Magellan Linux

Annotation of /trunk/mkinitrd-magellan/busybox/archival/gzip.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 816 - (hide annotations) (download)
Fri Apr 24 18:33:46 2009 UTC (15 years, 1 month ago) by niro
File MIME type: text/plain
File size: 65265 byte(s)
-updated to busybox-1.13.4
1 niro 532 /* vi: set sw=4 ts=4: */
2     /*
3     * Gzip implementation for busybox
4     *
5     * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6     *
7     * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8     * "this is a stripped down version of gzip I put into busybox, it does
9     * only standard in to standard out with -9 compression. It also requires
10     * the zcat module for some important functions."
11     *
12     * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13     * files as well as stdin/stdout, and to generally behave itself wrt
14     * command line handling.
15     *
16     * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
17     */
18    
19     /* big objects in bss:
20     * 00000020 b bl_count
21     * 00000074 b base_length
22     * 00000078 b base_dist
23     * 00000078 b static_dtree
24     * 0000009c b bl_tree
25     * 000000f4 b dyn_dtree
26     * 00000100 b length_code
27     * 00000200 b dist_code
28     * 0000023d b depth
29     * 00000400 b flag_buf
30     * 0000047a b heap
31     * 00000480 b static_ltree
32     * 000008f4 b dyn_ltree
33     */
34    
35     /* TODO: full support for -v for DESKTOP
36     * "/usr/bin/gzip -v a bogus aa" should say:
37     a: 85.1% -- replaced with a.gz
38     gzip: bogus: No such file or directory
39     aa: 85.1% -- replaced with aa.gz
40     */
41    
42 niro 816 #include "libbb.h"
43     #include "unarchive.h"
44 niro 532
45    
46     /* ===========================================================================
47     */
48     //#define DEBUG 1
49     /* Diagnostic functions */
50     #ifdef DEBUG
51 niro 816 # define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
52 niro 532 # define Trace(x) fprintf x
53 niro 816 # define Tracev(x) {if (verbose) fprintf x; }
54     # define Tracevv(x) {if (verbose > 1) fprintf x; }
55     # define Tracec(c,x) {if (verbose && (c)) fprintf x; }
56     # define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
57 niro 532 #else
58     # define Assert(cond,msg)
59     # define Trace(x)
60     # define Tracev(x)
61     # define Tracevv(x)
62     # define Tracec(c,x)
63     # define Tracecv(c,x)
64     #endif
65    
66    
67     /* ===========================================================================
68     */
69     #define SMALL_MEM
70    
71     #ifndef INBUFSIZ
72     # ifdef SMALL_MEM
73     # define INBUFSIZ 0x2000 /* input buffer size */
74     # else
75     # define INBUFSIZ 0x8000 /* input buffer size */
76     # endif
77     #endif
78    
79     #ifndef OUTBUFSIZ
80     # ifdef SMALL_MEM
81     # define OUTBUFSIZ 8192 /* output buffer size */
82     # else
83     # define OUTBUFSIZ 16384 /* output buffer size */
84     # endif
85     #endif
86    
87     #ifndef DIST_BUFSIZE
88     # ifdef SMALL_MEM
89     # define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
90     # else
91     # define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
92     # endif
93     #endif
94    
95     /* gzip flag byte */
96     #define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
97     #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
98     #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
99     #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
100     #define COMMENT 0x10 /* bit 4 set: file comment present */
101     #define RESERVED 0xC0 /* bit 6,7: reserved */
102    
103     /* internal file attribute */
104     #define UNKNOWN 0xffff
105     #define BINARY 0
106     #define ASCII 1
107    
108     #ifndef WSIZE
109     # define WSIZE 0x8000 /* window size--must be a power of two, and */
110     #endif /* at least 32K for zip's deflate method */
111    
112     #define MIN_MATCH 3
113     #define MAX_MATCH 258
114     /* The minimum and maximum match lengths */
115    
116     #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
117     /* Minimum amount of lookahead, except at the end of the input file.
118     * See deflate.c for comments about the MIN_MATCH+1.
119     */
120    
121     #define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
122     /* In order to simplify the code, particularly on 16 bit machines, match
123     * distances are limited to MAX_DIST instead of WSIZE.
124     */
125    
126     #ifndef MAX_PATH_LEN
127     # define MAX_PATH_LEN 1024 /* max pathname length */
128     #endif
129    
130     #define seekable() 0 /* force sequential output */
131     #define translate_eol 0 /* no option -a yet */
132    
133     #ifndef BITS
134     # define BITS 16
135     #endif
136     #define INIT_BITS 9 /* Initial number of bits per code */
137    
138     #define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
139     /* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
140     * It's a pity that old uncompress does not check bit 0x20. That makes
141     * extension of the format actually undesirable because old compress
142     * would just crash on the new format instead of giving a meaningful
143     * error message. It does check the number of bits, but it's more
144     * helpful to say "unsupported format, get a new version" than
145     * "can only handle 16 bits".
146     */
147    
148     #ifdef MAX_EXT_CHARS
149     # define MAX_SUFFIX MAX_EXT_CHARS
150     #else
151     # define MAX_SUFFIX 30
152     #endif
153    
154    
155     /* ===========================================================================
156     * Compile with MEDIUM_MEM to reduce the memory requirements or
157     * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
158     * entire input file can be held in memory (not possible on 16 bit systems).
159     * Warning: defining these symbols affects HASH_BITS (see below) and thus
160     * affects the compression ratio. The compressed output
161     * is still correct, and might even be smaller in some cases.
162     */
163    
164     #ifdef SMALL_MEM
165     # define HASH_BITS 13 /* Number of bits used to hash strings */
166     #endif
167     #ifdef MEDIUM_MEM
168     # define HASH_BITS 14
169     #endif
170     #ifndef HASH_BITS
171     # define HASH_BITS 15
172     /* For portability to 16 bit machines, do not use values above 15. */
173     #endif
174    
175     #define HASH_SIZE (unsigned)(1<<HASH_BITS)
176     #define HASH_MASK (HASH_SIZE-1)
177     #define WMASK (WSIZE-1)
178     /* HASH_SIZE and WSIZE must be powers of two */
179     #ifndef TOO_FAR
180     # define TOO_FAR 4096
181     #endif
182     /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
183    
184    
185     /* ===========================================================================
186     * These types are not really 'char', 'short' and 'long'
187     */
188     typedef uint8_t uch;
189     typedef uint16_t ush;
190     typedef uint32_t ulg;
191     typedef int32_t lng;
192    
193     typedef ush Pos;
194     typedef unsigned IPos;
195     /* A Pos is an index in the character window. We use short instead of int to
196     * save space in the various tables. IPos is used only for parameter passing.
197     */
198    
199     enum {
200     WINDOW_SIZE = 2 * WSIZE,
201     /* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
202     * input file length plus MIN_LOOKAHEAD.
203     */
204    
205     max_chain_length = 4096,
206     /* To speed up deflation, hash chains are never searched beyond this length.
207     * A higher limit improves compression ratio but degrades the speed.
208     */
209    
210     max_lazy_match = 258,
211     /* Attempt to find a better match only when the current match is strictly
212     * smaller than this value. This mechanism is used only for compression
213     * levels >= 4.
214     */
215    
216     max_insert_length = max_lazy_match,
217     /* Insert new strings in the hash table only if the match length
218     * is not greater than this length. This saves time but degrades compression.
219     * max_insert_length is used only for compression levels <= 3.
220     */
221    
222     good_match = 32,
223     /* Use a faster search when the previous match is longer than this */
224    
225     /* Values for max_lazy_match, good_match and max_chain_length, depending on
226     * the desired pack level (0..9). The values given below have been tuned to
227     * exclude worst case performance for pathological files. Better values may be
228     * found for specific files.
229     */
230    
231     nice_match = 258, /* Stop searching when current match exceeds this */
232     /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
233     * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
234     * meaning.
235     */
236     };
237    
238    
239 niro 816 struct globals {
240    
241     lng block_start;
242    
243     /* window position at the beginning of the current output block. Gets
244     * negative when the window is moved backwards.
245     */
246     unsigned ins_h; /* hash index of string to be inserted */
247    
248     #define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
249     /* Number of bits by which ins_h and del_h must be shifted at each
250     * input step. It must be such that after MIN_MATCH steps, the oldest
251     * byte no longer takes part in the hash key, that is:
252     * H_SHIFT * MIN_MATCH >= HASH_BITS
253     */
254    
255     unsigned prev_length;
256    
257     /* Length of the best match at previous step. Matches not greater than this
258     * are discarded. This is used in the lazy match evaluation.
259     */
260    
261     unsigned strstart; /* start of string to insert */
262     unsigned match_start; /* start of matching string */
263     unsigned lookahead; /* number of valid bytes ahead in window */
264    
265 niro 532 /* ===========================================================================
266     */
267     #define DECLARE(type, array, size) \
268 niro 816 type * array
269 niro 532 #define ALLOC(type, array, size) \
270 niro 816 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type));
271 niro 532 #define FREE(array) \
272 niro 816 do { free(array); array = NULL; } while (0)
273 niro 532
274 niro 816 /* global buffers */
275 niro 532
276 niro 816 /* buffer for literals or lengths */
277     /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
278     DECLARE(uch, l_buf, INBUFSIZ);
279 niro 532
280 niro 816 DECLARE(ush, d_buf, DIST_BUFSIZE);
281     DECLARE(uch, outbuf, OUTBUFSIZ);
282 niro 532
283     /* Sliding window. Input bytes are read into the second half of the window,
284     * and move to the first half later to keep a dictionary of at least WSIZE
285     * bytes. With this organization, matches are limited to a distance of
286     * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
287     * performed with a length multiple of the block size. Also, it limits
288     * the window size to 64K, which is quite useful on MSDOS.
