ===========================================================================
161     * Compile with MEDIUM_MEM to reduce the memory requirements or
162     * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
163     * entire input file can be held in memory (not possible on 16 bit systems).
164     * Warning: defining these symbols affects HASH_BITS (see below) and thus
165     * affects the compression ratio. The compressed output
166     * is still correct, and might even be smaller in some cases.
167     */
168    
169     #ifdef SMALL_MEM
170     # define HASH_BITS 13 /* Number of bits used to hash strings */
171     #endif
172     #ifdef MEDIUM_MEM
173     # define HASH_BITS 14
174     #endif
175     #ifndef HASH_BITS
176     # define HASH_BITS 15
177     /* For portability to 16 bit machines, do not use values above 15. */
178     #endif
179    
180     #define HASH_SIZE (unsigned)(1<<HASH_BITS)
181     #define HASH_MASK (HASH_SIZE-1)
182     #define WMASK (WSIZE-1)
183     /* HASH_SIZE and WSIZE must be powers of two */
184     #ifndef TOO_FAR
185     # define TOO_FAR 4096
186     #endif
187     /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
188    
189    
190     /* ===========================================================================
191     * These types are not really 'char', 'short' and 'long'
192     */
193     typedef uint8_t uch;
194     typedef uint16_t ush;
195     typedef uint32_t ulg;
196     typedef int32_t lng;
197    
198    
199     /* ===========================================================================
200     */
201     typedef ush Pos;
202     typedef unsigned IPos;
203    
204     /* A Pos is an index in the character window. We use short instead of int to
205     * save space in the various tables. IPos is used only for parameter passing.
206     */
207    
208     static lng block_start;
209    
210     /* window position at the beginning of the current output block. Gets
211     * negative when the window is moved backwards.
212     */
213    
214     static unsigned ins_h; /* hash index of string to be inserted */
215    
216     #define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
217     /* Number of bits by which ins_h and del_h must be shifted at each
218     * input step. It must be such that after MIN_MATCH steps, the oldest
219     * byte no longer takes part in the hash key, that is:
220     * H_SHIFT * MIN_MATCH >= HASH_BITS
221     */
222    
223     static unsigned int prev_length;
224    
225     /* Length of the best match at previous step. Matches not greater than this
226     * are discarded. This is used in the lazy match evaluation.
227     */
228    
229     static unsigned strstart; /* start of string to insert */
230     static unsigned match_start; /* start of matching string */
231     static int eofile; /* flag set at end of input file */
232     static unsigned lookahead; /* number of valid bytes ahead in window */
233    
234     enum {
235     WINDOW_SIZE = 2 * WSIZE,
236     /* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
237     * input file length plus MIN_LOOKAHEAD.
238     */
239    
240     max_chain_length = 4096,
241     /* To speed up deflation, hash chains are never searched beyond this length.
242     * A higher limit improves compression ratio but degrades the speed.
243     */
244    
245     max_lazy_match = 258,
246     /* Attempt to find a better match only when the current match is strictly
247     * smaller than this value. This mechanism is used only for compression
248     * levels >= 4.
249     */
250    
251     max_insert_length = max_lazy_match,
252     /* Insert new strings in the hash table only if the match length
253     * is not greater than this length. This saves time but degrades compression.
254     * max_insert_length is used only for compression levels <= 3.
255     */
256    
257     good_match = 32,
258     /* Use a faster search when the previous match is longer than this */
259    
260     /* Values for max_lazy_match, good_match and max_chain_length, depending on
261     * the desired pack level (0..9). The values given below have been tuned to
262     * exclude worst case performance for pathological files. Better values may be
263     * found for specific files.
264     */
265    
266     nice_match = 258, /* Stop searching when current match exceeds this */
267     /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
268     * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
269     * meaning.
270     */
271     };
272    
273    
274     /* ===========================================================================
275     */
276     #define DECLARE(type, array, size) \
277     static type * array
278    
279     #define ALLOC(type, array, size) \
280     { \
281     array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type)); \
282     }
283    
284     #define FREE(array) \
285     { \
286     free(array); \
287     array = NULL; \
288     }
289    
290     /* global buffers */
291    
292     /* buffer for literals or lengths */
293     /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
294     DECLARE(uch, l_buf, INBUFSIZ);
295    
296     DECLARE(ush, d_buf, DIST_BUFSIZE);
297     DECLARE(uch, outbuf, OUTBUFSIZ);
298    
299     /* Sliding window. Input bytes are read into the second half of the window,
300     * and move to the first half later to keep a dictionary of at least WSIZE
301     * bytes. With this organization, matches are limited to a distance of
302     * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
303     * performed with a length multiple of the block size. Also, it limits
304     * the window size to 64K, which is quite useful on MSDOS.
305     * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
306     * be less efficient).
307     */
308     DECLARE(uch, window, 2L * WSIZE);
309    
310     /* Link to older string with same hash index. To limit the size of this
311     * array to 64K, this link is maintained only for the last 32K strings.
312     * An index in this array is thus a window index modulo 32K.
313     */
314     /* DECLARE(Pos, prev, WSIZE); */
315     DECLARE(ush, prev, 1L << BITS);
316    
317     /* Heads of the hash chains or 0. */
318     /* DECLARE(Pos, head, 1<<HASH_BITS); */
319     #define head (prev+WSIZE) /* hash head (see deflate.c) */
320    
321    
322     /* number of input bytes */
323     static ulg isize; /* only 32 bits stored in .gz file */
324    
325     static int foreground; /* set if program run in foreground */
326     static int method = DEFLATED; /* compression method */
327     static int exit_code; /* program exit code */
328    
329     /* original time stamp (modification time) */
330     static ulg time_stamp; /* only 32 bits stored in .gz file */
331    
332     static int ifd; /* input file descriptor */
333     static int ofd; /* output file descriptor */
334     #ifdef DEBUG
335     static unsigned insize; /* valid bytes in l_buf */
336     #endif
337     static unsigned outcnt; /* bytes in output buffer */
338    
339     static uint32_t *crc_32_tab;
340    
341    
342     /* ===========================================================================
343     * Local data used by the "bit string" routines.
344     */
345    
346     //// static int zfile; /* output gzip file */
347    
348     static unsigned short bi_buf;
349    
350     /* Output buffer. bits are inserted starting at the bottom (least significant
351     * bits).
352     */
353    
354     #undef BUF_SIZE
355     #define BUF_SIZE (8 * sizeof(bi_buf))
356     /* Number of bits used within bi_buf. (bi_buf might be implemented on
357     * more than 16 bits on some systems.)
358     */
359    
360     static int bi_valid;
361    
362     /* Current input function. Set to mem_read for in-memory compression */
363    
364     #ifdef DEBUG
365     static ulg bits_sent; /* bit length of the compressed data */
366     #endif
367    
368    
369     /* ===========================================================================
370     * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
371     * (used for the compressed data only)
372     */
373     static void flush_outbuf(void)
374     {
375     if (outcnt == 0)
376     return;
377    
378     xwrite(ofd, (char *) outbuf, outcnt);
379     outcnt = 0;
380     }
381    
382    
383     /* ===========================================================================
384     */
385     /* put_8bit is used for the compressed output */
386     #define put_8bit(c) \
387     { \
388     outbuf[outcnt++] = (c); \
389     if (outcnt == OUTBUFSIZ) flush_outbuf(); \
390     }
391    
392     /* Output a 16 bit value, lsb first */
393     static void put_16bit(ush w)
394     {
395     if (outcnt < OUTBUFSIZ - 2) {
396     outbuf[outcnt++] = w;
397     outbuf[outcnt++] = w >> 8;
398     } else {
399     put_8bit(w);
400     put_8bit(w >> 8);
401     }
402     }
403    
404     static void put_32bit(ulg n)
405     {
406     put_16bit(n);
407     put_16bit(n >> 16);
408     }
409    
410     /* ===========================================================================
411     * Clear input and output buffers
412     */
413     static void clear_bufs(void)
414     {
415     outcnt = 0;
416     #ifdef DEBUG
417     insize = 0;
418     #endif
419     isize = 0;
420     }
421    
422    
423     /* ===========================================================================
424     * Run a set of bytes through the crc shift register. If s is a NULL
425     * pointer, then initialize the crc shift register contents instead.
426     * Return the current crc in either case.
427     */
428     static uint32_t crc; /* shift register contents */
429     static uint32_t updcrc(uch * s, unsigned n)
430     {
431     uint32_t c = crc;
432     while (n) {
433     c = crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
434     n--;
435     }
436     crc = c;
437     return c;
438     }
439    
440    
441     /* ===========================================================================
442     * Read a new buffer from the current input file, perform end-of-line
443     * translation, and update the crc and input file size.
