Magellan Linux

Annotation of /trunk/mkinitrd-magellan/busybox/archival/gzip.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1123 - (hide annotations) (download)
Wed Aug 18 21:56:57 2010 UTC (13 years, 10 months ago) by niro
File MIME type: text/plain
File size: 65784 byte(s)
-updated to busybox-1.17.1
1 niro 532 /* vi: set sw=4 ts=4: */
2     /*
3     * Gzip implementation for busybox
4     *
5     * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6     *
7     * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8     * "this is a stripped down version of gzip I put into busybox, it does
9     * only standard in to standard out with -9 compression. It also requires
10     * the zcat module for some important functions."
11     *
12     * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13     * files as well as stdin/stdout, and to generally behave itself wrt
14     * command line handling.
15     *
16     * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
17     */
18    
19     /* big objects in bss:
20     * 00000020 b bl_count
21     * 00000074 b base_length
22     * 00000078 b base_dist
23     * 00000078 b static_dtree
24     * 0000009c b bl_tree
25     * 000000f4 b dyn_dtree
26     * 00000100 b length_code
27     * 00000200 b dist_code
28     * 0000023d b depth
29     * 00000400 b flag_buf
30     * 0000047a b heap
31     * 00000480 b static_ltree
32     * 000008f4 b dyn_ltree
33     */
34    
35     /* TODO: full support for -v for DESKTOP
36     * "/usr/bin/gzip -v a bogus aa" should say:
37     a: 85.1% -- replaced with a.gz
38     gzip: bogus: No such file or directory
39     aa: 85.1% -- replaced with aa.gz
40     */
41    
42 niro 816 #include "libbb.h"
43     #include "unarchive.h"
44 niro 532
45    
46     /* ===========================================================================
47     */
48     //#define DEBUG 1
49     /* Diagnostic functions */
50     #ifdef DEBUG
51 niro 816 # define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
52 niro 532 # define Trace(x) fprintf x
53 niro 816 # define Tracev(x) {if (verbose) fprintf x; }
54     # define Tracevv(x) {if (verbose > 1) fprintf x; }
55     # define Tracec(c,x) {if (verbose && (c)) fprintf x; }
56     # define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
57 niro 532 #else
58     # define Assert(cond,msg)
59     # define Trace(x)
60     # define Tracev(x)
61     # define Tracevv(x)
62     # define Tracec(c,x)
63     # define Tracecv(c,x)
64     #endif
65    
66    
67     /* ===========================================================================
68     */
69     #define SMALL_MEM
70    
71     #ifndef INBUFSIZ
72     # ifdef SMALL_MEM
73     # define INBUFSIZ 0x2000 /* input buffer size */
74     # else
75     # define INBUFSIZ 0x8000 /* input buffer size */
76     # endif
77     #endif
78    
79     #ifndef OUTBUFSIZ
80     # ifdef SMALL_MEM
81     # define OUTBUFSIZ 8192 /* output buffer size */
82     # else
83     # define OUTBUFSIZ 16384 /* output buffer size */
84     # endif
85     #endif
86    
87     #ifndef DIST_BUFSIZE
88     # ifdef SMALL_MEM
89     # define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
90     # else
91     # define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
92     # endif
93     #endif
94    
95     /* gzip flag byte */
96     #define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
97     #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
98     #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
99     #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
100     #define COMMENT 0x10 /* bit 4 set: file comment present */
101     #define RESERVED 0xC0 /* bit 6,7: reserved */
102    
103     /* internal file attribute */
104     #define UNKNOWN 0xffff
105     #define BINARY 0
106     #define ASCII 1
107    
108     #ifndef WSIZE
109     # define WSIZE 0x8000 /* window size--must be a power of two, and */
110     #endif /* at least 32K for zip's deflate method */
111    
112     #define MIN_MATCH 3
113     #define MAX_MATCH 258
114     /* The minimum and maximum match lengths */
115    
116     #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
117     /* Minimum amount of lookahead, except at the end of the input file.
118     * See deflate.c for comments about the MIN_MATCH+1.
119     */
120    
121     #define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
122     /* In order to simplify the code, particularly on 16 bit machines, match
123     * distances are limited to MAX_DIST instead of WSIZE.