289     * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
290     * be less efficient).
291     */
292 niro 816 DECLARE(uch, window, 2L * WSIZE);
293 niro 532
294     /* Link to older string with same hash index. To limit the size of this
295     * array to 64K, this link is maintained only for the last 32K strings.
296     * An index in this array is thus a window index modulo 32K.
297     */
298 niro 816 /* DECLARE(Pos, prev, WSIZE); */
299     DECLARE(ush, prev, 1L << BITS);
300 niro 532
301     /* Heads of the hash chains or 0. */
302 niro 816 /* DECLARE(Pos, head, 1<<HASH_BITS); */
303     #define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
304 niro 532
305     /* number of input bytes */
306 niro 816 ulg isize; /* only 32 bits stored in .gz file */
307 niro 532
308 niro 816 /* bbox always use stdin/stdout */
309     #define ifd STDIN_FILENO /* input file descriptor */
310     #define ofd STDOUT_FILENO /* output file descriptor */
311 niro 532
312     #ifdef DEBUG
313 niro 816 unsigned insize; /* valid bytes in l_buf */
314 niro 532 #endif
315 niro 816 unsigned outcnt; /* bytes in output buffer */
316 niro 532
317 niro 816 smallint eofile; /* flag set at end of input file */
318 niro 532
319     /* ===========================================================================
320     * Local data used by the "bit string" routines.
321     */
322    
323 niro 816 unsigned short bi_buf;
324 niro 532
325     /* Output buffer. bits are inserted starting at the bottom (least significant
326     * bits).
327     */
328    
329     #undef BUF_SIZE
330 niro 816 #define BUF_SIZE (8 * sizeof(G1.bi_buf))
331 niro 532 /* Number of bits used within bi_buf. (bi_buf might be implemented on
332     * more than 16 bits on some systems.)
333     */
334    
335 niro 816 int bi_valid;
336 niro 532
337     /* Current input function. Set to mem_read for in-memory compression */
338    
339     #ifdef DEBUG
340 niro 816 ulg bits_sent; /* bit length of the compressed data */
341 niro 532 #endif
342    
343 niro 816 uint32_t *crc_32_tab;
344     uint32_t crc; /* shift register contents */
345     };
346 niro 532
347 niro 816 #define G1 (*(ptr_to_globals - 1))
348    
349    
350 niro 532 /* ===========================================================================
351     * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
352     * (used for the compressed data only)
353     */
354     static void flush_outbuf(void)
355     {
356 niro 816 if (G1.outcnt == 0)
357 niro 532 return;
358    
359 niro 816 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
360     G1.outcnt = 0;
361 niro 532 }
362    
363    
364     /* ===========================================================================
365     */
366     /* put_8bit is used for the compressed output */
367     #define put_8bit(c) \
368 niro 816 do { \
369     G1.outbuf[G1.outcnt++] = (c); \
370     if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
371     } while (0)
372 niro 532
373     /* Output a 16 bit value, lsb first */
374     static void put_16bit(ush w)
375     {
376 niro 816 if (G1.outcnt < OUTBUFSIZ - 2) {
377     G1.outbuf[G1.outcnt++] = w;
378     G1.outbuf[G1.outcnt++] = w >> 8;
379 niro 532 } else {
380     put_8bit(w);
381     put_8bit(w >> 8);
382     }
383     }
384    
385     static void put_32bit(ulg n)
386     {
387     put_16bit(n);
388     put_16bit(n >> 16);
389     }
390    
391     /* ===========================================================================
392     * Clear input and output buffers
393     */
394     static void clear_bufs(void)
395     {
396 niro 816 G1.outcnt = 0;
397 niro 532 #ifdef DEBUG
398 niro 816 G1.insize = 0;
399 niro 532 #endif
400 niro 816 G1.isize = 0;
401 niro 532 }
402    
403    
404     /* ===========================================================================
405     * Run a set of bytes through the crc shift register. If s is a NULL
406     * pointer, then initialize the crc shift register contents instead.
407     * Return the current crc in either case.
408     */
409     static uint32_t updcrc(uch * s, unsigned n)
410     {
411 niro 816 uint32_t c = G1.crc;
412 niro 532 while (n) {
413 niro 816 c = G1.crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
414 niro 532 n--;
415     }
416 niro 816 G1.crc = c;
417 niro 532 return c;
418     }
419    
420    
421     /* ===========================================================================
422     * Read a new buffer from the current input file, perform end-of-line
423     * translation, and update the crc and input file size.
424     * IN assertion: size >= 2 (for end-of-line translation)
425     */
426     static unsigned file_read(void *buf, unsigned size)
427     {
428     unsigned len;
429    
430 niro 816 Assert(G1.insize == 0, "l_buf not empty");
431 niro 532
432     len = safe_read(ifd, buf, size);
433     if (len == (unsigned)(-1) || len == 0)
434     return len;
435    
436     updcrc(buf, len);
437 niro 816 G1.isize += len;
438 niro 532 return len;
439     }
440    
441    
442     /* ===========================================================================
443     * Send a value on a given number of bits.
444     * IN assertion: length <= 16 and value fits in length bits.
445     */
446     static void send_bits(int value, int length)
447     {
448     #ifdef DEBUG
449     Tracev((stderr, " l %2d v %4x ", length, value));
450     Assert(length > 0 && length <= 15, "invalid length");
451 niro 816 G1.bits_sent += length;
452 niro 532 #endif
453     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
454     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
455     * unused bits in value.
456     */
457 niro 816 if (G1.bi_valid > (int) BUF_SIZE - length) {
458     G1.bi_buf |= (value << G1.bi_valid);
459     put_16bit(G1.bi_buf);
460     G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
461     G1.bi_valid += length - BUF_SIZE;
462 niro 532 } else {
463 niro 816 G1.bi_buf |= value << G1.bi_valid;
464     G1.bi_valid += length;
465 niro 532 }
466     }
467    
468    
469     /* ===========================================================================
470     * Reverse the first len bits of a code, using straightforward code (a faster
471     * method would use a table)
472     * IN assertion: 1 <= len <= 15
473     */
474     static unsigned bi_reverse(unsigned code, int len)
475     {
476     unsigned res = 0;
477    
478     while (1) {
479     res |= code & 1;
480     if (--len <= 0) return res;
481     code >>= 1;
482     res <<= 1;
483     }
484     }
485    
486    
487     /* ===========================================================================
488     * Write out any remaining bits in an incomplete byte.
489     */
490     static void bi_windup(void)
491     {
492 niro 816 if (G1.bi_valid > 8) {
493     put_16bit(G1.bi_buf);
494     } else if (G1.bi_valid > 0) {
495     put_8bit(G1.bi_buf);
496 niro 532 }
497 niro 816 G1.bi_buf = 0;
498     G1.bi_valid = 0;
499 niro 532 #ifdef DEBUG
500 niro 816 G1.bits_sent = (G1.bits_sent + 7) & ~7;
501 niro 532 #endif
502     }
503    
504    
505     /* ===========================================================================
506     * Copy a stored block to the zip file, storing first the length and its
507     * one's complement if requested.
508     */
509     static void copy_block(char *buf, unsigned len, int header)
510     {
511     bi_windup(); /* align on byte boundary */
512    
513     if (header) {
514     put_16bit(len);
515     put_16bit(~len);
516     #ifdef DEBUG
517 niro 816 G1.bits_sent += 2 * 16;
518 niro 532 #endif
519     }
520     #ifdef DEBUG
521 niro 816 G1.bits_sent += (ulg) len << 3;
522 niro 532 #endif
523     while (len--) {
524     put_8bit(*buf++);
525     }
526     }
527    
528    
529     /* ===========================================================================
530     * Fill the window when the lookahead becomes insufficient.
531     * Updates strstart and lookahead, and sets eofile if end of input file.
532     * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
533     * OUT assertions: at least one byte has been read, or eofile is set;
534     * file reads are performed for at least two bytes (required for the
535     * translate_eol option).
536     */
537     static void fill_window(void)
538     {
539     unsigned n, m;
540 niro 816 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
541 niro 532 /* Amount of free space at the end of the window. */
542    
543     /* If the window is almost full and there is insufficient lookahead,
544     * move the upper half to the lower one to make room in the upper half.
545     */
546     if (more == (unsigned) -1) {
547     /* Very unlikely, but possible on 16 bit machine if strstart == 0
548     * and lookahead == 1 (input done one byte at time)
549     */
550     more--;
551 niro 816 } else if (G1.strstart >= WSIZE + MAX_DIST) {
552 niro 532 /* By the IN assertion, the window is not empty so we can't confuse
553     * more == 0 with more == 64K on a 16 bit machine.
554     */
555     Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
556    
557 niro 816 memcpy(G1.window, G1.window + WSIZE, WSIZE);
558     G1.match_start -= WSIZE;
559     G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
560 niro 532
561 niro 816 G1.block_start -= WSIZE;
562 niro 532
563     for (n = 0; n < HASH_SIZE; n++) {
564     m = head[n];
565     head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
566     }
567     for (n = 0; n < WSIZE; n++) {
568 niro 816 m = G1.prev[n];
569     G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
570 niro 532 /* If n is not on any hash chain, prev[n] is garbage but
571     * its value will never be used.