444     * IN assertion: size >= 2 (for end-of-line translation)
445     */
446     static unsigned file_read(void *buf, unsigned size)
447     {
448     unsigned len;
449    
450     Assert(insize == 0, "l_buf not empty");
451    
452     len = safe_read(ifd, buf, size);
453     if (len == (unsigned)(-1) || len == 0)
454     return len;
455    
456     updcrc(buf, len);
457     isize += len;
458     return len;
459     }
460    
461    
462     /* ===========================================================================
463     * Send a value on a given number of bits.
464     * IN assertion: length <= 16 and value fits in length bits.
465     */
466     static void send_bits(int value, int length)
467     {
468     #ifdef DEBUG
469     Tracev((stderr, " l %2d v %4x ", length, value));
470     Assert(length > 0 && length <= 15, "invalid length");
471     bits_sent += length;
472     #endif
473     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
474     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
475     * unused bits in value.
476     */
477     if (bi_valid > (int) BUF_SIZE - length) {
478     bi_buf |= (value << bi_valid);
479     put_16bit(bi_buf);
480     bi_buf = (ush) value >> (BUF_SIZE - bi_valid);
481     bi_valid += length - BUF_SIZE;
482     } else {
483     bi_buf |= value << bi_valid;
484     bi_valid += length;
485     }
486     }
487    
488    
489     /* ===========================================================================
490     * Reverse the first len bits of a code, using straightforward code (a faster
491     * method would use a table)
492     * IN assertion: 1 <= len <= 15
493     */
494     static unsigned bi_reverse(unsigned code, int len)
495     {
496     unsigned res = 0;
497    
498     while (1) {
499     res |= code & 1;
500     if (--len <= 0) return res;
501     code >>= 1;
502     res <<= 1;
503     }
504     }
505    
506    
507     /* ===========================================================================
508     * Write out any remaining bits in an incomplete byte.
509     */
510     static void bi_windup(void)
511     {
512     if (bi_valid > 8) {
513     put_16bit(bi_buf);
514     } else if (bi_valid > 0) {
515     put_8bit(bi_buf);
516     }
517     bi_buf = 0;
518     bi_valid = 0;
519     #ifdef DEBUG
520     bits_sent = (bits_sent + 7) & ~7;
521     #endif
522     }
523    
524    
525     /* ===========================================================================
526     * Copy a stored block to the zip file, storing first the length and its
527     * one's complement if requested.
528     */
529     static void copy_block(char *buf, unsigned len, int header)
530     {
531     bi_windup(); /* align on byte boundary */
532    
533     if (header) {
534     put_16bit(len);
535     put_16bit(~len);
536     #ifdef DEBUG
537     bits_sent += 2 * 16;
538     #endif
539     }
540     #ifdef DEBUG
541     bits_sent += (ulg) len << 3;
542     #endif
543     while (len--) {
544     put_8bit(*buf++);
545     }
546     }
547    
548    
549     /* ===========================================================================
550     * Fill the window when the lookahead becomes insufficient.
551     * Updates strstart and lookahead, and sets eofile if end of input file.
552     * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
553     * OUT assertions: at least one byte has been read, or eofile is set;
554     * file reads are performed for at least two bytes (required for the
555     * translate_eol option).
556     */
557     static void fill_window(void)
558     {
559     unsigned n, m;
560     unsigned more = WINDOW_SIZE - lookahead - strstart;
561     /* Amount of free space at the end of the window. */
562    
563     /* If the window is almost full and there is insufficient lookahead,
564     * move the upper half to the lower one to make room in the upper half.
565     */
566     if (more == (unsigned) -1) {
567     /* Very unlikely, but possible on 16 bit machine if strstart == 0
568     * and lookahead == 1 (input done one byte at time)
569     */
570     more--;
571     } else if (strstart >= WSIZE + MAX_DIST) {
572     /* By the IN assertion, the window is not empty so we can't confuse
573     * more == 0 with more == 64K on a 16 bit machine.
574     */
575     Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
576    
577     memcpy(window, window + WSIZE, WSIZE);
578     match_start -= WSIZE;
579     strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
580    
581     block_start -= WSIZE;
582    
583     for (n = 0; n < HASH_SIZE; n++) {
584     m = head[n];
585     head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
586     }
587     for (n = 0; n < WSIZE; n++) {
588     m = prev[n];
589     prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
590     /* If n is not on any hash chain, prev[n] is garbage but
591     * its value will never be used.
592     */
593     }
594     more += WSIZE;
595     }
596     /* At this point, more >= 2 */
597     if (!eofile) {
598     n = file_read(window + strstart + lookahead, more);
599     if (n == 0 || n == (unsigned) -1) {
600     eofile = 1;
601     } else {
602     lookahead += n;
603     }
604     }
605     }
606    
607    
608     /* ===========================================================================
609     * Set match_start to the longest match starting at the given string and
610     * return its length. Matches shorter or equal to prev_length are discarded,
611     * in which case the result is equal to prev_length and match_start is
612     * garbage.
613     * IN assertions: cur_match is the head of the hash chain for the current
614     * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
615     */
616    
617     /* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
618     * match.s. The code is functionally equivalent, so you can use the C version
619     * if desired.
620     */
621     static int longest_match(IPos cur_match)
622     {
623     unsigned chain_length = max_chain_length; /* max hash chain length */
624     uch *scan = window + strstart; /* current string */
625     uch *match; /* matched string */
626     int len; /* length of current match */
627     int best_len = prev_length; /* best match length so far */
628     IPos limit = strstart > (IPos) MAX_DIST ? strstart - (IPos) MAX_DIST : 0;
629     /* Stop when cur_match becomes <= limit. To simplify the code,
630     * we prevent matches with the string of window index 0.
631     */
632    
633     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
634     * It is easy to get rid of this optimization if necessary.
635     */
636     #if HASH_BITS < 8 || MAX_MATCH != 258
637     # error Code too clever
638     #endif
639     uch *strend = window + strstart + MAX_MATCH;
640     uch scan_end1 = scan[best_len - 1];
641     uch scan_end = scan[best_len];
642    
643     /* Do not waste too much time if we already have a good match: */
644     if (prev_length >= good_match) {
645     chain_length >>= 2;
646     }
647     Assert(strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
648    
649     do {
650     Assert(cur_match < strstart, "no future");
651     match = window + cur_match;
652    
653     /* Skip to next match if the match length cannot increase
654     * or if the match length is less than 2:
655     */
656     if (match[best_len] != scan_end ||
657     match[best_len - 1] != scan_end1 ||
658     *match != *scan || *++match != scan[1])
659     continue;
660    
661     /* The check at best_len-1 can be removed because it will be made
662     * again later. (This heuristic is not always a win.)
663     * It is not necessary to compare scan[2] and match[2] since they
664     * are always equal when the other bytes match, given that
665     * the hash keys are equal and that HASH_BITS >= 8.
666     */
667     scan += 2, match++;
668    
669     /* We check for insufficient lookahead only every 8th comparison;
670     * the 256th check will be made at strstart+258.
671     */
672     do {
673     } while (*++scan == *++match && *++scan == *++match &&
674     *++scan == *++match && *++scan == *++match &&
675     *++scan == *++match && *++scan == *++match &&
676     *++scan == *++match && *++scan == *++match && scan < strend);
677    
678     len = MAX_MATCH - (int) (strend - scan);
679     scan = strend - MAX_MATCH;
680    
681     if (len > best_len) {
682     match_start = cur_match;
683     best_len = len;
684     if (len >= nice_match)
685     break;
686     scan_end1 = scan[best_len - 1];
687     scan_end = scan[best_len];
688     }
689     } while ((cur_match = prev[cur_match & WMASK]) > limit
690     && --chain_length != 0);
691    
692     return best_len;
693     }
694    
695    
696     #ifdef DEBUG
697     /* ===========================================================================
698     * Check that the match at match_start is indeed a match.
699     */
700     static void check_match(IPos start, IPos match, int length)
701     {
702     /* check that the match is indeed a match */
703     if (memcmp(window + match, window + start, length) != 0) {
704     bb_error_msg(" start %d, match %d, length %d", start, match, length);
705     bb_error_msg("invalid match");
706     }
707     if (verbose > 1) {
708     bb_error_msg("\\[%d,%d]", start - match, length);
709     do {
710     putc(window[start++], stderr);
711     } while (--length != 0);
712     }
713     }
714     #else
715     # define check_match(start, match, length) ((void)0)
716     #endif
717    
718    
719     /* trees.c -- output deflated data using Huffman coding
720     * Copyright (C) 1992-1993 Jean-loup Gailly
721     * This is free software; you can redistribute it and/or modify it under the
722     * terms of the GNU General Public License, see the file COPYING.
723     */
724    
725     /* PURPOSE
726     * Encode various sets of source values using variable-length
727     * binary code trees.
728     *
729     * DISCUSSION
730     * The PKZIP "deflation" process uses several Huffman trees. The more
731     * common source values are represented by shorter bit sequences.
732     *
733     * Each code tree is stored in the ZIP file in a compressed form
734     * which is itself a Huffman encoding of the lengths of
735     * all the code strings (in ascending order by source values).