124     */
125    
126     #ifndef MAX_PATH_LEN
127     # define MAX_PATH_LEN 1024 /* max pathname length */
128     #endif
129    
130     #define seekable() 0 /* force sequential output */
131     #define translate_eol 0 /* no option -a yet */
132    
133     #ifndef BITS
134     # define BITS 16
135     #endif
136     #define INIT_BITS 9 /* Initial number of bits per code */
137    
138     #define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
139     /* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
140     * It's a pity that old uncompress does not check bit 0x20. That makes
141     * extension of the format actually undesirable because old compress
142     * would just crash on the new format instead of giving a meaningful
143     * error message. It does check the number of bits, but it's more
144     * helpful to say "unsupported format, get a new version" than
145     * "can only handle 16 bits".
146     */
147    
148     #ifdef MAX_EXT_CHARS
149     # define MAX_SUFFIX MAX_EXT_CHARS
150     #else
151     # define MAX_SUFFIX 30
152     #endif
153    
154    
155     /* ===========================================================================
156     * Compile with MEDIUM_MEM to reduce the memory requirements or
157     * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
158     * entire input file can be held in memory (not possible on 16 bit systems).
159     * Warning: defining these symbols affects HASH_BITS (see below) and thus
160     * affects the compression ratio. The compressed output
161     * is still correct, and might even be smaller in some cases.
162     */
163    
164     #ifdef SMALL_MEM
165     # define HASH_BITS 13 /* Number of bits used to hash strings */
166     #endif
167     #ifdef MEDIUM_MEM
168     # define HASH_BITS 14
169     #endif
170     #ifndef HASH_BITS
171     # define HASH_BITS 15
172     /* For portability to 16 bit machines, do not use values above 15. */
173     #endif
174    
175     #define HASH_SIZE (unsigned)(1<<HASH_BITS)
176     #define HASH_MASK (HASH_SIZE-1)
177     #define WMASK (WSIZE-1)
178     /* HASH_SIZE and WSIZE must be powers of two */
179     #ifndef TOO_FAR
180     # define TOO_FAR 4096
181     #endif
182     /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
183    
184    
185     /* ===========================================================================
186     * These types are not really 'char', 'short' and 'long'
187     */
188     typedef uint8_t uch;
189     typedef uint16_t ush;
190     typedef uint32_t ulg;
191     typedef int32_t lng;
192    
193     typedef ush Pos;
194     typedef unsigned IPos;
195     /* A Pos is an index in the character window. We use short instead of int to
196     * save space in the various tables. IPos is used only for parameter passing.
197     */
198    
199     enum {
200     WINDOW_SIZE = 2 * WSIZE,
201     /* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
202     * input file length plus MIN_LOOKAHEAD.
203     */
204    
205     max_chain_length = 4096,
206     /* To speed up deflation, hash chains are never searched beyond this length.
207     * A higher limit improves compression ratio but degrades the speed.
208     */
209    
210     max_lazy_match = 258,
211     /* Attempt to find a better match only when the current match is strictly
212     * smaller than this value. This mechanism is used only for compression
213     * levels >= 4.
214     */
215    
216     max_insert_length = max_lazy_match,
217     /* Insert new strings in the hash table only if the match length
218     * is not greater than this length. This saves time but degrades compression.
219     * max_insert_length is used only for compression levels <= 3.
220     */
221    
222     good_match = 32,
223     /* Use a faster search when the previous match is longer than this */
224    
225     /* Values for max_lazy_match, good_match and max_chain_length, depending on
226     * the desired pack level (0..9). The values given below have been tuned to
227     * exclude worst case performance for pathological files. Better values may be
228     * found for specific files.
229     */
230    
231     nice_match = 258, /* Stop searching when current match exceeds this */
232     /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
233     * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
234     * meaning.
235     */
236     };
237    
238    
239 niro 816 struct globals {
240    
241     lng block_start;
242    
243     /* window position at the beginning of the current output block. Gets
244     * negative when the window is moved backwards.
245     */
246     unsigned ins_h; /* hash index of string to be inserted */
247    
248     #define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
249     /* Number of bits by which ins_h and del_h must be shifted at each
250     * input step. It must be such that after MIN_MATCH steps, the oldest
251     * byte no longer takes part in the hash key, that is:
252     * H_SHIFT * MIN_MATCH >= HASH_BITS
253     */
254    
255     unsigned prev_length;
256    
257     /* Length of the best match at previous step. Matches not greater than this
258     * are discarded. This is used in the lazy match evaluation.