572     */
573     }
574     more += WSIZE;
575     }
576     /* At this point, more >= 2 */
577 niro 816 if (!G1.eofile) {
578     n = file_read(G1.window + G1.strstart + G1.lookahead, more);
579 niro 532 if (n == 0 || n == (unsigned) -1) {
580 niro 816 G1.eofile = 1;
581 niro 532 } else {
582 niro 816 G1.lookahead += n;
583 niro 532 }
584     }
585     }
586    
587    
588     /* ===========================================================================
589     * Set match_start to the longest match starting at the given string and
590     * return its length. Matches shorter or equal to prev_length are discarded,
591     * in which case the result is equal to prev_length and match_start is
592     * garbage.
593     * IN assertions: cur_match is the head of the hash chain for the current
594     * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
595     */
596    
597     /* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
598     * match.s. The code is functionally equivalent, so you can use the C version
599     * if desired.
600     */
601     static int longest_match(IPos cur_match)
602     {
603     unsigned chain_length = max_chain_length; /* max hash chain length */
604 niro 816 uch *scan = G1.window + G1.strstart; /* current string */
605 niro 532 uch *match; /* matched string */
606     int len; /* length of current match */
607 niro 816 int best_len = G1.prev_length; /* best match length so far */
608     IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
609 niro 532 /* Stop when cur_match becomes <= limit. To simplify the code,
610     * we prevent matches with the string of window index 0.
611     */
612    
613     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
614     * It is easy to get rid of this optimization if necessary.
615     */
616     #if HASH_BITS < 8 || MAX_MATCH != 258
617     # error Code too clever
618     #endif
619 niro 816 uch *strend = G1.window + G1.strstart + MAX_MATCH;
620 niro 532 uch scan_end1 = scan[best_len - 1];
621     uch scan_end = scan[best_len];
622    
623     /* Do not waste too much time if we already have a good match: */
624 niro 816 if (G1.prev_length >= good_match) {
625 niro 532 chain_length >>= 2;
626     }
627 niro 816 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
628 niro 532
629     do {
630 niro 816 Assert(cur_match < G1.strstart, "no future");
631     match = G1.window + cur_match;
632 niro 532
633     /* Skip to next match if the match length cannot increase
634     * or if the match length is less than 2:
635     */
636     if (match[best_len] != scan_end ||
637     match[best_len - 1] != scan_end1 ||
638     *match != *scan || *++match != scan[1])
639     continue;
640    
641     /* The check at best_len-1 can be removed because it will be made
642     * again later. (This heuristic is not always a win.)
643     * It is not necessary to compare scan[2] and match[2] since they
644     * are always equal when the other bytes match, given that
645     * the hash keys are equal and that HASH_BITS >= 8.
646     */
647     scan += 2, match++;
648    
649     /* We check for insufficient lookahead only every 8th comparison;
650     * the 256th check will be made at strstart+258.
651     */
652     do {
653     } while (*++scan == *++match && *++scan == *++match &&
654     *++scan == *++match && *++scan == *++match &&
655     *++scan == *++match && *++scan == *++match &&
656     *++scan == *++match && *++scan == *++match && scan < strend);
657    
658     len = MAX_MATCH - (int) (strend - scan);
659     scan = strend - MAX_MATCH;
660    
661     if (len > best_len) {
662 niro 816 G1.match_start = cur_match;
663 niro 532 best_len = len;
664     if (len >= nice_match)
665     break;
666     scan_end1 = scan[best_len - 1];
667     scan_end = scan[best_len];
668     }
669 niro 816 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
670 niro 532 && --chain_length != 0);
671    
672     return best_len;
673     }
674    
675    
676     #ifdef DEBUG
677     /* ===========================================================================
678     * Check that the match at match_start is indeed a match.
679     */
680     static void check_match(IPos start, IPos match, int length)
681     {
682     /* check that the match is indeed a match */
683 niro 816 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
684 niro 532 bb_error_msg(" start %d, match %d, length %d", start, match, length);
685     bb_error_msg("invalid match");
686     }
687     if (verbose > 1) {
688     bb_error_msg("\\[%d,%d]", start - match, length);
689     do {
690 niro 816 fputc(G1.window[start++], stderr);
691 niro 532 } while (--length != 0);
692     }
693     }
694     #else
695     # define check_match(start, match, length) ((void)0)
696     #endif
697    
698    
699     /* trees.c -- output deflated data using Huffman coding
700     * Copyright (C) 1992-1993 Jean-loup Gailly
701     * This is free software; you can redistribute it and/or modify it under the
702     * terms of the GNU General Public License, see the file COPYING.
703     */
704    
705     /* PURPOSE
706     * Encode various sets of source values using variable-length
707     * binary code trees.
708     *
709     * DISCUSSION
710     * The PKZIP "deflation" process uses several Huffman trees. The more
711     * common source values are represented by shorter bit sequences.
712     *
713     * Each code tree is stored in the ZIP file in a compressed form
714     * which is itself a Huffman encoding of the lengths of
715     * all the code strings (in ascending order by source values).
716     * The actual code strings are reconstructed from the lengths in
717     * the UNZIP process, as described in the "application note"
718     * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
719     *
720     * REFERENCES
721     * Lynch, Thomas J.
722     * Data Compression: Techniques and Applications, pp. 53-55.
723     * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
724     *
725     * Storer, James A.
726     * Data Compression: Methods and Theory, pp. 49-50.
727     * Computer Science Press, 1988. ISBN 0-7167-8156-5.
728     *
729     * Sedgewick, R.
730     * Algorithms, p290.
731     * Addison-Wesley, 1983. ISBN 0-201-06672-6.
732     *
733     * INTERFACE
734 niro 816 * void ct_init()
735     * Allocate the match buffer, initialize the various tables [and save
736 niro 532 * the location of the internal file attribute (ascii/binary) and
737 niro 816 * method (DEFLATE/STORE) -- deleted in bbox]
738 niro 532 *
739     * void ct_tally(int dist, int lc);
740     * Save the match info and tally the frequency counts.
741     *
742     * ulg flush_block(char *buf, ulg stored_len, int eof)
743     * Determine the best encoding for the current block: dynamic trees,
744     * static trees or store, and output the encoded block to the zip
745     * file. Returns the total compressed length for the file so far.
746     */
747    
748     #define MAX_BITS 15
749     /* All codes must not exceed MAX_BITS bits */
750    
751     #define MAX_BL_BITS 7
752     /* Bit length codes must not exceed MAX_BL_BITS bits */
753    
754     #define LENGTH_CODES 29
755     /* number of length codes, not counting the special END_BLOCK code */
756    
757     #define LITERALS 256
758     /* number of literal bytes 0..255 */
759    
760     #define END_BLOCK 256
761     /* end of block literal code */
762    
763     #define L_CODES (LITERALS+1+LENGTH_CODES)
764     /* number of Literal or Length codes, including the END_BLOCK code */
765    
766     #define D_CODES 30
767     /* number of distance codes */
768    
769     #define BL_CODES 19
770     /* number of codes used to transfer the bit lengths */
771    
772     /* extra bits for each length code */
773 niro 816 static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
774 niro 532 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
775     4, 4, 5, 5, 5, 5, 0
776     };
777    
778     /* extra bits for each distance code */
779 niro 816 static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
780 niro 532 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
781     10, 10, 11, 11, 12, 12, 13, 13
782     };
783    
784     /* extra bits for each bit length code */
785 niro 816 static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
786 niro 532 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
787    
788 niro 816 /* number of codes at each bit length for an optimal tree */
789     static const uint8_t bl_order[BL_CODES] ALIGN1 = {
790     16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
791    
792 niro 532 #define STORED_BLOCK 0
793     #define STATIC_TREES 1
794     #define DYN_TREES 2
795     /* The three kinds of block type */
796    
797     #ifndef LIT_BUFSIZE
798     # ifdef SMALL_MEM
799     # define LIT_BUFSIZE 0x2000
800     # else
801     # ifdef MEDIUM_MEM
802     # define LIT_BUFSIZE 0x4000
803     # else
804     # define LIT_BUFSIZE 0x8000
805     # endif
806     # endif
807     #endif
808     #ifndef DIST_BUFSIZE
809     # define DIST_BUFSIZE LIT_BUFSIZE
810     #endif
811     /* Sizes of match buffers for literals/lengths and distances. There are
812     * 4 reasons for limiting LIT_BUFSIZE to 64K:
813     * - frequencies can be kept in 16 bit counters
814     * - if compression is not successful for the first block, all input data is
815     * still in the window so we can still emit a stored block even when input
816     * comes from standard input. (This can also be done for all blocks if
817     * LIT_BUFSIZE is not greater than 32K.)
818     * - if compression is not successful for a file smaller than 64K, we can
819     * even emit a stored file instead of a stored block (saving 5 bytes).
820     * - creating new Huffman trees less frequently may not provide fast
821     * adaptation to changes in the input data statistics. (Take for
822     * example a binary file with poorly compressible code followed by
823     * a highly compressible string table.) Smaller buffer sizes give
824     * fast adaptation but have of course the overhead of transmitting trees
825     * more frequently.