736     * The actual code strings are reconstructed from the lengths in
737     * the UNZIP process, as described in the "application note"
738     * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
739     *
740     * REFERENCES
741     * Lynch, Thomas J.
742     * Data Compression: Techniques and Applications, pp. 53-55.
743     * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
744     *
745     * Storer, James A.
746     * Data Compression: Methods and Theory, pp. 49-50.
747     * Computer Science Press, 1988. ISBN 0-7167-8156-5.
748     *
749     * Sedgewick, R.
750     * Algorithms, p290.
751     * Addison-Wesley, 1983. ISBN 0-201-06672-6.
752     *
753     * INTERFACE
754     * void ct_init(ush *attr, int *methodp)
755     * Allocate the match buffer, initialize the various tables and save
756     * the location of the internal file attribute (ascii/binary) and
757     * method (DEFLATE/STORE)
758     *
759     * void ct_tally(int dist, int lc);
760     * Save the match info and tally the frequency counts.
761     *
762     * ulg flush_block(char *buf, ulg stored_len, int eof)
763     * Determine the best encoding for the current block: dynamic trees,
764     * static trees or store, and output the encoded block to the zip
765     * file. Returns the total compressed length for the file so far.
766     */
767    
768     #define MAX_BITS 15
769     /* All codes must not exceed MAX_BITS bits */
770    
771     #define MAX_BL_BITS 7
772     /* Bit length codes must not exceed MAX_BL_BITS bits */
773    
774     #define LENGTH_CODES 29
775     /* number of length codes, not counting the special END_BLOCK code */
776    
777     #define LITERALS 256
778     /* number of literal bytes 0..255 */
779    
780     #define END_BLOCK 256
781     /* end of block literal code */
782    
783     #define L_CODES (LITERALS+1+LENGTH_CODES)
784     /* number of Literal or Length codes, including the END_BLOCK code */
785    
786     #define D_CODES 30
787     /* number of distance codes */
788    
789     #define BL_CODES 19
790     /* number of codes used to transfer the bit lengths */
791    
792     typedef uch extra_bits_t;
793    
794     /* extra bits for each length code */
795     static const extra_bits_t extra_lbits[LENGTH_CODES]= {
796     0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
797     4, 4, 5, 5, 5, 5, 0
798     };
799    
800     /* extra bits for each distance code */
801     static const extra_bits_t extra_dbits[D_CODES] = {
802     0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
803     10, 10, 11, 11, 12, 12, 13, 13
804     };
805    
806     /* extra bits for each bit length code */
807     static const extra_bits_t extra_blbits[BL_CODES] = {
808     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
809    
810     #define STORED_BLOCK 0
811     #define STATIC_TREES 1
812     #define DYN_TREES 2
813     /* The three kinds of block type */
814    
815     #ifndef LIT_BUFSIZE
816     # ifdef SMALL_MEM
817     # define LIT_BUFSIZE 0x2000
818     # else
819     # ifdef MEDIUM_MEM
820     # define LIT_BUFSIZE 0x4000
821     # else
822     # define LIT_BUFSIZE 0x8000
823     # endif
824     # endif
825     #endif
826     #ifndef DIST_BUFSIZE
827     # define DIST_BUFSIZE LIT_BUFSIZE
828     #endif
829     /* Sizes of match buffers for literals/lengths and distances. There are
830     * 4 reasons for limiting LIT_BUFSIZE to 64K:
831     * - frequencies can be kept in 16 bit counters
832     * - if compression is not successful for the first block, all input data is
833     * still in the window so we can still emit a stored block even when input
834     * comes from standard input. (This can also be done for all blocks if
835     * LIT_BUFSIZE is not greater than 32K.)
836     * - if compression is not successful for a file smaller than 64K, we can
837     * even emit a stored file instead of a stored block (saving 5 bytes).
838     * - creating new Huffman trees less frequently may not provide fast
839     * adaptation to changes in the input data statistics. (Take for
840     * example a binary file with poorly compressible code followed by
841     * a highly compressible string table.) Smaller buffer sizes give
842     * fast adaptation but have of course the overhead of transmitting trees
843     * more frequently.
844     * - I can't count above 4
845     * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
846     * memory at the expense of compression). Some optimizations would be possible
847     * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
848     */
849     #define REP_3_6 16
850     /* repeat previous bit length 3-6 times (2 bits of repeat count) */
851     #define REPZ_3_10 17
852     /* repeat a zero length 3-10 times (3 bits of repeat count) */
853     #define REPZ_11_138 18
854     /* repeat a zero length 11-138 times (7 bits of repeat count) */
855    
856     /* ===========================================================================
857     */
858     /* Data structure describing a single value and its code string. */
859     typedef struct ct_data {
860     union {
861     ush freq; /* frequency count */
862     ush code; /* bit string */
863     } fc;
864     union {
865     ush dad; /* father node in Huffman tree */
866     ush len; /* length of bit string */
867     } dl;
868     } ct_data;
869    
870     #define Freq fc.freq
871     #define Code fc.code
872     #define Dad dl.dad
873     #define Len dl.len
874    
875     #define HEAP_SIZE (2*L_CODES + 1)
876     /* maximum heap size */
877    
878     ////static int heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
879     ////let's try this
880     static ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
881     static int heap_len; /* number of elements in the heap */
882     static int heap_max; /* element of largest frequency */
883    
884     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
885     * The same heap array is used to build all trees.
886     */
887    
888     static ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
889     static ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
890    
891     static ct_data static_ltree[L_CODES + 2];
892    
893     /* The static literal tree. Since the bit lengths are imposed, there is no
894     * need for the L_CODES extra codes used during heap construction. However
895     * The codes 286 and 287 are needed to build a canonical tree (see ct_init
896     * below).
897     */
898    
899     static ct_data static_dtree[D_CODES];
900    
901     /* The static distance tree. (Actually a trivial tree since all codes use
902     * 5 bits.)
903     */
904    
905     static ct_data bl_tree[2 * BL_CODES + 1];
906    
907     /* Huffman tree for the bit lengths */
908    
909     typedef struct tree_desc {
910     ct_data *dyn_tree; /* the dynamic tree */
911     ct_data *static_tree; /* corresponding static tree or NULL */
912     const extra_bits_t *extra_bits; /* extra bits for each code or NULL */
913     int extra_base; /* base index for extra_bits */
914     int elems; /* max number of elements in the tree */
915     int max_length; /* max bit length for the codes */
916     int max_code; /* largest code with non zero frequency */
917     } tree_desc;
918    
919     static tree_desc l_desc = {
920     dyn_ltree, static_ltree, extra_lbits,
921     LITERALS + 1, L_CODES, MAX_BITS, 0
922     };
923    
924     static tree_desc d_desc = {
925     dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0
926     };
927    
928     static tree_desc bl_desc = {
929     bl_tree, NULL, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0
930     };
931    
932    
933     static ush bl_count[MAX_BITS + 1];
934    
935     /* number of codes at each bit length for an optimal tree */
936    
937     static const uch bl_order[BL_CODES] = {
938     16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
939     };
940    
941     /* The lengths of the bit length codes are sent in order of decreasing
942     * probability, to avoid transmitting the lengths for unused bit length codes.
943     */
944    
945     static uch depth[2 * L_CODES + 1];
946    
947     /* Depth of each subtree used as tie breaker for trees of equal frequency */
948    
949     static uch length_code[MAX_MATCH - MIN_MATCH + 1];
950    
951     /* length code for each normalized match length (0 == MIN_MATCH) */
952    
953     static uch dist_code[512];
954    
955     /* distance codes. The first 256 values correspond to the distances
956     * 3 .. 258, the last 256 values correspond to the top 8 bits of
957     * the 15 bit distances.
958     */
959    
960     static int base_length[LENGTH_CODES];
961    
962     /* First normalized length for each code (0 = MIN_MATCH) */
963    
964     static int base_dist[D_CODES];
965    
966     /* First normalized distance for each code (0 = distance of 1) */
967    
968     static uch flag_buf[LIT_BUFSIZE / 8];
969    
970     /* flag_buf is a bit array distinguishing literals from lengths in
971     * l_buf, thus indicating the presence or absence of a distance.
972     */
973    
974     static unsigned last_lit; /* running index in l_buf */
975     static unsigned last_dist; /* running index in d_buf */
976     static unsigned last_flags; /* running index in flag_buf */
977     static uch flags; /* current flags not yet saved in flag_buf */
978     static uch flag_bit; /* current bit used in flags */
979    
980     /* bits are filled in flags starting at bit 0 (least significant).