259     */
260    
261     unsigned strstart; /* start of string to insert */
262     unsigned match_start; /* start of matching string */
263     unsigned lookahead; /* number of valid bytes ahead in window */
264    
265 niro 532 /* ===========================================================================
266     */
267     #define DECLARE(type, array, size) \
268 niro 816 type * array
269 niro 532 #define ALLOC(type, array, size) \
270 niro 984 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
271 niro 532 #define FREE(array) \
272 niro 816 do { free(array); array = NULL; } while (0)
273 niro 532
274 niro 816 /* global buffers */
275 niro 532
276 niro 816 /* buffer for literals or lengths */
277     /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
278     DECLARE(uch, l_buf, INBUFSIZ);
279 niro 532
280 niro 816 DECLARE(ush, d_buf, DIST_BUFSIZE);
281     DECLARE(uch, outbuf, OUTBUFSIZ);
282 niro 532
283     /* Sliding window. Input bytes are read into the second half of the window,
284     * and move to the first half later to keep a dictionary of at least WSIZE
285     * bytes. With this organization, matches are limited to a distance of
286     * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
287     * performed with a length multiple of the block size. Also, it limits
288     * the window size to 64K, which is quite useful on MSDOS.
289     * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
290     * be less efficient).
291     */
292 niro 816 DECLARE(uch, window, 2L * WSIZE);
293 niro 532
294     /* Link to older string with same hash index. To limit the size of this
295     * array to 64K, this link is maintained only for the last 32K strings.
296     * An index in this array is thus a window index modulo 32K.
297     */
298 niro 816 /* DECLARE(Pos, prev, WSIZE); */
299     DECLARE(ush, prev, 1L << BITS);
300 niro 532
301     /* Heads of the hash chains or 0. */
302 niro 816 /* DECLARE(Pos, head, 1<<HASH_BITS); */
303     #define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
304 niro 532
305     /* number of input bytes */
306 niro 816 ulg isize; /* only 32 bits stored in .gz file */
307 niro 532
308 niro 816 /* bbox always use stdin/stdout */
309     #define ifd STDIN_FILENO /* input file descriptor */
310     #define ofd STDOUT_FILENO /* output file descriptor */
311 niro 532
312     #ifdef DEBUG
313 niro 816 unsigned insize; /* valid bytes in l_buf */
314 niro 532 #endif
315 niro 816 unsigned outcnt; /* bytes in output buffer */
316 niro 532
317 niro 816 smallint eofile; /* flag set at end of input file */
318 niro 532
319     /* ===========================================================================
320     * Local data used by the "bit string" routines.
321     */
322    
323 niro 816 unsigned short bi_buf;
324 niro 532
325     /* Output buffer. bits are inserted starting at the bottom (least significant
326     * bits).
327     */
328    
329     #undef BUF_SIZE
330 niro 816 #define BUF_SIZE (8 * sizeof(G1.bi_buf))
331 niro 532 /* Number of bits used within bi_buf. (bi_buf might be implemented on
332     * more than 16 bits on some systems.)
333     */
334    
335 niro 816 int bi_valid;
336 niro 532
337     /* Current input function. Set to mem_read for in-memory compression */
338    
339     #ifdef DEBUG
340 niro 816 ulg bits_sent; /* bit length of the compressed data */
341 niro 532 #endif
342    
343 niro 816 uint32_t *crc_32_tab;
344     uint32_t crc; /* shift register contents */
345     };
346 niro 532
347 niro 816 #define G1 (*(ptr_to_globals - 1))
348    
349    
350 niro 532 /* ===========================================================================
351     * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
352     * (used for the compressed data only)
353     */
354     static void flush_outbuf(void)
355     {
356 niro 816 if (G1.outcnt == 0)
357 niro 532 return;
358    
359 niro 816 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
360     G1.outcnt = 0;
361 niro 532 }
362    
363    
364     /* ===========================================================================
365     */
366     /* put_8bit is used for the compressed output */
367     #define put_8bit(c) \
368 niro 816 do { \
369     G1.outbuf[G1.outcnt++] = (c); \
370     if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
371     } while (0)
372 niro 532
373     /* Output a 16 bit value, lsb first */
374     static void put_16bit(ush w)
375     {
376 niro 816 if (G1.outcnt < OUTBUFSIZ - 2) {
377     G1.outbuf[G1.outcnt++] = w;
378     G1.outbuf[G1.outcnt++] = w >> 8;
379 niro 532 } else {
380     put_8bit(w);
381     put_8bit(w >> 8);
382     }
383     }
384    
385     static void put_32bit(ulg n)
386     {
387     put_16bit(n);
388     put_16bit(n >> 16);
389     }
390    
391     /* ===========================================================================
392     * Run a set of bytes through the crc shift register. If s is a NULL
393     * pointer, then initialize the crc shift register contents instead.
394     * Return the current crc in either case.