826     * - I can't count above 4
827     * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
828     * memory at the expense of compression). Some optimizations would be possible
829     * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
830     */
831     #define REP_3_6 16
832     /* repeat previous bit length 3-6 times (2 bits of repeat count) */
833     #define REPZ_3_10 17
834     /* repeat a zero length 3-10 times (3 bits of repeat count) */
835     #define REPZ_11_138 18
836     /* repeat a zero length 11-138 times (7 bits of repeat count) */
837    
838     /* ===========================================================================
839     */
840     /* Data structure describing a single value and its code string. */
841     typedef struct ct_data {
842     union {
843     ush freq; /* frequency count */
844     ush code; /* bit string */
845     } fc;
846     union {
847     ush dad; /* father node in Huffman tree */
848     ush len; /* length of bit string */
849     } dl;
850     } ct_data;
851    
852     #define Freq fc.freq
853     #define Code fc.code
854     #define Dad dl.dad
855     #define Len dl.len
856    
857     #define HEAP_SIZE (2*L_CODES + 1)
858     /* maximum heap size */
859    
860 niro 816 typedef struct tree_desc {
861     ct_data *dyn_tree; /* the dynamic tree */
862     ct_data *static_tree; /* corresponding static tree or NULL */
863     const uint8_t *extra_bits; /* extra bits for each code or NULL */
864     int extra_base; /* base index for extra_bits */
865     int elems; /* max number of elements in the tree */
866     int max_length; /* max bit length for the codes */
867     int max_code; /* largest code with non zero frequency */
868     } tree_desc;
869 niro 532
870 niro 816 struct globals2 {
871    
872     ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
873     int heap_len; /* number of elements in the heap */
874     int heap_max; /* element of largest frequency */
875    
876 niro 532 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
877     * The same heap array is used to build all trees.
878     */
879    
880 niro 816 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
881     ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
882 niro 532
883 niro 816 ct_data static_ltree[L_CODES + 2];
884 niro 532
885     /* The static literal tree. Since the bit lengths are imposed, there is no
886     * need for the L_CODES extra codes used during heap construction. However
887     * The codes 286 and 287 are needed to build a canonical tree (see ct_init
888     * below).
889     */
890    
891 niro 816 ct_data static_dtree[D_CODES];
892 niro 532
893     /* The static distance tree. (Actually a trivial tree since all codes use
894     * 5 bits.)
895     */
896    
897 niro 816 ct_data bl_tree[2 * BL_CODES + 1];
898 niro 532
899     /* Huffman tree for the bit lengths */
900    
901 niro 816 tree_desc l_desc;
902     tree_desc d_desc;
903     tree_desc bl_desc;
904 niro 532
905 niro 816 ush bl_count[MAX_BITS + 1];
906 niro 532
907     /* The lengths of the bit length codes are sent in order of decreasing
908     * probability, to avoid transmitting the lengths for unused bit length codes.
909     */
910    
911 niro 816 uch depth[2 * L_CODES + 1];
912 niro 532
913     /* Depth of each subtree used as tie breaker for trees of equal frequency */
914    
915 niro 816 uch length_code[MAX_MATCH - MIN_MATCH + 1];
916 niro 532
917     /* length code for each normalized match length (0 == MIN_MATCH) */
918    
919 niro 816 uch dist_code[512];
920 niro 532
921     /* distance codes. The first 256 values correspond to the distances
922     * 3 .. 258, the last 256 values correspond to the top 8 bits of
923     * the 15 bit distances.
924     */
925    
926 niro 816 int base_length[LENGTH_CODES];
927 niro 532
928     /* First normalized length for each code (0 = MIN_MATCH) */
929    
930 niro 816 int base_dist[D_CODES];
931 niro 532
932     /* First normalized distance for each code (0 = distance of 1) */
933    
934 niro 816 uch flag_buf[LIT_BUFSIZE / 8];
935 niro 532
936     /* flag_buf is a bit array distinguishing literals from lengths in
937     * l_buf, thus indicating the presence or absence of a distance.
938     */
939    
940 niro 816 unsigned last_lit; /* running index in l_buf */
941     unsigned last_dist; /* running index in d_buf */
942     unsigned last_flags; /* running index in flag_buf */
943     uch flags; /* current flags not yet saved in flag_buf */
944     uch flag_bit; /* current bit used in flags */
945 niro 532
946     /* bits are filled in flags starting at bit 0 (least significant).
947     * Note: these flags are overkill in the current code since we don't
948     * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
949     */
950    
951 niro 816 ulg opt_len; /* bit length of current block with optimal trees */
952     ulg static_len; /* bit length of current block with static trees */
953 niro 532
954 niro 816 ulg compressed_len; /* total bit length of compressed file */
955     };
956 niro 532
957 niro 816 #define G2ptr ((struct globals2*)(ptr_to_globals))
958     #define G2 (*G2ptr)
959 niro 532
960 niro 816
961 niro 532 /* ===========================================================================
962     */
963     static void gen_codes(ct_data * tree, int max_code);
964     static void build_tree(tree_desc * desc);
965     static void scan_tree(ct_data * tree, int max_code);
966     static void send_tree(ct_data * tree, int max_code);
967     static int build_bl_tree(void);
968     static void send_all_trees(int lcodes, int dcodes, int blcodes);
969     static void compress_block(ct_data * ltree, ct_data * dtree);
970    
971    
972     #ifndef DEBUG
973     /* Send a code of the given tree. c and tree must not have side effects */
974     # define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
975     #else
976     # define SEND_CODE(c, tree) \
977     { \
978     if (verbose > 1) bb_error_msg("\ncd %3d ",(c)); \
979     send_bits(tree[c].Code, tree[c].Len); \
980     }
981     #endif
982    
983     #define D_CODE(dist) \
984 niro 816 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
985 niro 532 /* Mapping from a distance to a distance code. dist is the distance - 1 and
986     * must not have side effects. dist_code[256] and dist_code[257] are never
987     * used.
988     * The arguments must not have side effects.
989     */
990    
991    
992     /* ===========================================================================
993     * Initialize a new block.
994     */
995     static void init_block(void)
996     {
997     int n; /* iterates over tree elements */
998    
999     /* Initialize the trees. */
1000     for (n = 0; n < L_CODES; n++)
1001 niro 816 G2.dyn_ltree[n].Freq = 0;
1002 niro 532 for (n = 0; n < D_CODES; n++)
1003 niro 816 G2.dyn_dtree[n].Freq = 0;
1004 niro 532 for (n = 0; n < BL_CODES; n++)
1005 niro 816 G2.bl_tree[n].Freq = 0;
1006 niro 532
1007 niro 816 G2.dyn_ltree[END_BLOCK].Freq = 1;
1008     G2.opt_len = G2.static_len = 0;
1009     G2.last_lit = G2.last_dist = G2.last_flags = 0;
1010     G2.flags = 0;
1011     G2.flag_bit = 1;
1012 niro 532 }
1013    
1014    
1015     /* ===========================================================================
1016     * Restore the heap property by moving down the tree starting at node k,
1017     * exchanging a node with the smallest of its two sons if necessary, stopping
1018     * when the heap property is re-established (each father smaller than its
1019     * two sons).
1020     */
1021    
1022     /* Compares to subtrees, using the tree depth as tie breaker when
1023     * the subtrees have equal frequency. This minimizes the worst case length. */
1024     #define SMALLER(tree, n, m) \
1025     (tree[n].Freq < tree[m].Freq \
1026 niro 816 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1027 niro 532
1028     static void pqdownheap(ct_data * tree, int k)
1029     {
1030 niro 816 int v = G2.heap[k];
1031 niro 532 int j = k << 1; /* left son of k */
1032    
1033 niro 816 while (j <= G2.heap_len) {
1034 niro 532 /* Set j to the smallest of the two sons: */
1035 niro 816 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1036 niro 532 j++;
1037    
1038     /* Exit if v is smaller than both sons */
1039 niro 816 if (SMALLER(tree, v, G2.heap[j]))
1040 niro 532 break;
1041    
1042     /* Exchange v with the smallest son */
1043 niro 816 G2.heap[k] = G2.heap[j];
1044 niro 532 k = j;
1045    
1046     /* And continue down the tree, setting j to the left son of k */
1047     j <<= 1;
1048     }
1049 niro 816 G2.heap[k] = v;
1050 niro 532 }
1051    
1052    
1053     /* ===========================================================================
1054     * Compute the optimal bit lengths for a tree and update the total bit length
1055     * for the current block.
1056     * IN assertion: the fields freq and dad are set, heap[heap_max] and
1057     * above are the tree nodes sorted by increasing frequency.
1058     * OUT assertions: the field len is set to the optimal bit length, the
1059     * array bl_count contains the frequencies for each bit length.
1060     * The length opt_len is updated; static_len is also updated if stree is
1061     * not null.
1062     */
1063     static void gen_bitlen(tree_desc * desc)
1064     {
1065     ct_data *tree = desc->dyn_tree;
1066 niro 816 const uint8_t *extra = desc->extra_bits;
1067 niro 532 int base = desc->extra_base;
1068     int max_code = desc->max_code;
1069     int max_length = desc->max_length;
1070     ct_data *stree = desc->static_tree;
1071     int h; /* heap index */
1072     int n, m; /* iterate over the tree elements */
1073     int bits; /* bit length */
1074     int xbits; /* extra bits */
1075     ush f; /* frequency */
1076     int overflow = 0; /* number of elements with bit length too large */
1077    
1078     for (bits = 0; bits <= MAX_BITS; bits++)
1079 niro 816 G2.bl_count[bits] = 0;
1080 niro 532
1081     /* In a first pass, compute the optimal bit lengths (which may
1082     * overflow in the case of the bit length tree).