981     * Note: these flags are overkill in the current code since we don't
982     * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
983     */
984    
985     static ulg opt_len; /* bit length of current block with optimal trees */
986     static ulg static_len; /* bit length of current block with static trees */
987    
988     static ulg compressed_len; /* total bit length of compressed file */
989    
990     static ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */
991     static int *file_method; /* pointer to DEFLATE or STORE */
992    
993     /* ===========================================================================
994     */
995     static void gen_codes(ct_data * tree, int max_code);
996     static void build_tree(tree_desc * desc);
997     static void scan_tree(ct_data * tree, int max_code);
998     static void send_tree(ct_data * tree, int max_code);
999     static int build_bl_tree(void);
1000     static void send_all_trees(int lcodes, int dcodes, int blcodes);
1001     static void compress_block(ct_data * ltree, ct_data * dtree);
1002    
1003    
1004     #ifndef DEBUG
1005     /* Send a code of the given tree. c and tree must not have side effects */
1006     # define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
1007     #else
1008     # define SEND_CODE(c, tree) \
1009     { \
1010     if (verbose > 1) bb_error_msg("\ncd %3d ",(c)); \
1011     send_bits(tree[c].Code, tree[c].Len); \
1012     }
1013     #endif
1014    
1015     #define D_CODE(dist) \
1016     ((dist) < 256 ? dist_code[dist] : dist_code[256 + ((dist)>>7)])
1017     /* Mapping from a distance to a distance code. dist is the distance - 1 and
1018     * must not have side effects. dist_code[256] and dist_code[257] are never
1019     * used.
1020     * The arguments must not have side effects.
1021     */
1022    
1023    
1024     /* ===========================================================================
1025     * Initialize a new block.
1026     */
1027     static void init_block(void)
1028     {
1029     int n; /* iterates over tree elements */
1030    
1031     /* Initialize the trees. */
1032     for (n = 0; n < L_CODES; n++)
1033     dyn_ltree[n].Freq = 0;
1034     for (n = 0; n < D_CODES; n++)
1035     dyn_dtree[n].Freq = 0;
1036     for (n = 0; n < BL_CODES; n++)
1037     bl_tree[n].Freq = 0;
1038    
1039     dyn_ltree[END_BLOCK].Freq = 1;
1040     opt_len = static_len = 0;
1041     last_lit = last_dist = last_flags = 0;
1042     flags = 0;
1043     flag_bit = 1;
1044     }
1045    
1046    
1047     /* ===========================================================================
1048     * Restore the heap property by moving down the tree starting at node k,
1049     * exchanging a node with the smallest of its two sons if necessary, stopping
1050     * when the heap property is re-established (each father smaller than its
1051     * two sons).
1052     */
1053    
1054     /* Compares to subtrees, using the tree depth as tie breaker when
1055     * the subtrees have equal frequency. This minimizes the worst case length. */
1056     #define SMALLER(tree, n, m) \
1057     (tree[n].Freq < tree[m].Freq \
1058     || (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1059    
1060     static void pqdownheap(ct_data * tree, int k)
1061     {
1062     int v = heap[k];
1063     int j = k << 1; /* left son of k */
1064    
1065     while (j <= heap_len) {
1066     /* Set j to the smallest of the two sons: */
1067     if (j < heap_len && SMALLER(tree, heap[j + 1], heap[j]))
1068     j++;
1069    
1070     /* Exit if v is smaller than both sons */
1071     if (SMALLER(tree, v, heap[j]))
1072     break;
1073    
1074     /* Exchange v with the smallest son */
1075     heap[k] = heap[j];
1076     k = j;
1077    
1078     /* And continue down the tree, setting j to the left son of k */
1079     j <<= 1;
1080     }
1081     heap[k] = v;
1082     }
1083    
1084    
1085     /* ===========================================================================
1086     * Compute the optimal bit lengths for a tree and update the total bit length
1087     * for the current block.
1088     * IN assertion: the fields freq and dad are set, heap[heap_max] and
1089     * above are the tree nodes sorted by increasing frequency.
1090     * OUT assertions: the field len is set to the optimal bit length, the
1091     * array bl_count contains the frequencies for each bit length.
1092     * The length opt_len is updated; static_len is also updated if stree is
1093     * not null.
1094     */
1095     static void gen_bitlen(tree_desc * desc)
1096     {
1097     ct_data *tree = desc->dyn_tree;
1098     const extra_bits_t *extra = desc->extra_bits;
1099     int base = desc->extra_base;
1100     int max_code = desc->max_code;
1101     int max_length = desc->max_length;
1102     ct_data *stree = desc->static_tree;
1103     int h; /* heap index */
1104     int n, m; /* iterate over the tree elements */
1105     int bits; /* bit length */
1106     int xbits; /* extra bits */
1107     ush f; /* frequency */
1108     int overflow = 0; /* number of elements with bit length too large */
1109    
1110     for (bits = 0; bits <= MAX_BITS; bits++)
1111     bl_count[bits] = 0;
1112    
1113     /* In a first pass, compute the optimal bit lengths (which may
1114     * overflow in the case of the bit length tree).
1115     */
1116     tree[heap[heap_max]].Len = 0; /* root of the heap */
1117    
1118     for (h = heap_max + 1; h < HEAP_SIZE; h++) {
1119     n = heap[h];
1120     bits = tree[tree[n].Dad].Len + 1;
1121     if (bits > max_length) {
1122     bits = max_length;
1123     overflow++;
1124     }
1125     tree[n].Len = (ush) bits;
1126     /* We overwrite tree[n].Dad which is no longer needed */
1127    
1128     if (n > max_code)
1129     continue; /* not a leaf node */
1130    
1131     bl_count[bits]++;
1132     xbits = 0;
1133     if (n >= base)
1134     xbits = extra[n - base];
1135     f = tree[n].Freq;
1136     opt_len += (ulg) f *(bits + xbits);
1137    
1138     if (stree)
1139     static_len += (ulg) f * (stree[n].Len + xbits);
1140     }
1141     if (overflow == 0)
1142     return;
1143    
1144     Trace((stderr, "\nbit length overflow\n"));
1145     /* This happens for example on obj2 and pic of the Calgary corpus */
1146    
1147     /* Find the first bit length which could increase: */
1148     do {
1149     bits = max_length - 1;
1150     while (bl_count[bits] == 0)
1151     bits--;
1152     bl_count[bits]--; /* move one leaf down the tree */
1153     bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1154     bl_count[max_length]--;
1155     /* The brother of the overflow item also moves one step up,
1156     * but this does not affect bl_count[max_length]
1157     */
1158     overflow -= 2;
1159     } while (overflow > 0);
1160    
1161     /* Now recompute all bit lengths, scanning in increasing frequency.
1162     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1163     * lengths instead of fixing only the wrong ones. This idea is taken
1164     * from 'ar' written by Haruhiko Okumura.)
1165     */
1166     for (bits = max_length; bits != 0; bits--) {
1167     n = bl_count[bits];
1168     while (n != 0) {
1169     m = heap[--h];
1170     if (m > max_code)
1171     continue;
1172     if (tree[m].Len != (unsigned) bits) {
1173     Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1174     opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1175     tree[m].Len = bits;
1176     }
1177     n--;
1178     }
1179     }
1180     }
1181    
1182    
1183     /* ===========================================================================
1184     * Generate the codes for a given tree and bit counts (which need not be
1185     * optimal).
1186     * IN assertion: the array bl_count contains the bit length statistics for
1187     * the given tree and the field len is set for all tree elements.
1188     * OUT assertion: the field code is set for all tree elements of non
1189     * zero code length.
1190     */
1191     static void gen_codes(ct_data * tree, int max_code)
1192     {
1193     ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1194     ush code = 0; /* running code value */
1195     int bits; /* bit index */
1196     int n; /* code index */
1197    
1198     /* The distribution counts are first used to generate the code values
1199     * without bit reversal.
1200     */
1201     for (bits = 1; bits <= MAX_BITS; bits++) {
1202     next_code[bits] = code = (code + bl_count[bits - 1]) << 1;
1203     }
1204     /* Check that the bit counts in bl_count are consistent. The last code
1205     * must be all ones.
1206     */
1207     Assert(code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1208     "inconsistent bit counts");
1209     Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1210    
1211     for (n = 0; n <= max_code; n++) {
1212     int len = tree[n].Len;
1213    
1214     if (len == 0)
1215     continue;
1216     /* Now reverse the bits */
1217     tree[n].Code = bi_reverse(next_code[len]++, len);
1218    
1219     Tracec(tree != static_ltree,
1220     (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1221     (isgraph(n) ? n : ' '), len, tree[n].Code,
1222     next_code[len] - 1));
1223     }
1224     }
1225    
1226    
1227     /* ===========================================================================
1228     * Construct one Huffman tree and assigns the code bit strings and lengths.
1229     * Update the total bit length for the current block.
1230     * IN assertion: the field freq is set for all tree elements.
1231     * OUT assertions: the fields len and code are set to the optimal bit length
1232     * and corresponding code. The length opt_len is updated; static_len is
1233     * also updated if stree is not null. The field max_code is set.