395     */
396     static uint32_t updcrc(uch * s, unsigned n)
397     {
398 niro 816 uint32_t c = G1.crc;
399 niro 532 while (n) {
400 niro 816 c = G1.crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
401 niro 532 n--;
402     }
403 niro 816 G1.crc = c;
404 niro 532 return c;
405     }
406    
407    
408     /* ===========================================================================
409     * Read a new buffer from the current input file, perform end-of-line
410     * translation, and update the crc and input file size.
411     * IN assertion: size >= 2 (for end-of-line translation)
412     */
413     static unsigned file_read(void *buf, unsigned size)
414     {
415     unsigned len;
416    
417 niro 816 Assert(G1.insize == 0, "l_buf not empty");
418 niro 532
419     len = safe_read(ifd, buf, size);
420     if (len == (unsigned)(-1) || len == 0)
421     return len;
422    
423     updcrc(buf, len);
424 niro 816 G1.isize += len;
425 niro 532 return len;
426     }
427    
428    
429     /* ===========================================================================
430     * Send a value on a given number of bits.
431     * IN assertion: length <= 16 and value fits in length bits.
432     */
433     static void send_bits(int value, int length)
434     {
435     #ifdef DEBUG
436     Tracev((stderr, " l %2d v %4x ", length, value));
437     Assert(length > 0 && length <= 15, "invalid length");
438 niro 816 G1.bits_sent += length;
439 niro 532 #endif
440     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
441     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
442     * unused bits in value.
443     */
444 niro 816 if (G1.bi_valid > (int) BUF_SIZE - length) {
445     G1.bi_buf |= (value << G1.bi_valid);
446     put_16bit(G1.bi_buf);
447     G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
448     G1.bi_valid += length - BUF_SIZE;
449 niro 532 } else {
450 niro 816 G1.bi_buf |= value << G1.bi_valid;
451     G1.bi_valid += length;
452 niro 532 }
453     }
454    
455    
456     /* ===========================================================================
457     * Reverse the first len bits of a code, using straightforward code (a faster
458     * method would use a table)
459     * IN assertion: 1 <= len <= 15
460     */
461     static unsigned bi_reverse(unsigned code, int len)
462     {
463     unsigned res = 0;
464    
465     while (1) {
466     res |= code & 1;
467     if (--len <= 0) return res;
468     code >>= 1;
469     res <<= 1;
470     }
471     }
472    
473    
474     /* ===========================================================================
475     * Write out any remaining bits in an incomplete byte.
476     */
477     static void bi_windup(void)
478     {
479 niro 816 if (G1.bi_valid > 8) {
480     put_16bit(G1.bi_buf);
481     } else if (G1.bi_valid > 0) {
482     put_8bit(G1.bi_buf);
483 niro 532 }
484 niro 816 G1.bi_buf = 0;
485     G1.bi_valid = 0;
486 niro 532 #ifdef DEBUG
487 niro 816 G1.bits_sent = (G1.bits_sent + 7) & ~7;
488 niro 532 #endif
489     }
490    
491    
492     /* ===========================================================================
493     * Copy a stored block to the zip file, storing first the length and its
494     * one's complement if requested.
495     */
496     static void copy_block(char *buf, unsigned len, int header)
497     {
498     bi_windup(); /* align on byte boundary */
499    
500     if (header) {
501     put_16bit(len);
502     put_16bit(~len);
503     #ifdef DEBUG
504 niro 816 G1.bits_sent += 2 * 16;
505 niro 532 #endif
506     }
507     #ifdef DEBUG
508 niro 816 G1.bits_sent += (ulg) len << 3;
509 niro 532 #endif
510     while (len--) {
511     put_8bit(*buf++);
512     }
513     }
514    
515    
516     /* ===========================================================================
517     * Fill the window when the lookahead becomes insufficient.
518     * Updates strstart and lookahead, and sets eofile if end of input file.
519     * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
520     * OUT assertions: at least one byte has been read, or eofile is set;
521     * file reads are performed for at least two bytes (required for the
522     * translate_eol option).
523     */
524     static void fill_window(void)
525     {
526     unsigned n, m;
527 niro 816 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
528 niro 532 /* Amount of free space at the end of the window. */
529    
530     /* If the window is almost full and there is insufficient lookahead,
531     * move the upper half to the lower one to make room in the upper half.
532     */
533     if (more == (unsigned) -1) {
534     /* Very unlikely, but possible on 16 bit machine if strstart == 0
535     * and lookahead == 1 (input done one byte at time)
536     */
537     more--;
538 niro 816 } else if (G1.strstart >= WSIZE + MAX_DIST) {
539 niro 532 /* By the IN assertion, the window is not empty so we can't confuse
540     * more == 0 with more == 64K on a 16 bit machine.