1083     */
1084 niro 816 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
1085 niro 532
1086 niro 816 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1087     n = G2.heap[h];
1088 niro 532 bits = tree[tree[n].Dad].Len + 1;
1089     if (bits > max_length) {
1090     bits = max_length;
1091     overflow++;
1092     }
1093     tree[n].Len = (ush) bits;
1094     /* We overwrite tree[n].Dad which is no longer needed */
1095    
1096     if (n > max_code)
1097     continue; /* not a leaf node */
1098    
1099 niro 816 G2.bl_count[bits]++;
1100 niro 532 xbits = 0;
1101     if (n >= base)
1102     xbits = extra[n - base];
1103     f = tree[n].Freq;
1104 niro 816 G2.opt_len += (ulg) f *(bits + xbits);
1105 niro 532
1106     if (stree)
1107 niro 816 G2.static_len += (ulg) f * (stree[n].Len + xbits);
1108 niro 532 }
1109     if (overflow == 0)
1110     return;
1111    
1112     Trace((stderr, "\nbit length overflow\n"));
1113     /* This happens for example on obj2 and pic of the Calgary corpus */
1114    
1115     /* Find the first bit length which could increase: */
1116     do {
1117     bits = max_length - 1;
1118 niro 816 while (G2.bl_count[bits] == 0)
1119 niro 532 bits--;
1120 niro 816 G2.bl_count[bits]--; /* move one leaf down the tree */
1121     G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1122     G2.bl_count[max_length]--;
1123 niro 532 /* The brother of the overflow item also moves one step up,
1124     * but this does not affect bl_count[max_length]
1125     */
1126     overflow -= 2;
1127     } while (overflow > 0);
1128    
1129     /* Now recompute all bit lengths, scanning in increasing frequency.
1130     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1131     * lengths instead of fixing only the wrong ones. This idea is taken
1132     * from 'ar' written by Haruhiko Okumura.)
1133     */
1134     for (bits = max_length; bits != 0; bits--) {
1135 niro 816 n = G2.bl_count[bits];
1136 niro 532 while (n != 0) {
1137 niro 816 m = G2.heap[--h];
1138 niro 532 if (m > max_code)
1139     continue;
1140     if (tree[m].Len != (unsigned) bits) {
1141     Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1142 niro 816 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1143 niro 532 tree[m].Len = bits;
1144     }
1145     n--;
1146     }
1147     }
1148     }
1149    
1150    
1151     /* ===========================================================================
1152     * Generate the codes for a given tree and bit counts (which need not be
1153     * optimal).
1154     * IN assertion: the array bl_count contains the bit length statistics for
1155     * the given tree and the field len is set for all tree elements.
1156     * OUT assertion: the field code is set for all tree elements of non
1157     * zero code length.
1158     */
1159     static void gen_codes(ct_data * tree, int max_code)
1160     {
1161     ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1162     ush code = 0; /* running code value */
1163     int bits; /* bit index */
1164     int n; /* code index */
1165    
1166     /* The distribution counts are first used to generate the code values
1167     * without bit reversal.
1168     */
1169     for (bits = 1; bits <= MAX_BITS; bits++) {
1170 niro 816 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1171 niro 532 }
1172     /* Check that the bit counts in bl_count are consistent. The last code
1173     * must be all ones.
1174     */
1175 niro 816 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1176 niro 532 "inconsistent bit counts");
1177     Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1178    
1179     for (n = 0; n <= max_code; n++) {
1180     int len = tree[n].Len;
1181    
1182     if (len == 0)
1183     continue;
1184     /* Now reverse the bits */
1185     tree[n].Code = bi_reverse(next_code[len]++, len);
1186    
1187 niro 816 Tracec(tree != G2.static_ltree,
1188 niro 532 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1189     (isgraph(n) ? n : ' '), len, tree[n].Code,
1190     next_code[len] - 1));
1191     }
1192     }
1193    
1194    
1195     /* ===========================================================================
1196     * Construct one Huffman tree and assigns the code bit strings and lengths.
1197     * Update the total bit length for the current block.
1198     * IN assertion: the field freq is set for all tree elements.
1199     * OUT assertions: the fields len and code are set to the optimal bit length
1200     * and corresponding code. The length opt_len is updated; static_len is
1201     * also updated if stree is not null. The field max_code is set.
1202     */
1203    
1204     /* Remove the smallest element from the heap and recreate the heap with
1205     * one less element. Updates heap and heap_len. */
1206    
1207     #define SMALLEST 1
1208     /* Index within the heap array of least frequent node in the Huffman tree */
1209    
1210     #define PQREMOVE(tree, top) \
1211 niro 816 do { \
1212     top = G2.heap[SMALLEST]; \
1213     G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1214 niro 532 pqdownheap(tree, SMALLEST); \
1215 niro 816 } while (0)
1216 niro 532
1217     static void build_tree(tree_desc * desc)
1218     {
1219     ct_data *tree = desc->dyn_tree;
1220     ct_data *stree = desc->static_tree;
1221     int elems = desc->elems;
1222     int n, m; /* iterate over heap elements */
1223     int max_code = -1; /* largest code with non zero frequency */
1224     int node = elems; /* next internal node of the tree */
1225    
1226     /* Construct the initial heap, with least frequent element in
1227     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1228     * heap[0] is not used.
1229     */
1230 niro 816 G2.heap_len = 0;
1231     G2.heap_max = HEAP_SIZE;
1232 niro 532
1233     for (n = 0; n < elems; n++) {
1234     if (tree[n].Freq != 0) {
1235 niro 816 G2.heap[++G2.heap_len] = max_code = n;
1236     G2.depth[n] = 0;
1237 niro 532 } else {
1238     tree[n].Len = 0;
1239     }
1240     }
1241    
1242     /* The pkzip format requires that at least one distance code exists,
1243     * and that at least one bit should be sent even if there is only one
1244     * possible code. So to avoid special checks later on we force at least
1245     * two codes of non zero frequency.
1246     */
1247 niro 816 while (G2.heap_len < 2) {
1248     int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1249 niro 532
1250     tree[new].Freq = 1;
1251 niro 816 G2.depth[new] = 0;
1252     G2.opt_len--;
1253 niro 532 if (stree)
1254 niro 816 G2.static_len -= stree[new].Len;
1255 niro 532 /* new is 0 or 1 so it does not have extra bits */
1256     }
1257     desc->max_code = max_code;
1258    
1259     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1260     * establish sub-heaps of increasing lengths:
1261     */
1262 niro 816 for (n = G2.heap_len / 2; n >= 1; n--)
1263 niro 532 pqdownheap(tree, n);
1264    
1265     /* Construct the Huffman tree by repeatedly combining the least two
1266     * frequent nodes.
1267     */
1268     do {
1269     PQREMOVE(tree, n); /* n = node of least frequency */
1270 niro 816 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
1271 niro 532
1272 niro 816 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1273     G2.heap[--G2.heap_max] = m;
1274 niro 532
1275     /* Create a new node father of n and m */
1276     tree[node].Freq = tree[n].Freq + tree[m].Freq;
1277 niro 816 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1278 niro 532 tree[n].Dad = tree[m].Dad = (ush) node;
1279     #ifdef DUMP_BL_TREE
1280 niro 816 if (tree == G2.bl_tree) {
1281 niro 532 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1282     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1283     }
1284     #endif
1285     /* and insert the new node in the heap */
1286 niro 816 G2.heap[SMALLEST] = node++;
1287 niro 532 pqdownheap(tree, SMALLEST);
1288    
1289 niro 816 } while (G2.heap_len >= 2);
1290 niro 532
1291 niro 816 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1292 niro 532
1293     /* At this point, the fields freq and dad are set. We can now
1294     * generate the bit lengths.
1295     */
1296     gen_bitlen((tree_desc *) desc);
1297    
1298     /* The field len is now set, we can generate the bit codes */
1299     gen_codes((ct_data *) tree, max_code);
1300     }
1301    
1302    
1303     /* ===========================================================================
1304     * Scan a literal or distance tree to determine the frequencies of the codes
1305     * in the bit length tree. Updates opt_len to take into account the repeat
1306     * counts. (The contribution of the bit length codes will be added later
1307     * during the construction of bl_tree.)
1308     */
1309     static void scan_tree(ct_data * tree, int max_code)
1310     {
1311     int n; /* iterates over all tree elements */
1312     int prevlen = -1; /* last emitted length */
1313     int curlen; /* length of current code */
1314     int nextlen = tree[0].Len; /* length of next code */
1315     int count = 0; /* repeat count of the current code */
1316     int max_count = 7; /* max repeat count */
1317     int min_count = 4; /* min repeat count */
1318    
1319     if (nextlen == 0) {
1320     max_count = 138;
1321     min_count = 3;
1322     }
1323     tree[max_code + 1].Len = 0xffff; /* guard */
1324    
1325     for (n = 0; n <= max_code; n++) {
1326     curlen = nextlen;
1327     nextlen = tree[n + 1].Len;
1328     if (++count < max_count && curlen == nextlen)
1329     continue;
1330    
1331     if (count < min_count) {
1332 niro 816 G2.bl_tree[curlen].Freq += count;
1333 niro 532 } else if (curlen != 0) {
1334     if (curlen != prevlen)
1335 niro 816 G2.bl_tree[curlen].Freq++;
1336     G2.bl_tree[REP_3_6].Freq++;
1337 niro 532 } else if (count <= 10) {
1338 niro 816 G2.bl_tree[REPZ_3_10].Freq++;
1339 niro 532 } else {
1340 niro 816 G2.bl_tree[REPZ_11_138].Freq++;
1341 niro 532 }
1342     count = 0;
1343     prevlen = curlen;
1344    
1345     max_count = 7;
1346     min_count = 4;
1347     if (nextlen == 0) {
1348     max_count = 138;
1349     min_count = 3;
1350     } else if (curlen == nextlen) {
1351     max_count = 6;
1352     min_count = 3;
1353     }
1354     }
1355     }
1356    
1357    
1358     /* ===========================================================================
1359     * Send a literal or distance tree in compressed form, using the codes in
1360     * bl_tree.