1234     */
1235    
1236     /* Remove the smallest element from the heap and recreate the heap with
1237     * one less element. Updates heap and heap_len. */
1238    
1239     #define SMALLEST 1
1240     /* Index within the heap array of least frequent node in the Huffman tree */
1241    
1242     #define PQREMOVE(tree, top) \
1243     { \
1244     top = heap[SMALLEST]; \
1245     heap[SMALLEST] = heap[heap_len--]; \
1246     pqdownheap(tree, SMALLEST); \
1247     }
1248    
1249     static void build_tree(tree_desc * desc)
1250     {
1251     ct_data *tree = desc->dyn_tree;
1252     ct_data *stree = desc->static_tree;
1253     int elems = desc->elems;
1254     int n, m; /* iterate over heap elements */
1255     int max_code = -1; /* largest code with non zero frequency */
1256     int node = elems; /* next internal node of the tree */
1257    
1258     /* Construct the initial heap, with least frequent element in
1259     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1260     * heap[0] is not used.
1261     */
1262     heap_len = 0, heap_max = HEAP_SIZE;
1263    
1264     for (n = 0; n < elems; n++) {
1265     if (tree[n].Freq != 0) {
1266     heap[++heap_len] = max_code = n;
1267     depth[n] = 0;
1268     } else {
1269     tree[n].Len = 0;
1270     }
1271     }
1272    
1273     /* The pkzip format requires that at least one distance code exists,
1274     * and that at least one bit should be sent even if there is only one
1275     * possible code. So to avoid special checks later on we force at least
1276     * two codes of non zero frequency.
1277     */
1278     while (heap_len < 2) {
1279     int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
1280    
1281     tree[new].Freq = 1;
1282     depth[new] = 0;
1283     opt_len--;
1284     if (stree)
1285     static_len -= stree[new].Len;
1286     /* new is 0 or 1 so it does not have extra bits */
1287     }
1288     desc->max_code = max_code;
1289    
1290     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1291     * establish sub-heaps of increasing lengths:
1292     */
1293     for (n = heap_len / 2; n >= 1; n--)
1294     pqdownheap(tree, n);
1295    
1296     /* Construct the Huffman tree by repeatedly combining the least two
1297     * frequent nodes.
1298     */
1299     do {
1300     PQREMOVE(tree, n); /* n = node of least frequency */
1301     m = heap[SMALLEST]; /* m = node of next least frequency */
1302    
1303     heap[--heap_max] = n; /* keep the nodes sorted by frequency */
1304     heap[--heap_max] = m;
1305    
1306     /* Create a new node father of n and m */
1307     tree[node].Freq = tree[n].Freq + tree[m].Freq;
1308     depth[node] = MAX(depth[n], depth[m]) + 1;
1309     tree[n].Dad = tree[m].Dad = (ush) node;
1310     #ifdef DUMP_BL_TREE
1311     if (tree == bl_tree) {
1312     bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1313     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1314     }
1315     #endif
1316     /* and insert the new node in the heap */
1317     heap[SMALLEST] = node++;
1318     pqdownheap(tree, SMALLEST);
1319    
1320     } while (heap_len >= 2);
1321    
1322     heap[--heap_max] = heap[SMALLEST];
1323    
1324     /* At this point, the fields freq and dad are set. We can now
1325     * generate the bit lengths.
1326     */
1327     gen_bitlen((tree_desc *) desc);
1328    
1329     /* The field len is now set, we can generate the bit codes */
1330     gen_codes((ct_data *) tree, max_code);
1331     }
1332    
1333    
1334     /* ===========================================================================
1335     * Scan a literal or distance tree to determine the frequencies of the codes
1336     * in the bit length tree. Updates opt_len to take into account the repeat
1337     * counts. (The contribution of the bit length codes will be added later
1338     * during the construction of bl_tree.)
1339     */
1340     static void scan_tree(ct_data * tree, int max_code)
1341     {
1342     int n; /* iterates over all tree elements */
1343     int prevlen = -1; /* last emitted length */
1344     int curlen; /* length of current code */
1345     int nextlen = tree[0].Len; /* length of next code */
1346     int count = 0; /* repeat count of the current code */
1347     int max_count = 7; /* max repeat count */
1348     int min_count = 4; /* min repeat count */
1349    
1350     if (nextlen == 0) {
1351     max_count = 138;
1352     min_count = 3;
1353     }
1354     tree[max_code + 1].Len = 0xffff; /* guard */
1355    
1356     for (n = 0; n <= max_code; n++) {
1357     curlen = nextlen;
1358     nextlen = tree[n + 1].Len;
1359     if (++count < max_count && curlen == nextlen)
1360     continue;
1361    
1362     if (count < min_count) {
1363     bl_tree[curlen].Freq += count;
1364     } else if (curlen != 0) {
1365     if (curlen != prevlen)
1366     bl_tree[curlen].Freq++;
1367     bl_tree[REP_3_6].Freq++;
1368     } else if (count <= 10) {
1369     bl_tree[REPZ_3_10].Freq++;
1370     } else {
1371     bl_tree[REPZ_11_138].Freq++;
1372     }
1373     count = 0;
1374     prevlen = curlen;
1375    
1376     max_count = 7;
1377     min_count = 4;
1378     if (nextlen == 0) {
1379     max_count = 138;
1380     min_count = 3;
1381     } else if (curlen == nextlen) {
1382     max_count = 6;
1383     min_count = 3;
1384     }
1385     }
1386     }
1387    
1388    
1389     /* ===========================================================================
1390     * Send a literal or distance tree in compressed form, using the codes in
1391     * bl_tree.
1392     */
1393     static void send_tree(ct_data * tree, int max_code)
1394     {
1395     int n; /* iterates over all tree elements */
1396     int prevlen = -1; /* last emitted length */
1397     int curlen; /* length of current code */
1398     int nextlen = tree[0].Len; /* length of next code */
1399     int count = 0; /* repeat count of the current code */
1400     int max_count = 7; /* max repeat count */
1401     int min_count = 4; /* min repeat count */
1402    
1403     /* tree[max_code+1].Len = -1; *//* guard already set */
1404     if (nextlen == 0)
1405     max_count = 138, min_count = 3;
1406    
1407     for (n = 0; n <= max_code; n++) {
1408     curlen = nextlen;
1409     nextlen = tree[n + 1].Len;
1410     if (++count < max_count && curlen == nextlen) {
1411     continue;
1412     } else if (count < min_count) {
1413     do {
1414     SEND_CODE(curlen, bl_tree);
1415     } while (--count);
1416     } else if (curlen != 0) {
1417     if (curlen != prevlen) {
1418     SEND_CODE(curlen, bl_tree);
1419     count--;
1420     }
1421     Assert(count >= 3 && count <= 6, " 3_6?");
1422     SEND_CODE(REP_3_6, bl_tree);
1423     send_bits(count - 3, 2);
1424     } else if (count <= 10) {
1425     SEND_CODE(REPZ_3_10, bl_tree);
1426     send_bits(count - 3, 3);
1427     } else {
1428     SEND_CODE(REPZ_11_138, bl_tree);
1429     send_bits(count - 11, 7);
1430     }
1431     count = 0;
1432     prevlen = curlen;
1433     if (nextlen == 0) {
1434     max_count = 138;
1435     min_count = 3;
1436     } else if (curlen == nextlen) {
1437     max_count = 6;
1438     min_count = 3;
1439     } else {
1440     max_count = 7;
1441     min_count = 4;
1442     }
1443     }
1444     }
1445    
1446    
1447     /* ===========================================================================
1448     * Construct the Huffman tree for the bit lengths and return the index in
1449     * bl_order of the last bit length code to send.
1450     */
1451     static int build_bl_tree(void)
1452     {
1453     int max_blindex; /* index of last bit length code of non zero freq */
1454    
1455     /* Determine the bit length frequencies for literal and distance trees */
1456     scan_tree((ct_data *) dyn_ltree, l_desc.max_code);
1457     scan_tree((ct_data *) dyn_dtree, d_desc.max_code);
1458    
1459     /* Build the bit length tree: */
1460     build_tree((tree_desc *) &bl_desc);
1461     /* opt_len now includes the length of the tree representations, except
1462     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1463     */
1464    
1465     /* Determine the number of bit length codes to send. The pkzip format
1466     * requires that at least 4 bit length codes be sent. (appnote.txt says
1467     * 3 but the actual value used is 4.)
1468     */
1469     for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1470     if (bl_tree[bl_order[max_blindex]].Len != 0)
1471     break;
1472     }
1473     /* Update opt_len to include the bit length tree and counts */
1474     opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1475     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
1476    
1477     return max_blindex;
1478     }
1479    
1480    
1481     /* ===========================================================================
1482     * Send the header for a block using dynamic Huffman trees: the counts, the
1483     * lengths of the bit length codes, the literal tree and the distance tree.