541     */
542     Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
543    
544 niro 816 memcpy(G1.window, G1.window + WSIZE, WSIZE);
545     G1.match_start -= WSIZE;
546     G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
547 niro 532
548 niro 816 G1.block_start -= WSIZE;
549 niro 532
550     for (n = 0; n < HASH_SIZE; n++) {
551     m = head[n];
552     head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
553     }
554     for (n = 0; n < WSIZE; n++) {
555 niro 816 m = G1.prev[n];
556     G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
557 niro 532 /* If n is not on any hash chain, prev[n] is garbage but
558     * its value will never be used.
559     */
560     }
561     more += WSIZE;
562     }
563     /* At this point, more >= 2 */
564 niro 816 if (!G1.eofile) {
565     n = file_read(G1.window + G1.strstart + G1.lookahead, more);
566 niro 532 if (n == 0 || n == (unsigned) -1) {
567 niro 816 G1.eofile = 1;
568 niro 532 } else {
569 niro 816 G1.lookahead += n;
570 niro 532 }
571     }
572     }
573    
574    
575     /* ===========================================================================
576     * Set match_start to the longest match starting at the given string and
577     * return its length. Matches shorter or equal to prev_length are discarded,
578     * in which case the result is equal to prev_length and match_start is
579     * garbage.
580     * IN assertions: cur_match is the head of the hash chain for the current
581     * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
582     */
583    
584     /* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
585     * match.s. The code is functionally equivalent, so you can use the C version
586     * if desired.
587     */
588     static int longest_match(IPos cur_match)
589     {
590     unsigned chain_length = max_chain_length; /* max hash chain length */
591 niro 816 uch *scan = G1.window + G1.strstart; /* current string */
592 niro 532 uch *match; /* matched string */
593     int len; /* length of current match */
594 niro 816 int best_len = G1.prev_length; /* best match length so far */
595     IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
596 niro 532 /* Stop when cur_match becomes <= limit. To simplify the code,
597     * we prevent matches with the string of window index 0.
598     */
599    
600     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
601     * It is easy to get rid of this optimization if necessary.
602     */
603     #if HASH_BITS < 8 || MAX_MATCH != 258
604     # error Code too clever
605     #endif
606 niro 816 uch *strend = G1.window + G1.strstart + MAX_MATCH;
607 niro 532 uch scan_end1 = scan[best_len - 1];
608     uch scan_end = scan[best_len];
609    
610     /* Do not waste too much time if we already have a good match: */
611 niro 816 if (G1.prev_length >= good_match) {
612 niro 532 chain_length >>= 2;
613     }
614 niro 816 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
615 niro 532
616     do {
617 niro 816 Assert(cur_match < G1.strstart, "no future");
618     match = G1.window + cur_match;
619 niro 532
620     /* Skip to next match if the match length cannot increase
621     * or if the match length is less than 2:
622     */
623 niro 1123 if (match[best_len] != scan_end
624     || match[best_len - 1] != scan_end1
625     || *match != *scan || *++match != scan[1]
626     ) {
627 niro 532 continue;
628 niro 1123 }
629 niro 532
630     /* The check at best_len-1 can be removed because it will be made
631     * again later. (This heuristic is not always a win.)
632     * It is not necessary to compare scan[2] and match[2] since they
633     * are always equal when the other bytes match, given that
634     * the hash keys are equal and that HASH_BITS >= 8.
635     */
636     scan += 2, match++;
637    
638     /* We check for insufficient lookahead only every 8th comparison;
639     * the 256th check will be made at strstart+258.
640     */
641     do {
642     } while (*++scan == *++match && *++scan == *++match &&
643     *++scan == *++match && *++scan == *++match &&
644     *++scan == *++match && *++scan == *++match &&
645     *++scan == *++match && *++scan == *++match && scan < strend);
646    
647     len = MAX_MATCH - (int) (strend - scan);
648     scan = strend - MAX_MATCH;
649    
650     if (len > best_len) {
651 niro 816 G1.match_start = cur_match;
652 niro 532 best_len = len;
653     if (len >= nice_match)
654     break;
655     scan_end1 = scan[best_len - 1];
656     scan_end = scan[best_len];
657     }
658 niro 816 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
659 niro 532 && --chain_length != 0);
660    
661     return best_len;
662     }
663    
664    
665     #ifdef DEBUG
666     /* ===========================================================================
667     * Check that the match at match_start is indeed a match.