1361     */
1362     static void send_tree(ct_data * tree, int max_code)
1363     {
1364     int n; /* iterates over all tree elements */
1365     int prevlen = -1; /* last emitted length */
1366     int curlen; /* length of current code */
1367     int nextlen = tree[0].Len; /* length of next code */
1368     int count = 0; /* repeat count of the current code */
1369     int max_count = 7; /* max repeat count */
1370     int min_count = 4; /* min repeat count */
1371    
1372     /* tree[max_code+1].Len = -1; *//* guard already set */
1373     if (nextlen == 0)
1374     max_count = 138, min_count = 3;
1375    
1376     for (n = 0; n <= max_code; n++) {
1377     curlen = nextlen;
1378     nextlen = tree[n + 1].Len;
1379     if (++count < max_count && curlen == nextlen) {
1380     continue;
1381     } else if (count < min_count) {
1382     do {
1383 niro 816 SEND_CODE(curlen, G2.bl_tree);
1384 niro 532 } while (--count);
1385     } else if (curlen != 0) {
1386     if (curlen != prevlen) {
1387 niro 816 SEND_CODE(curlen, G2.bl_tree);
1388 niro 532 count--;
1389     }
1390     Assert(count >= 3 && count <= 6, " 3_6?");
1391 niro 816 SEND_CODE(REP_3_6, G2.bl_tree);
1392 niro 532 send_bits(count - 3, 2);
1393     } else if (count <= 10) {
1394 niro 816 SEND_CODE(REPZ_3_10, G2.bl_tree);
1395 niro 532 send_bits(count - 3, 3);
1396     } else {
1397 niro 816 SEND_CODE(REPZ_11_138, G2.bl_tree);
1398 niro 532 send_bits(count - 11, 7);
1399     }
1400     count = 0;
1401     prevlen = curlen;
1402     if (nextlen == 0) {
1403     max_count = 138;
1404     min_count = 3;
1405     } else if (curlen == nextlen) {
1406     max_count = 6;
1407     min_count = 3;
1408     } else {
1409     max_count = 7;
1410     min_count = 4;
1411     }
1412     }
1413     }
1414    
1415    
1416     /* ===========================================================================
1417     * Construct the Huffman tree for the bit lengths and return the index in
1418     * bl_order of the last bit length code to send.
1419     */
1420     static int build_bl_tree(void)
1421     {
1422     int max_blindex; /* index of last bit length code of non zero freq */
1423    
1424     /* Determine the bit length frequencies for literal and distance trees */
1425 niro 816 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1426     scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1427 niro 532
1428     /* Build the bit length tree: */
1429 niro 816 build_tree(&G2.bl_desc);
1430 niro 532 /* opt_len now includes the length of the tree representations, except
1431     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1432     */
1433    
1434     /* Determine the number of bit length codes to send. The pkzip format
1435     * requires that at least 4 bit length codes be sent. (appnote.txt says
1436     * 3 but the actual value used is 4.)
1437     */
1438     for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1439 niro 816 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1440 niro 532 break;
1441     }
1442     /* Update opt_len to include the bit length tree and counts */
1443 niro 816 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1444     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1445 niro 532
1446     return max_blindex;
1447     }
1448    
1449    
1450     /* ===========================================================================
1451     * Send the header for a block using dynamic Huffman trees: the counts, the
1452     * lengths of the bit length codes, the literal tree and the distance tree.
1453     * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1454     */
1455     static void send_all_trees(int lcodes, int dcodes, int blcodes)
1456     {
1457     int rank; /* index in bl_order */
1458    
1459     Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1460     Assert(lcodes <= L_CODES && dcodes <= D_CODES
1461     && blcodes <= BL_CODES, "too many codes");
1462     Tracev((stderr, "\nbl counts: "));
1463     send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1464     send_bits(dcodes - 1, 5);
1465     send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1466     for (rank = 0; rank < blcodes; rank++) {
1467     Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1468 niro 816 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1469 niro 532 }
1470 niro 816 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1471 niro 532
1472 niro 816 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1473     Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1474 niro 532
1475 niro 816 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1476     Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1477 niro 532 }
1478    
1479    
1480     /* ===========================================================================
1481     * Save the match info and tally the frequency counts. Return true if
1482     * the current block must be flushed.
1483     */
1484     static int ct_tally(int dist, int lc)
1485     {
1486 niro 816 G1.l_buf[G2.last_lit++] = lc;
1487 niro 532 if (dist == 0) {
1488     /* lc is the unmatched char */
1489 niro 816 G2.dyn_ltree[lc].Freq++;
1490 niro 532 } else {
1491     /* Here, lc is the match length - MIN_MATCH */
1492     dist--; /* dist = match distance - 1 */
1493     Assert((ush) dist < (ush) MAX_DIST
1494     && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1495     && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1496     );
1497    
1498 niro 816 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1499     G2.dyn_dtree[D_CODE(dist)].Freq++;
1500 niro 532
1501 niro 816 G1.d_buf[G2.last_dist++] = dist;
1502     G2.flags |= G2.flag_bit;
1503 niro 532 }
1504 niro 816 G2.flag_bit <<= 1;
1505 niro 532
1506     /* Output the flags if they fill a byte: */
1507 niro 816 if ((G2.last_lit & 7) == 0) {
1508     G2.flag_buf[G2.last_flags++] = G2.flags;
1509     G2.flags = 0;
1510     G2.flag_bit = 1;
1511 niro 532 }
1512     /* Try to guess if it is profitable to stop the current block here */
1513 niro 816 if ((G2.last_lit & 0xfff) == 0) {
1514 niro 532 /* Compute an upper bound for the compressed length */
1515 niro 816 ulg out_length = G2.last_lit * 8L;
1516     ulg in_length = (ulg) G1.strstart - G1.block_start;
1517 niro 532 int dcode;
1518    
1519     for (dcode = 0; dcode < D_CODES; dcode++) {
1520 niro 816 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1521 niro 532 }
1522     out_length >>= 3;
1523     Trace((stderr,
1524     "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1525 niro 816 G2.last_lit, G2.last_dist, in_length, out_length,
1526 niro 532 100L - out_length * 100L / in_length));
1527 niro 816 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1528 niro 532 return 1;
1529     }
1530 niro 816 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1531 niro 532 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1532     * on 16 bit machines and because stored blocks are restricted to
1533     * 64K-1 bytes.
1534     */
1535     }
1536    
1537     /* ===========================================================================
1538     * Send the block data compressed using the given Huffman trees
1539     */
1540     static void compress_block(ct_data * ltree, ct_data * dtree)
1541     {
1542     unsigned dist; /* distance of matched string */
1543     int lc; /* match length or unmatched char (if dist == 0) */
1544     unsigned lx = 0; /* running index in l_buf */
1545     unsigned dx = 0; /* running index in d_buf */
1546     unsigned fx = 0; /* running index in flag_buf */
1547     uch flag = 0; /* current flags */
1548     unsigned code; /* the code to send */
1549     int extra; /* number of extra bits to send */
1550    
1551 niro 816 if (G2.last_lit != 0) do {
1552 niro 532 if ((lx & 7) == 0)
1553 niro 816 flag = G2.flag_buf[fx++];
1554     lc = G1.l_buf[lx++];
1555 niro 532 if ((flag & 1) == 0) {
1556     SEND_CODE(lc, ltree); /* send a literal byte */
1557     Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
1558     } else {
1559     /* Here, lc is the match length - MIN_MATCH */
1560 niro 816 code = G2.length_code[lc];
1561 niro 532 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1562     extra = extra_lbits[code];
1563     if (extra != 0) {
1564 niro 816 lc -= G2.base_length[code];
1565 niro 532 send_bits(lc, extra); /* send the extra length bits */
1566     }
1567 niro 816 dist = G1.d_buf[dx++];
1568 niro 532 /* Here, dist is the match distance - 1 */
1569     code = D_CODE(dist);
1570     Assert(code < D_CODES, "bad d_code");
1571    
1572     SEND_CODE(code, dtree); /* send the distance code */
1573     extra = extra_dbits[code];
1574     if (extra != 0) {
1575 niro 816 dist -= G2.base_dist[code];
1576 niro 532 send_bits(dist, extra); /* send the extra distance bits */
1577     }
1578     } /* literal or match pair ? */
1579     flag >>= 1;
1580 niro 816 } while (lx < G2.last_lit);
1581 niro 532
1582     SEND_CODE(END_BLOCK, ltree);
1583     }
1584    
1585    
1586     /* ===========================================================================
1587     * Determine the best encoding for the current block: dynamic trees, static
1588     * trees or store, and output the encoded block to the zip file. This function
1589     * returns the total compressed length for the file so far.
1590     */
1591     static ulg flush_block(char *buf, ulg stored_len, int eof)
1592     {
1593     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1594     int max_blindex; /* index of last bit length code of non zero freq */
1595    
1596 niro 816 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
1597 niro 532
1598     /* Construct the literal and distance trees */
1599 niro 816 build_tree(&G2.l_desc);
1600     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1601 niro 532
1602 niro 816 build_tree(&G2.d_desc);
1603     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1604 niro 532 /* At this point, opt_len and static_len are the total bit lengths of
1605     * the compressed block data, excluding the tree representations.
1606     */
1607    
1608     /* Build the bit length tree for the above two trees, and get the index
1609     * in bl_order of the last bit length code to send.