1484     * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1485     */
1486     static void send_all_trees(int lcodes, int dcodes, int blcodes)
1487     {
1488     int rank; /* index in bl_order */
1489    
1490     Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1491     Assert(lcodes <= L_CODES && dcodes <= D_CODES
1492     && blcodes <= BL_CODES, "too many codes");
1493     Tracev((stderr, "\nbl counts: "));
1494     send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1495     send_bits(dcodes - 1, 5);
1496     send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1497     for (rank = 0; rank < blcodes; rank++) {
1498     Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1499     send_bits(bl_tree[bl_order[rank]].Len, 3);
1500     }
1501     Tracev((stderr, "\nbl tree: sent %ld", bits_sent));
1502    
1503     send_tree((ct_data *) dyn_ltree, lcodes - 1); /* send the literal tree */
1504     Tracev((stderr, "\nlit tree: sent %ld", bits_sent));
1505    
1506     send_tree((ct_data *) dyn_dtree, dcodes - 1); /* send the distance tree */
1507     Tracev((stderr, "\ndist tree: sent %ld", bits_sent));
1508     }
1509    
1510    
1511     /* ===========================================================================
1512     * Set the file type to ASCII or BINARY, using a crude approximation:
1513     * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1514     * IN assertion: the fields freq of dyn_ltree are set and the total of all
1515     * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1516     */
1517     static void set_file_type(void)
1518     {
1519     int n = 0;
1520     unsigned ascii_freq = 0;
1521     unsigned bin_freq = 0;
1522    
1523     while (n < 7)
1524     bin_freq += dyn_ltree[n++].Freq;
1525     while (n < 128)
1526     ascii_freq += dyn_ltree[n++].Freq;
1527     while (n < LITERALS)
1528     bin_freq += dyn_ltree[n++].Freq;
1529     *file_type = (bin_freq > (ascii_freq >> 2)) ? BINARY : ASCII;
1530     if (*file_type == BINARY && translate_eol) {
1531     bb_error_msg("-l used on binary file");
1532     }
1533     }
1534    
1535    
1536     /* ===========================================================================
1537     * Save the match info and tally the frequency counts. Return true if
1538     * the current block must be flushed.
1539     */
1540     static int ct_tally(int dist, int lc)
1541     {
1542     l_buf[last_lit++] = lc;
1543     if (dist == 0) {
1544     /* lc is the unmatched char */
1545     dyn_ltree[lc].Freq++;
1546     } else {
1547     /* Here, lc is the match length - MIN_MATCH */
1548     dist--; /* dist = match distance - 1 */
1549     Assert((ush) dist < (ush) MAX_DIST
1550     && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1551     && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1552     );
1553    
1554     dyn_ltree[length_code[lc] + LITERALS + 1].Freq++;
1555     dyn_dtree[D_CODE(dist)].Freq++;
1556    
1557     d_buf[last_dist++] = dist;
1558     flags |= flag_bit;
1559     }
1560     flag_bit <<= 1;
1561    
1562     /* Output the flags if they fill a byte: */
1563     if ((last_lit & 7) == 0) {
1564     flag_buf[last_flags++] = flags;
1565     flags = 0, flag_bit = 1;
1566     }
1567     /* Try to guess if it is profitable to stop the current block here */
1568     if ((last_lit & 0xfff) == 0) {
1569     /* Compute an upper bound for the compressed length */
1570     ulg out_length = last_lit * 8L;
1571     ulg in_length = (ulg) strstart - block_start;
1572     int dcode;
1573    
1574     for (dcode = 0; dcode < D_CODES; dcode++) {
1575     out_length += dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1576     }
1577     out_length >>= 3;
1578     Trace((stderr,
1579     "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1580     last_lit, last_dist, in_length, out_length,
1581     100L - out_length * 100L / in_length));
1582     if (last_dist < last_lit / 2 && out_length < in_length / 2)
1583     return 1;
1584     }
1585     return (last_lit == LIT_BUFSIZE - 1 || last_dist == DIST_BUFSIZE);
1586     /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1587     * on 16 bit machines and because stored blocks are restricted to
1588     * 64K-1 bytes.
1589     */
1590     }
1591    
1592     /* ===========================================================================
1593     * Send the block data compressed using the given Huffman trees
1594     */
1595     static void compress_block(ct_data * ltree, ct_data * dtree)
1596     {
1597     unsigned dist; /* distance of matched string */
1598     int lc; /* match length or unmatched char (if dist == 0) */
1599     unsigned lx = 0; /* running index in l_buf */
1600     unsigned dx = 0; /* running index in d_buf */
1601     unsigned fx = 0; /* running index in flag_buf */
1602     uch flag = 0; /* current flags */
1603     unsigned code; /* the code to send */
1604     int extra; /* number of extra bits to send */
1605    
1606     if (last_lit != 0) do {
1607     if ((lx & 7) == 0)
1608     flag = flag_buf[fx++];
1609     lc = l_buf[lx++];
1610     if ((flag & 1) == 0) {
1611     SEND_CODE(lc, ltree); /* send a literal byte */
1612     Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
1613     } else {
1614     /* Here, lc is the match length - MIN_MATCH */
1615     code = length_code[lc];
1616     SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1617     extra = extra_lbits[code];
1618     if (extra != 0) {
1619     lc -= base_length[code];
1620     send_bits(lc, extra); /* send the extra length bits */
1621     }
1622     dist = d_buf[dx++];
1623     /* Here, dist is the match distance - 1 */
1624     code = D_CODE(dist);
1625     Assert(code < D_CODES, "bad d_code");
1626    
1627     SEND_CODE(code, dtree); /* send the distance code */
1628     extra = extra_dbits[code];
1629     if (extra != 0) {
1630     dist -= base_dist[code];
1631     send_bits(dist, extra); /* send the extra distance bits */
1632     }
1633     } /* literal or match pair ? */
1634     flag >>= 1;
1635     } while (lx < last_lit);
1636    
1637     SEND_CODE(END_BLOCK, ltree);
1638     }
1639    
1640    
1641     /* ===========================================================================
1642     * Determine the best encoding for the current block: dynamic trees, static
1643     * trees or store, and output the encoded block to the zip file. This function
1644     * returns the total compressed length for the file so far.
1645     */
1646     static ulg flush_block(char *buf, ulg stored_len, int eof)
1647     {
1648     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1649     int max_blindex; /* index of last bit length code of non zero freq */
1650    
1651     flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
1652    
1653     /* Check if the file is ascii or binary */
1654     if (*file_type == (ush) UNKNOWN)
1655     set_file_type();
1656    
1657     /* Construct the literal and distance trees */
1658     build_tree((tree_desc *) &l_desc);
1659     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));
1660    
1661     build_tree((tree_desc *) &d_desc);
1662     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
1663     /* At this point, opt_len and static_len are the total bit lengths of
1664     * the compressed block data, excluding the tree representations.
1665     */
1666    
1667     /* Build the bit length tree for the above two trees, and get the index
1668     * in bl_order of the last bit length code to send.
1669     */
1670     max_blindex = build_bl_tree();
1671    
1672     /* Determine the best encoding. Compute first the block length in bytes */
1673     opt_lenb = (opt_len + 3 + 7) >> 3;
1674     static_lenb = (static_len + 3 + 7) >> 3;
1675    
1676     Trace((stderr,
1677     "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1678     opt_lenb, opt_len, static_lenb, static_len, stored_len,
1679     last_lit, last_dist));
1680    
1681     if (static_lenb <= opt_lenb)
1682     opt_lenb = static_lenb;
1683    
1684     /* If compression failed and this is the first and last block,
1685     * and if the zip file can be seeked (to rewrite the local header),
1686     * the whole file is transformed into a stored file:
1687     */
1688     if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
1689     /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1690     if (buf == NULL)
1691     bb_error_msg("block vanished");
1692    
1693     copy_block(buf, (unsigned) stored_len, 0); /* without header */
1694     compressed_len = stored_len << 3;
1695     *file_method = STORED;
1696    
1697     } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1698     /* 4: two words for the lengths */
1699     /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1700     * Otherwise we can't have processed more than WSIZE input bytes since
1701     * the last block flush, because compression would have been
1702     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1703     * transform a block into a stored block.
1704     */
1705     send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
1706     compressed_len = (compressed_len + 3 + 7) & ~7L;
1707     compressed_len += (stored_len + 4) << 3;
1708    
1709     copy_block(buf, (unsigned) stored_len, 1); /* with header */
1710    
1711     } else if (static_lenb == opt_lenb) {
1712     send_bits((STATIC_TREES << 1) + eof, 3);
1713     compress_block((ct_data *) static_ltree, (ct_data *) static_dtree);
1714     compressed_len += 3 + static_len;
1715     } else {
1716     send_bits((DYN_TREES << 1) + eof, 3);
1717     send_all_trees(l_desc.max_code + 1, d_desc.max_code + 1,
1718     max_blindex + 1);
1719     compress_block((ct_data *) dyn_ltree, (ct_data *) dyn_dtree);
1720     compressed_len += 3 + opt_len;
1721     }
1722     Assert(compressed_len == bits_sent, "bad compressed size");
1723     init_block();
1724    
1725     if (eof) {
1726     bi_windup();
1727     compressed_len += 7; /* align on byte boundary */
1728     }
1729     Tracev((stderr, "\ncomprlen %lu(%lu) ", compressed_len >> 3,
1730     compressed_len - 7 * eof));
1731    
1732     return compressed_len >> 3;
1733     }
1734    
1735    
1736     /* ===========================================================================
1737     * Update a hash value with the given input byte
1738     * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1739     * input characters, so that a running hash key can be computed from the
1740     * previous key instead of complete recalculation each time.