668     */
669     static void check_match(IPos start, IPos match, int length)
670     {
671     /* check that the match is indeed a match */
672 niro 816 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
673 niro 532 bb_error_msg(" start %d, match %d, length %d", start, match, length);
674     bb_error_msg("invalid match");
675     }
676     if (verbose > 1) {
677     bb_error_msg("\\[%d,%d]", start - match, length);
678     do {
679 niro 1123 bb_putchar_stderr(G1.window[start++]);
680 niro 532 } while (--length != 0);
681     }
682     }
683     #else
684     # define check_match(start, match, length) ((void)0)
685     #endif
686    
687    
688     /* trees.c -- output deflated data using Huffman coding
689     * Copyright (C) 1992-1993 Jean-loup Gailly
690     * This is free software; you can redistribute it and/or modify it under the
691     * terms of the GNU General Public License, see the file COPYING.
692     */
693    
694     /* PURPOSE
695     * Encode various sets of source values using variable-length
696     * binary code trees.
697     *
698     * DISCUSSION
699     * The PKZIP "deflation" process uses several Huffman trees. The more
700     * common source values are represented by shorter bit sequences.
701     *
702     * Each code tree is stored in the ZIP file in a compressed form
703     * which is itself a Huffman encoding of the lengths of
704     * all the code strings (in ascending order by source values).
705     * The actual code strings are reconstructed from the lengths in
706     * the UNZIP process, as described in the "application note"
707     * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
708     *
709     * REFERENCES
710     * Lynch, Thomas J.
711     * Data Compression: Techniques and Applications, pp. 53-55.
712     * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
713     *
714     * Storer, James A.
715     * Data Compression: Methods and Theory, pp. 49-50.
716     * Computer Science Press, 1988. ISBN 0-7167-8156-5.
717     *
718     * Sedgewick, R.
719     * Algorithms, p290.
720     * Addison-Wesley, 1983. ISBN 0-201-06672-6.
721     *
722     * INTERFACE
723 niro 816 * void ct_init()
724     * Allocate the match buffer, initialize the various tables [and save
725 niro 532 * the location of the internal file attribute (ascii/binary) and
726 niro 816 * method (DEFLATE/STORE) -- deleted in bbox]
727 niro 532 *
728     * void ct_tally(int dist, int lc);
729     * Save the match info and tally the frequency counts.
730     *
731     * ulg flush_block(char *buf, ulg stored_len, int eof)
732     * Determine the best encoding for the current block: dynamic trees,
733     * static trees or store, and output the encoded block to the zip
734     * file. Returns the total compressed length for the file so far.
735     */
736    
737     #define MAX_BITS 15
738     /* All codes must not exceed MAX_BITS bits */
739    
740     #define MAX_BL_BITS 7
741     /* Bit length codes must not exceed MAX_BL_BITS bits */
742    
743     #define LENGTH_CODES 29
744     /* number of length codes, not counting the special END_BLOCK code */
745    
746     #define LITERALS 256
747     /* number of literal bytes 0..255 */
748    
749     #define END_BLOCK 256
750     /* end of block literal code */
751    
752     #define L_CODES (LITERALS+1+LENGTH_CODES)
753     /* number of Literal or Length codes, including the END_BLOCK code */
754    
755     #define D_CODES 30
756     /* number of distance codes */
757    
758     #define BL_CODES 19
759     /* number of codes used to transfer the bit lengths */
760    
761     /* extra bits for each length code */
762 niro 816 static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
763 niro 532 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
764     4, 4, 5, 5, 5, 5, 0
765     };
766    
767     /* extra bits for each distance code */
768 niro 816 static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
769 niro 532 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
770     10, 10, 11, 11, 12, 12, 13, 13
771     };
772    
773     /* extra bits for each bit length code */
774 niro 816 static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
775 niro 532 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
776    
777 niro 816 /* number of codes at each bit length for an optimal tree */
778     static const uint8_t bl_order[BL_CODES] ALIGN1 = {
779     16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
780    
781 niro 532 #define STORED_BLOCK 0
782     #define STATIC_TREES 1
783     #define DYN_TREES 2
784     /* The three kinds of block type */
785    
786     #ifndef LIT_BUFSIZE
787     # ifdef SMALL_MEM
788     # define LIT_BUFSIZE 0x2000
789     # else
790     # ifdef MEDIUM_MEM
791     # define LIT_BUFSIZE 0x4000
792     # else
793     # define LIT_BUFSIZE 0x8000
794     # endif
795     # endif
796     #endif
797     #ifndef DIST_BUFSIZE
798     # define DIST_BUFSIZE LIT_BUFSIZE
799     #endif
800     /* Sizes of match buffers for literals/lengths and distances. There are
801     * 4 reasons for limiting LIT_BUFSIZE to 64K:
802     * - frequencies can be kept in 16 bit counters
803     * - if compression is not successful for the first block, all input data is
804     * still in the window so we can still emit a stored block even when input
805     * comes from standard input. (This can also be done for all blocks if
806     * LIT_BUFSIZE is not greater than 32K.)