1610     */
1611     max_blindex = build_bl_tree();
1612    
1613     /* Determine the best encoding. Compute first the block length in bytes */
1614 niro 816 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1615     static_lenb = (G2.static_len + 3 + 7) >> 3;
1616 niro 532
1617     Trace((stderr,
1618     "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1619 niro 816 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1620     G2.last_lit, G2.last_dist));
1621 niro 532
1622     if (static_lenb <= opt_lenb)
1623     opt_lenb = static_lenb;
1624    
1625     /* If compression failed and this is the first and last block,
1626     * and if the zip file can be seeked (to rewrite the local header),
1627     * the whole file is transformed into a stored file:
1628     */
1629 niro 816 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1630 niro 532 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1631     if (buf == NULL)
1632     bb_error_msg("block vanished");
1633    
1634     copy_block(buf, (unsigned) stored_len, 0); /* without header */
1635 niro 816 G2.compressed_len = stored_len << 3;
1636 niro 532
1637     } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1638     /* 4: two words for the lengths */
1639     /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1640     * Otherwise we can't have processed more than WSIZE input bytes since
1641     * the last block flush, because compression would have been
1642     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1643     * transform a block into a stored block.
1644     */
1645     send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
1646 niro 816 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1647     G2.compressed_len += (stored_len + 4) << 3;
1648 niro 532
1649     copy_block(buf, (unsigned) stored_len, 1); /* with header */
1650    
1651     } else if (static_lenb == opt_lenb) {
1652     send_bits((STATIC_TREES << 1) + eof, 3);
1653 niro 816 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1654     G2.compressed_len += 3 + G2.static_len;
1655 niro 532 } else {
1656     send_bits((DYN_TREES << 1) + eof, 3);
1657 niro 816 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1658 niro 532 max_blindex + 1);
1659 niro 816 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1660     G2.compressed_len += 3 + G2.opt_len;
1661 niro 532 }
1662 niro 816 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1663 niro 532 init_block();
1664    
1665     if (eof) {
1666     bi_windup();
1667 niro 816 G2.compressed_len += 7; /* align on byte boundary */
1668 niro 532 }
1669 niro 816 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1670     G2.compressed_len - 7 * eof));
1671 niro 532
1672 niro 816 return G2.compressed_len >> 3;
1673 niro 532 }
1674    
1675    
1676     /* ===========================================================================
1677     * Update a hash value with the given input byte
1678     * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1679     * input characters, so that a running hash key can be computed from the
1680     * previous key instead of complete recalculation each time.
1681     */
1682     #define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1683    
1684    
1685     /* ===========================================================================
1686     * Same as above, but achieves better compression. We use a lazy
1687     * evaluation for matches: a match is finally adopted only if there is
1688     * no better match at the next window position.
1689     *
1690     * Processes a new input file and return its compressed length. Sets
1691     * the compressed length, crc, deflate flags and internal file
1692     * attributes.
1693     */
1694    
1695     /* Flush the current block, with given end-of-file flag.
1696     * IN assertion: strstart is set to the end of the current match. */
1697     #define FLUSH_BLOCK(eof) \
1698     flush_block( \
1699 niro 816 G1.block_start >= 0L \
1700     ? (char*)&G1.window[(unsigned)G1.block_start] \
1701 niro 532 : (char*)NULL, \
1702 niro 816 (ulg)G1.strstart - G1.block_start, \
1703 niro 532 (eof) \
1704     )
1705    
1706     /* Insert string s in the dictionary and set match_head to the previous head
1707     * of the hash chain (the most recent string with same hash key). Return
1708     * the previous length of the hash chain.
1709     * IN assertion: all calls to to INSERT_STRING are made with consecutive
1710     * input characters and the first MIN_MATCH bytes of s are valid
1711     * (except for the last MIN_MATCH-1 bytes of the input file). */
1712     #define INSERT_STRING(s, match_head) \
1713 niro 816 do { \
1714     UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1715     G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1716     head[G1.ins_h] = (s); \
1717     } while (0)
1718 niro 532
1719     static ulg deflate(void)
1720     {
1721     IPos hash_head; /* head of hash chain */
1722     IPos prev_match; /* previous match */
1723     int flush; /* set if current block must be flushed */
1724     int match_available = 0; /* set if previous match exists */
1725     unsigned match_length = MIN_MATCH - 1; /* length of best match */
1726    
1727     /* Process the input block. */
1728 niro 816 while (G1.lookahead != 0) {
1729 niro 532 /* Insert the string window[strstart .. strstart+2] in the
1730     * dictionary, and set hash_head to the head of the hash chain:
1731     */
1732 niro 816 INSERT_STRING(G1.strstart, hash_head);
1733 niro 532
1734     /* Find the longest match, discarding those <= prev_length.
1735     */
1736 niro 816 G1.prev_length = match_length;
1737     prev_match = G1.match_start;
1738 niro 532 match_length = MIN_MATCH - 1;
1739    
1740 niro 816 if (hash_head != 0 && G1.prev_length < max_lazy_match
1741     && G1.strstart - hash_head <= MAX_DIST
1742 niro 532 ) {
1743     /* To simplify the code, we prevent matches with the string
1744     * of window index 0 (in particular we have to avoid a match
1745     * of the string with itself at the start of the input file).
1746     */
1747     match_length = longest_match(hash_head);
1748     /* longest_match() sets match_start */
1749 niro 816 if (match_length > G1.lookahead)
1750     match_length = G1.lookahead;
1751 niro 532
1752     /* Ignore a length 3 match if it is too distant: */
1753 niro 816 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1754     /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1755 niro 532 * but we will ignore the current match anyway.
1756     */
1757     match_length--;
1758     }
1759     }
1760     /* If there was a match at the previous step and the current
1761     * match is not better, output the previous match:
1762     */
1763 niro 816 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1764     check_match(G1.strstart - 1, prev_match, G1.prev_length);
1765     flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1766 niro 532
1767     /* Insert in hash table all strings up to the end of the match.
1768     * strstart-1 and strstart are already inserted.
1769     */
1770 niro 816 G1.lookahead -= G1.prev_length - 1;
1771     G1.prev_length -= 2;
1772 niro 532 do {
1773 niro 816 G1.strstart++;
1774     INSERT_STRING(G1.strstart, hash_head);
1775 niro 532 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1776     * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1777     * these bytes are garbage, but it does not matter since the
1778     * next lookahead bytes will always be emitted as literals.
1779     */
1780 niro 816 } while (--G1.prev_length != 0);
1781 niro 532 match_available = 0;
1782     match_length = MIN_MATCH - 1;
1783 niro 816 G1.strstart++;
1784 niro 532 if (flush) {
1785     FLUSH_BLOCK(0);
1786 niro 816 G1.block_start = G1.strstart;
1787 niro 532 }
1788     } else if (match_available) {
1789     /* If there was no match at the previous position, output a
1790     * single literal. If there was a match but the current match
1791     * is longer, truncate the previous match to a single literal.
1792     */
1793 niro 816 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1794     if (ct_tally(0, G1.window[G1.strstart - 1])) {
1795 niro 532 FLUSH_BLOCK(0);
1796 niro 816 G1.block_start = G1.strstart;
1797 niro 532 }
1798 niro 816 G1.strstart++;
1799     G1.lookahead--;
1800 niro 532 } else {
1801     /* There is no previous match to compare with, wait for
1802     * the next step to decide.
1803     */
1804     match_available = 1;
1805 niro 816 G1.strstart++;
1806     G1.lookahead--;
1807 niro 532 }
1808 niro 816 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1809 niro 532
1810     /* Make sure that we always have enough lookahead, except
1811     * at the end of the input file. We need MAX_MATCH bytes
1812     * for the next match, plus MIN_MATCH bytes to insert the
1813     * string following the next match.
1814     */
1815 niro 816 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1816 niro 532 fill_window();
1817     }
1818     if (match_available)
1819 niro 816 ct_tally(0, G1.window[G1.strstart - 1]);
1820 niro 532
1821     return FLUSH_BLOCK(1); /* eof */
1822     }
1823    
1824    
1825     /* ===========================================================================
1826     * Initialize the bit string routines.
1827     */
1828 niro 816 static void bi_init(void)
1829 niro 532 {
1830 niro 816 G1.bi_buf = 0;
1831     G1.bi_valid = 0;
1832 niro 532 #ifdef DEBUG
1833 niro 816 G1.bits_sent = 0L;
1834 niro 532 #endif
1835     }
1836    
1837    
1838     /* ===========================================================================
1839     * Initialize the "longest match" routines for a new file
1840     */
1841     static void lm_init(ush * flagsp)
1842     {
1843     unsigned j;
1844    
1845     /* Initialize the hash table. */
1846     memset(head, 0, HASH_SIZE * sizeof(*head));
1847     /* prev will be initialized on the fly */
1848    
1849     /* speed options for the general purpose bit flag */
1850     *flagsp |= 2; /* FAST 4, SLOW 2 */
1851     /* ??? reduce max_chain_length for binary files */
1852    
1853 niro 816 G1.strstart = 0;
1854     G1.block_start = 0L;
1855 niro 532
1856 niro 816 G1.lookahead = file_read(G1.window,
1857 niro 532 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1858    
1859 niro 816 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1860     G1.eofile = 1;
1861     G1.lookahead = 0;
1862 niro 532 return;
1863     }
1864 niro 816 G1.eofile = 0;
1865 niro 532 /* Make sure that we always have enough lookahead. This is important
1866     * if input comes from a device such as a tty.