1741     */
1742     #define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1743    
1744    
1745     /* ===========================================================================
1746     * Same as above, but achieves better compression. We use a lazy
1747     * evaluation for matches: a match is finally adopted only if there is
1748     * no better match at the next window position.
1749     *
1750     * Processes a new input file and return its compressed length. Sets
1751     * the compressed length, crc, deflate flags and internal file
1752     * attributes.
1753     */
1754    
1755     /* Flush the current block, with given end-of-file flag.
1756     * IN assertion: strstart is set to the end of the current match. */
1757     #define FLUSH_BLOCK(eof) \
1758     flush_block( \
1759     block_start >= 0L \
1760     ? (char*)&window[(unsigned)block_start] \
1761     : (char*)NULL, \
1762     (ulg)strstart - block_start, \
1763     (eof) \
1764     )
1765    
1766     /* Insert string s in the dictionary and set match_head to the previous head
1767     * of the hash chain (the most recent string with same hash key). Return
1768     * the previous length of the hash chain.
1769     * IN assertion: all calls to to INSERT_STRING are made with consecutive
1770     * input characters and the first MIN_MATCH bytes of s are valid
1771     * (except for the last MIN_MATCH-1 bytes of the input file). */
1772     #define INSERT_STRING(s, match_head) \
1773     { \
1774     UPDATE_HASH(ins_h, window[(s) + MIN_MATCH-1]); \
1775     prev[(s) & WMASK] = match_head = head[ins_h]; \
1776     head[ins_h] = (s); \
1777     }
1778    
1779     static ulg deflate(void)
1780     {
1781     IPos hash_head; /* head of hash chain */
1782     IPos prev_match; /* previous match */
1783     int flush; /* set if current block must be flushed */
1784     int match_available = 0; /* set if previous match exists */
1785     unsigned match_length = MIN_MATCH - 1; /* length of best match */
1786    
1787     /* Process the input block. */
1788     while (lookahead != 0) {
1789     /* Insert the string window[strstart .. strstart+2] in the
1790     * dictionary, and set hash_head to the head of the hash chain:
1791     */
1792     INSERT_STRING(strstart, hash_head);
1793    
1794     /* Find the longest match, discarding those <= prev_length.
1795     */
1796     prev_length = match_length, prev_match = match_start;
1797     match_length = MIN_MATCH - 1;
1798    
1799     if (hash_head != 0 && prev_length < max_lazy_match
1800     && strstart - hash_head <= MAX_DIST
1801     ) {
1802     /* To simplify the code, we prevent matches with the string
1803     * of window index 0 (in particular we have to avoid a match
1804     * of the string with itself at the start of the input file).
1805     */
1806     match_length = longest_match(hash_head);
1807     /* longest_match() sets match_start */
1808     if (match_length > lookahead)
1809     match_length = lookahead;
1810    
1811     /* Ignore a length 3 match if it is too distant: */
1812     if (match_length == MIN_MATCH && strstart - match_start > TOO_FAR) {
1813     /* If prev_match is also MIN_MATCH, match_start is garbage
1814     * but we will ignore the current match anyway.
1815     */
1816     match_length--;
1817     }
1818     }
1819     /* If there was a match at the previous step and the current
1820     * match is not better, output the previous match:
1821     */
1822     if (prev_length >= MIN_MATCH && match_length <= prev_length) {
1823     check_match(strstart - 1, prev_match, prev_length);
1824     flush = ct_tally(strstart - 1 - prev_match, prev_length - MIN_MATCH);
1825    
1826     /* Insert in hash table all strings up to the end of the match.
1827     * strstart-1 and strstart are already inserted.
1828     */
1829     lookahead -= prev_length - 1;
1830     prev_length -= 2;
1831     do {
1832     strstart++;
1833     INSERT_STRING(strstart, hash_head);
1834     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1835     * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1836     * these bytes are garbage, but it does not matter since the
1837     * next lookahead bytes will always be emitted as literals.
1838     */
1839     } while (--prev_length != 0);
1840     match_available = 0;
1841     match_length = MIN_MATCH - 1;
1842     strstart++;
1843     if (flush) {
1844     FLUSH_BLOCK(0);
1845     block_start = strstart;
1846     }
1847     } else if (match_available) {
1848     /* If there was no match at the previous position, output a
1849     * single literal. If there was a match but the current match
1850     * is longer, truncate the previous match to a single literal.
1851     */
1852     Tracevv((stderr, "%c", window[strstart - 1]));
1853     if (ct_tally(0, window[strstart - 1])) {
1854     FLUSH_BLOCK(0);
1855     block_start = strstart;
1856     }
1857     strstart++;
1858     lookahead--;
1859     } else {
1860     /* There is no previous match to compare with, wait for
1861     * the next step to decide.
1862     */
1863     match_available = 1;
1864     strstart++;
1865     lookahead--;
1866     }
1867     Assert(strstart <= isize && lookahead <= isize, "a bit too far");
1868    
1869     /* Make sure that we always have enough lookahead, except
1870     * at the end of the input file. We need MAX_MATCH bytes
1871     * for the next match, plus MIN_MATCH bytes to insert the
1872     * string following the next match.
1873     */
1874     while (lookahead < MIN_LOOKAHEAD && !eofile)
1875     fill_window();
1876     }
1877     if (match_available)
1878     ct_tally(0, window[strstart - 1]);
1879    
1880     return FLUSH_BLOCK(1); /* eof */
1881     }
1882    
1883    
1884     /* ===========================================================================
1885     * Initialize the bit string routines.
1886     */
1887     static void bi_init(void) //// int zipfile)
1888     {
1889     //// zfile = zipfile;
1890     bi_buf = 0;
1891     bi_valid = 0;
1892     #ifdef DEBUG
1893     bits_sent = 0L;
1894     #endif
1895     }
1896    
1897    
1898     /* ===========================================================================
1899     * Initialize the "longest match" routines for a new file
1900     */
1901     static void lm_init(ush * flagsp)
1902     {
1903     unsigned j;
1904    
1905     /* Initialize the hash table. */
1906     memset(head, 0, HASH_SIZE * sizeof(*head));
1907     /* prev will be initialized on the fly */
1908    
1909     /* speed options for the general purpose bit flag */
1910     *flagsp |= 2; /* FAST 4, SLOW 2 */
1911     /* ??? reduce max_chain_length for binary files */
1912    
1913     strstart = 0;
1914     block_start = 0L;
1915    
1916     lookahead = file_read(window,
1917     sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1918    
1919     if (lookahead == 0 || lookahead == (unsigned) -1) {
1920     eofile = 1;
1921     lookahead = 0;
1922     return;
1923     }
1924     eofile = 0;
1925     /* Make sure that we always have enough lookahead. This is important
1926     * if input comes from a device such as a tty.
1927     */
1928     while (lookahead < MIN_LOOKAHEAD && !eofile)
1929     fill_window();
1930    
1931     ins_h = 0;
1932     for (j = 0; j < MIN_MATCH - 1; j++)
1933     UPDATE_HASH(ins_h, window[j]);
1934     /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1935     * not important since only literal bytes will be emitted.
1936     */
1937     }
1938    
1939    
1940     /* ===========================================================================
1941     * Allocate the match buffer, initialize the various tables and save the
1942     * location of the internal file attribute (ascii/binary) and method
1943     * (DEFLATE/STORE).