807     * - if compression is not successful for a file smaller than 64K, we can
808     * even emit a stored file instead of a stored block (saving 5 bytes).
809     * - creating new Huffman trees less frequently may not provide fast
810     * adaptation to changes in the input data statistics. (Take for
811     * example a binary file with poorly compressible code followed by
812     * a highly compressible string table.) Smaller buffer sizes give
813     * fast adaptation but have of course the overhead of transmitting trees
814     * more frequently.
815     * - I can't count above 4
816     * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
817     * memory at the expense of compression). Some optimizations would be possible
818     * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
819     */
820     #define REP_3_6 16
821     /* repeat previous bit length 3-6 times (2 bits of repeat count) */
822     #define REPZ_3_10 17
823     /* repeat a zero length 3-10 times (3 bits of repeat count) */
824     #define REPZ_11_138 18
825     /* repeat a zero length 11-138 times (7 bits of repeat count) */
826    
827     /* ===========================================================================
828     */
829     /* Data structure describing a single value and its code string. */
830     typedef struct ct_data {
831     union {
832     ush freq; /* frequency count */
833     ush code; /* bit string */
834     } fc;
835     union {
836     ush dad; /* father node in Huffman tree */
837     ush len; /* length of bit string */
838     } dl;
839     } ct_data;
840    
841     #define Freq fc.freq
842     #define Code fc.code
843     #define Dad dl.dad
844     #define Len dl.len
845    
846     #define HEAP_SIZE (2*L_CODES + 1)
847     /* maximum heap size */
848    
849 niro 816 typedef struct tree_desc {
850     ct_data *dyn_tree; /* the dynamic tree */
851     ct_data *static_tree; /* corresponding static tree or NULL */
852     const uint8_t *extra_bits; /* extra bits for each code or NULL */
853     int extra_base; /* base index for extra_bits */
854     int elems; /* max number of elements in the tree */
855     int max_length; /* max bit length for the codes */
856     int max_code; /* largest code with non zero frequency */
857     } tree_desc;
858 niro 532
859 niro 816 struct globals2 {
860    
861     ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
862     int heap_len; /* number of elements in the heap */
863     int heap_max; /* element of largest frequency */
864    
865 niro 532 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
866     * The same heap array is used to build all trees.
867     */
868    
869 niro 816 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
870     ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
871 niro 532
872 niro 816 ct_data static_ltree[L_CODES + 2];
873 niro 532
874     /* The static literal tree. Since the bit lengths are imposed, there is no
875     * need for the L_CODES extra codes used during heap construction. However
876     * The codes 286 and 287 are needed to build a canonical tree (see ct_init
877     * below).
878     */
879    
880 niro 816 ct_data static_dtree[D_CODES];
881 niro 532
882     /* The static distance tree. (Actually a trivial tree since all codes use
883     * 5 bits.)
884     */
885    
886 niro 816 ct_data bl_tree[2 * BL_CODES + 1];
887 niro 532
888     /* Huffman tree for the bit lengths */
889    
890 niro 816 tree_desc l_desc;
891     tree_desc d_desc;
892     tree_desc bl_desc;
893 niro 532
894 niro 816 ush bl_count[MAX_BITS + 1];
895 niro 532
896     /* The lengths of the bit length codes are sent in order of decreasing
897     * probability, to avoid transmitting the lengths for unused bit length codes.
898     */
899    
900 niro 816 uch depth[2 * L_CODES + 1];
901 niro 532
902     /* Depth of each subtree used as tie breaker for trees of equal frequency */
903    
904 niro 816 uch length_code[MAX_MATCH - MIN_MATCH + 1];
905 niro 532
906     /* length code for each normalized match length (0 == MIN_MATCH) */
907    
908 niro 816 uch dist_code[512];
909 niro 532
910     /* distance codes. The first 256 values correspond to the distances
911     * 3 .. 258, the last 256 values correspond to the top 8 bits of
912     * the 15 bit distances.