1867     */
1868 niro 816 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1869 niro 532 fill_window();
1870    
1871 niro 816 G1.ins_h = 0;
1872 niro 532 for (j = 0; j < MIN_MATCH - 1; j++)
1873 niro 816 UPDATE_HASH(G1.ins_h, G1.window[j]);
1874 niro 532 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1875     * not important since only literal bytes will be emitted.
1876     */
1877     }
1878    
1879    
1880     /* ===========================================================================
1881     * Allocate the match buffer, initialize the various tables and save the
1882     * location of the internal file attribute (ascii/binary) and method
1883     * (DEFLATE/STORE).
1884     * One callsite in zip()
1885     */
1886 niro 816 static void ct_init(void)
1887 niro 532 {
1888     int n; /* iterates over tree elements */
1889     int length; /* length value */
1890     int code; /* code value */
1891     int dist; /* distance index */
1892    
1893 niro 816 G2.compressed_len = 0L;
1894 niro 532
1895     #ifdef NOT_NEEDED
1896 niro 816 if (G2.static_dtree[0].Len != 0)
1897 niro 532 return; /* ct_init already called */
1898     #endif
1899    
1900     /* Initialize the mapping length (0..255) -> length code (0..28) */
1901     length = 0;
1902     for (code = 0; code < LENGTH_CODES - 1; code++) {
1903 niro 816 G2.base_length[code] = length;
1904 niro 532 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1905 niro 816 G2.length_code[length++] = code;
1906 niro 532 }
1907     }
1908     Assert(length == 256, "ct_init: length != 256");
1909     /* Note that the length 255 (match length 258) can be represented
1910     * in two different ways: code 284 + 5 bits or code 285, so we
1911     * overwrite length_code[255] to use the best encoding:
1912     */
1913 niro 816 G2.length_code[length - 1] = code;
1914 niro 532
1915     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1916     dist = 0;
1917     for (code = 0; code < 16; code++) {
1918 niro 816 G2.base_dist[code] = dist;
1919 niro 532 for (n = 0; n < (1 << extra_dbits[code]); n++) {
1920 niro 816 G2.dist_code[dist++] = code;
1921 niro 532 }
1922     }
1923     Assert(dist == 256, "ct_init: dist != 256");
1924     dist >>= 7; /* from now on, all distances are divided by 128 */
1925     for (; code < D_CODES; code++) {
1926 niro 816 G2.base_dist[code] = dist << 7;
1927 niro 532 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1928 niro 816 G2.dist_code[256 + dist++] = code;
1929 niro 532 }
1930     }
1931     Assert(dist == 256, "ct_init: 256+dist != 512");
1932    
1933     /* Construct the codes of the static literal tree */
1934     /* already zeroed - it's in bss
1935     for (n = 0; n <= MAX_BITS; n++)
1936 niro 816 G2.bl_count[n] = 0; */
1937 niro 532
1938     n = 0;
1939     while (n <= 143) {
1940 niro 816 G2.static_ltree[n++].Len = 8;
1941     G2.bl_count[8]++;
1942 niro 532 }
1943     while (n <= 255) {
1944 niro 816 G2.static_ltree[n++].Len = 9;
1945     G2.bl_count[9]++;
1946 niro 532 }
1947     while (n <= 279) {
1948 niro 816 G2.static_ltree[n++].Len = 7;
1949     G2.bl_count[7]++;
1950 niro 532 }
1951     while (n <= 287) {
1952 niro 816 G2.static_ltree[n++].Len = 8;
1953     G2.bl_count[8]++;
1954 niro 532 }
1955     /* Codes 286 and 287 do not exist, but we must include them in the
1956     * tree construction to get a canonical Huffman tree (longest code
1957     * all ones)
1958     */
1959 niro 816 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1960 niro 532
1961     /* The static distance tree is trivial: */
1962     for (n = 0; n < D_CODES; n++) {
1963 niro 816 G2.static_dtree[n].Len = 5;
1964     G2.static_dtree[n].Code = bi_reverse(n, 5);
1965 niro 532 }
1966    
1967     /* Initialize the first block of the first file: */
1968     init_block();
1969     }
1970    
1971    
1972     /* ===========================================================================
1973     * Deflate in to out.
1974     * IN assertions: the input and output buffers are cleared.
1975     */
1976    
1977 niro 816 static void zip(ulg time_stamp)
1978 niro 532 {
1979     ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
1980    
1981 niro 816 G1.outcnt = 0;
1982 niro 532
1983     /* Write the header to the gzip file. See algorithm.doc for the format */
1984 niro 816 /* magic header for gzip files: 1F 8B */
1985     /* compression method: 8 (DEFLATED) */
1986     /* general flags: 0 */
1987     put_32bit(0x00088b1f);
1988 niro 532 put_32bit(time_stamp);
1989    
1990     /* Write deflated file to zip file */
1991 niro 816 G1.crc = ~0;
1992 niro 532
1993 niro 816 bi_init();
1994     ct_init();
1995 niro 532 lm_init(&deflate_flags);
1996    
1997     put_8bit(deflate_flags); /* extra flags */
1998     put_8bit(3); /* OS identifier = 3 (Unix) */
1999    
2000     deflate();
2001    
2002     /* Write the crc and uncompressed size */
2003 niro 816 put_32bit(~G1.crc);
2004     put_32bit(G1.isize);
2005 niro 532
2006     flush_outbuf();
2007     }
2008    
2009    
2010     /* ======================================================================== */
2011 niro 816 static
2012     char* make_new_name_gzip(char *filename)
2013 niro 532 {
2014 niro 816 return xasprintf("%s.gz", filename);
2015 niro 532 }
2016    
2017 niro 816 static
2018     USE_DESKTOP(long long) int pack_gzip(unpack_info_t *info UNUSED_PARAM)
2019 niro 532 {
2020 niro 816 struct stat s;
2021 niro 532
2022     clear_bufs();
2023 niro 816 s.st_ctime = 0;
2024     fstat(STDIN_FILENO, &s);
2025     zip(s.st_ctime);
2026     return 0;
2027     }
2028 niro 532
2029 niro 816 /*
2030     * Linux kernel build uses gzip -d -n. We accept and ignore it.
2031     * Man page says:
2032     * -n --no-name
2033     * gzip: do not save the original file name and time stamp.
2034     * (The original name is always saved if the name had to be truncated.)
2035     * gunzip: do not restore the original file name/time even if present
2036     * (remove only the gzip suffix from the compressed file name).
2037     * This option is the default when decompressing.
2038     * -N --name
2039     * gzip: always save the original file name and time stamp (this is the default)
2040     * gunzip: restore the original file name and time stamp if present.
2041     */
2042 niro 532
2043 niro 816 int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2044     #if ENABLE_GUNZIP
2045     int gzip_main(int argc, char **argv)
2046 niro 532 #else
2047 niro 816 int gzip_main(int argc UNUSED_PARAM, char **argv)
2048 niro 532 #endif
2049 niro 816 {
2050     unsigned opt;
2051 niro 532
2052 niro 816 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2053     opt = getopt32(argv, "cfv" USE_GUNZIP("dt") "q123456789n");
2054     #if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2055     if (opt & 0x18) // -d and/or -t
2056     return gunzip_main(argc, argv);
2057     #endif
2058     option_mask32 &= 0x7; /* ignore -q, -0..9 */
2059     //if (opt & 0x1) // -c
2060     //if (opt & 0x2) // -f
2061     //if (opt & 0x4) // -v
2062     argv += optind;
2063 niro 532
2064 niro 816 SET_PTR_TO_GLOBALS(xzalloc(sizeof(struct globals) + sizeof(struct globals2))
2065     + sizeof(struct globals));
2066     barrier();
2067     G2.l_desc.dyn_tree = G2.dyn_ltree;
2068     G2.l_desc.static_tree = G2.static_ltree;
2069     G2.l_desc.extra_bits = extra_lbits;
2070     G2.l_desc.extra_base = LITERALS + 1;
2071     G2.l_desc.elems = L_CODES;
2072     G2.l_desc.max_length = MAX_BITS;
2073     //G2.l_desc.max_code = 0;
2074 niro 532
2075 niro 816 G2.d_desc.dyn_tree = G2.dyn_dtree;
2076     G2.d_desc.static_tree = G2.static_dtree;
2077     G2.d_desc.extra_bits = extra_dbits;
2078     //G2.d_desc.extra_base = 0;
2079     G2.d_desc.elems = D_CODES;
2080     G2.d_desc.max_length = MAX_BITS;
2081     //G2.d_desc.max_code = 0;
2082 niro 532
2083 niro 816 G2.bl_desc.dyn_tree = G2.bl_tree;
2084     //G2.bl_desc.static_tree = NULL;
2085     G2.bl_desc.extra_bits = extra_blbits,
2086     //G2.bl_desc.extra_base = 0;
2087     G2.bl_desc.elems = BL_CODES;
2088     G2.bl_desc.max_length = MAX_BL_BITS;
2089     //G2.bl_desc.max_code = 0;
2090 niro 532
2091 niro 816 /* Allocate all global buffers (for DYN_ALLOC option) */
2092     ALLOC(uch, G1.l_buf, INBUFSIZ);
2093     ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2094     ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2095     ALLOC(uch, G1.window, 2L * WSIZE);
2096     ALLOC(ush, G1.prev, 1L << BITS);
2097 niro 532
2098 niro 816 /* Initialise the CRC32 table */
2099     G1.crc_32_tab = crc32_filltable(NULL, 0);
2100 niro 532
2101 niro 816 return bbunpack(argv, make_new_name_gzip, pack_gzip);
2102 niro 532 }