1944     * One callsite in zip()
1945     */
1946     static void ct_init(ush * attr, int *methodp)
1947     {
1948     int n; /* iterates over tree elements */
1949     int length; /* length value */
1950     int code; /* code value */
1951     int dist; /* distance index */
1952    
1953     file_type = attr;
1954     file_method = methodp;
1955     compressed_len = 0L;
1956    
1957     #ifdef NOT_NEEDED
1958     if (static_dtree[0].Len != 0)
1959     return; /* ct_init already called */
1960     #endif
1961    
1962     /* Initialize the mapping length (0..255) -> length code (0..28) */
1963     length = 0;
1964     for (code = 0; code < LENGTH_CODES - 1; code++) {
1965     base_length[code] = length;
1966     for (n = 0; n < (1 << extra_lbits[code]); n++) {
1967     length_code[length++] = code;
1968     }
1969     }
1970     Assert(length == 256, "ct_init: length != 256");
1971     /* Note that the length 255 (match length 258) can be represented
1972     * in two different ways: code 284 + 5 bits or code 285, so we
1973     * overwrite length_code[255] to use the best encoding:
1974     */
1975     length_code[length - 1] = code;
1976    
1977     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1978     dist = 0;
1979     for (code = 0; code < 16; code++) {
1980     base_dist[code] = dist;
1981     for (n = 0; n < (1 << extra_dbits[code]); n++) {
1982     dist_code[dist++] = code;
1983     }
1984     }
1985     Assert(dist == 256, "ct_init: dist != 256");
1986     dist >>= 7; /* from now on, all distances are divided by 128 */
1987     for (; code < D_CODES; code++) {
1988     base_dist[code] = dist << 7;
1989     for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1990     dist_code[256 + dist++] = code;
1991     }
1992     }
1993     Assert(dist == 256, "ct_init: 256+dist != 512");
1994    
1995     /* Construct the codes of the static literal tree */
1996     /* already zeroed - it's in bss
1997     for (n = 0; n <= MAX_BITS; n++)
1998     bl_count[n] = 0; */
1999    
2000     n = 0;
2001     while (n <= 143) {
2002     static_ltree[n++].Len = 8;
2003     bl_count[8]++;
2004     }
2005     while (n <= 255) {
2006     static_ltree[n++].Len = 9;
2007     bl_count[9]++;
2008     }
2009     while (n <= 279) {
2010     static_ltree[n++].Len = 7;
2011     bl_count[7]++;
2012     }
2013     while (n <= 287) {
2014     static_ltree[n++].Len = 8;
2015     bl_count[8]++;
2016     }
2017     /* Codes 286 and 287 do not exist, but we must include them in the
2018     * tree construction to get a canonical Huffman tree (longest code
2019     * all ones)
2020     */
2021     gen_codes((ct_data *) static_ltree, L_CODES + 1);
2022    
2023     /* The static distance tree is trivial: */
2024     for (n = 0; n < D_CODES; n++) {
2025     static_dtree[n].Len = 5;
2026     static_dtree[n].Code = bi_reverse(n, 5);
2027     }
2028    
2029     /* Initialize the first block of the first file: */
2030     init_block();
2031     }
2032    
2033    
2034     /* ===========================================================================
2035     * Deflate in to out.
2036     * IN assertions: the input and output buffers are cleared.
2037     * The variables time_stamp and save_orig_name are initialized.
2038     */
2039    
2040     /* put_header_byte is used for the compressed output
2041     * - for the initial 4 bytes that can't overflow the buffer. */
2042     #define put_header_byte(c) outbuf[outcnt++] = (c)
2043    
2044     static void zip(int in, int out)
2045     {
2046     uch my_flags = 0; /* general purpose bit flags */
2047     ush attr = 0; /* ascii/binary flag */
2048     ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
2049    
2050     ifd = in;
2051     ofd = out;
2052     outcnt = 0;
2053    
2054     /* Write the header to the gzip file. See algorithm.doc for the format */
2055    
2056     method = DEFLATED;
2057     put_header_byte(0x1f); /* magic header for gzip files, 1F 8B */
2058     put_header_byte(0x8b);
2059     put_header_byte(DEFLATED); /* compression method */
2060     put_header_byte(my_flags); /* general flags */
2061     put_32bit(time_stamp);
2062    
2063     /* Write deflated file to zip file */
2064     crc = ~0;
2065    
2066     bi_init(); //// (out);
2067     ct_init(&attr, &method);
2068     lm_init(&deflate_flags);
2069    
2070     put_8bit(deflate_flags); /* extra flags */
2071     put_8bit(3); /* OS identifier = 3 (Unix) */
2072    
2073     deflate();
2074    
2075     /* Write the crc and uncompressed size */
2076     put_32bit(~crc);
2077     put_32bit(isize);
2078    
2079     flush_outbuf();
2080     }
2081    
2082    
2083     /* ======================================================================== */
2084     static void abort_gzip(int ATTRIBUTE_UNUSED ignored)
2085     {
2086     exit(1);
2087     }
2088    
2089     int gzip_main(int argc, char **argv)
2090     {
2091     enum {
2092     OPT_tostdout = 0x1,
2093     OPT_force = 0x2,
2094     };
2095    
2096     unsigned opt;
2097     int inFileNum;
2098     int outFileNum;
2099     int i;
2100     struct stat statBuf;
2101    
2102     opt = getopt32(argc, argv, "cf123456789qv" USE_GUNZIP("d"));
2103     //if (opt & 0x1) // -c
2104     //if (opt & 0x2) // -f
2105     /* Ignore 1-9 (compression level) options */
2106     //if (opt & 0x4) // -1
2107     //if (opt & 0x8) // -2
2108     //if (opt & 0x10) // -3
2109     //if (opt & 0x20) // -4
2110     //if (opt & 0x40) // -5
2111     //if (opt & 0x80) // -6
2112     //if (opt & 0x100) // -7
2113     //if (opt & 0x200) // -8
2114     //if (opt & 0x400) // -9
2115     //if (opt & 0x800) // -q
2116     //if (opt & 0x1000) // -v
2117     #if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2118     if (opt & 0x2000) { // -d
2119     /* FIXME: getopt32 should not depend on optind */
2120     optind = 1;
2121     return gunzip_main(argc, argv);
2122     }
2123     #endif
2124    
2125     foreground = signal(SIGINT, SIG_IGN) != SIG_IGN;
2126     if (foreground) {
2127     signal(SIGINT, abort_gzip);
2128     }
2129     #ifdef SIGTERM
2130     if (signal(SIGTERM, SIG_IGN) != SIG_IGN) {
2131     signal(SIGTERM, abort_gzip);
2132     }
2133     #endif
2134     #ifdef SIGHUP
2135     if (signal(SIGHUP, SIG_IGN) != SIG_IGN) {
2136     signal(SIGHUP, abort_gzip);
2137     }
2138     #endif
2139    
2140     /* Allocate all global buffers (for DYN_ALLOC option) */
2141     ALLOC(uch, l_buf, INBUFSIZ);
2142     ALLOC(uch, outbuf, OUTBUFSIZ);
2143     ALLOC(ush, d_buf, DIST_BUFSIZE);
2144     ALLOC(uch, window, 2L * WSIZE);
2145     ALLOC(ush, prev, 1L << BITS);
2146    
2147     /* Initialise the CRC32 table */
2148     crc_32_tab = crc32_filltable(0);
2149    
2150     clear_bufs();
2151    
2152     if (optind == argc) {
2153     time_stamp = 0;
2154     zip(STDIN_FILENO, STDOUT_FILENO);
2155     return exit_code;
2156     }
2157    
2158     for (i = optind; i < argc; i++) {
2159     char *path = NULL;
2160    
2161     clear_bufs();
2162     if (LONE_DASH(argv[i])) {
2163     time_stamp = 0;
2164     inFileNum = STDIN_FILENO;
2165     outFileNum = STDOUT_FILENO;
2166     } else {
2167     inFileNum = xopen(argv[i], O_RDONLY);
2168     if (fstat(inFileNum, &statBuf) < 0)
2169     bb_perror_msg_and_die("%s", argv[i]);
2170     time_stamp = statBuf.st_ctime;
2171    
2172     if (!(opt & OPT_tostdout)) {
2173     path = xasprintf("%s.gz", argv[i]);
2174    
2175     /* Open output file */
2176     #if defined(__GLIBC__) && __GLIBC__ >= 2 && __GLIBC_MINOR__ >= 1 && defined(O_NOFOLLOW)
2177     outFileNum = open(path, O_RDWR | O_CREAT | O_EXCL | O_NOFOLLOW);
2178     #else
2179     outFileNum = open(path, O_RDWR | O_CREAT | O_EXCL);
2180     #endif
2181     if (outFileNum < 0) {
2182     bb_perror_msg("%s", path);
2183     free(path);
2184     continue;
2185     }
2186    
2187     /* Set permissions on the file */
2188     fchmod(outFileNum, statBuf.st_mode);
2189     } else
2190     outFileNum = STDOUT_FILENO;
2191     }
2192    
2193     if (path == NULL && isatty(outFileNum) && !(opt & OPT_force)) {
2194     bb_error_msg("compressed data not written "
2195     "to a terminal. Use -f to force compression.");
2196     free(path);
2197     continue;
2198     }
2199    
2200     zip(inFileNum, outFileNum);
2201    
2202     if (path != NULL) {
2203     char *delFileName;
2204    
2205     close(inFileNum);
2206     close(outFileNum);
2207    
2208     /* Delete the original file */
2209     // Pity we don't propagate zip failures to this place...
2210     //if (zip_is_ok)
2211     delFileName = argv[i];
2212     //else
2213     // delFileName = path;
2214     if (unlink(delFileName) < 0)
2215     bb_perror_msg("%s", delFileName);
2216     }
2217    
2218     free(path);
2219     }
2220    
2221     return exit_code;
2222     }