913     */
914    
915 niro 816 int base_length[LENGTH_CODES];
916 niro 532
917     /* First normalized length for each code (0 = MIN_MATCH) */
918    
919 niro 816 int base_dist[D_CODES];
920 niro 532
921     /* First normalized distance for each code (0 = distance of 1) */
922    
923 niro 816 uch flag_buf[LIT_BUFSIZE / 8];
924 niro 532
925     /* flag_buf is a bit array distinguishing literals from lengths in
926     * l_buf, thus indicating the presence or absence of a distance.
927     */
928    
929 niro 816 unsigned last_lit; /* running index in l_buf */
930     unsigned last_dist; /* running index in d_buf */
931     unsigned last_flags; /* running index in flag_buf */
932     uch flags; /* current flags not yet saved in flag_buf */
933     uch flag_bit; /* current bit used in flags */
934 niro 532
935     /* bits are filled in flags starting at bit 0 (least significant).
936     * Note: these flags are overkill in the current code since we don't
937     * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
938     */
939    
940 niro 816 ulg opt_len; /* bit length of current block with optimal trees */
941     ulg static_len; /* bit length of current block with static trees */
942 niro 532
943 niro 816 ulg compressed_len; /* total bit length of compressed file */
944     };
945 niro 532
946 niro 816 #define G2ptr ((struct globals2*)(ptr_to_globals))
947     #define G2 (*G2ptr)
948 niro 532
949 niro 816
950 niro 532 /* ===========================================================================
951     */
952     static void gen_codes(ct_data * tree, int max_code);
953     static void build_tree(tree_desc * desc);
954     static void scan_tree(ct_data * tree, int max_code);
955     static void send_tree(ct_data * tree, int max_code);
956     static int build_bl_tree(void);
957     static void send_all_trees(int lcodes, int dcodes, int blcodes);
958     static void compress_block(ct_data * ltree, ct_data * dtree);
959    
960    
961     #ifndef DEBUG
962     /* Send a code of the given tree. c and tree must not have side effects */
963     # define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
964     #else
965     # define SEND_CODE(c, tree) \
966     { \
967 niro 1123 if (verbose > 1) bb_error_msg("\ncd %3d ", (c)); \
968 niro 532 send_bits(tree[c].Code, tree[c].Len); \
969     }
970     #endif
971    
972     #define D_CODE(dist) \
973 niro 816 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
974 niro 532 /* Mapping from a distance to a distance code. dist is the distance - 1 and
975     * must not have side effects. dist_code[256] and dist_code[257] are never
976     * used.
977     * The arguments must not have side effects.
978     */
979    
980    
981     /* ===========================================================================
982     * Initialize a new block.
983     */
984     static void init_block(void)
985     {
986     int n; /* iterates over tree elements */
987    
988     /* Initialize the trees. */
989     for (n = 0; n < L_CODES; n++)
990 niro 816 G2.dyn_ltree[n].Freq = 0;
991 niro 532 for (n = 0; n < D_CODES; n++)
992 niro 816 G2.dyn_dtree[n].Freq = 0;
993 niro 532 for (n = 0; n < BL_CODES; n++)
994 niro 816 G2.bl_tree[n].Freq = 0;
995 niro 532
996 niro 816 G2.dyn_ltree[END_BLOCK].Freq = 1;
997     G2.opt_len = G2.static_len = 0;
998     G2.last_lit = G2.last_dist = G2.last_flags = 0;
999     G2.flags = 0;
1000     G2.flag_bit = 1;
1001 niro 532 }
1002    
1003    
1004     /* ===========================================================================
1005     * Restore the heap property by moving down the tree starting at node k,
1006     * exchanging a node with the smallest of its two sons if necessary, stopping
1007     * when the heap property is re-established (each father smaller than its
1008     * two sons).
1009     */
1010    
1011     /* Compares to subtrees, using the tree depth as tie breaker when
1012     * the subtrees have equal frequency. This minimizes the worst case length. */
1013     #define SMALLER(tree, n, m) \
1014     (tree[n].Freq < tree[m].Freq \
1015 niro 816 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1016 niro 532
1017     static void pqdownheap(ct_data * tree, int k)
1018     {
1019 niro 816 int v = G2.heap[k];
1020 niro 532 int j = k << 1; /* left son of k */
1021    
1022 niro 816 while (j <= G2.heap_len) {
1023 niro 532 /* Set j to the smallest of the two sons: */
1024 niro 816 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1025 niro 532 j++;
1026    
1027     /* Exit if v is smaller than both sons */
1028 niro 816 if (SMALLER(tree, v, G2.heap[j]))
1029 niro 532 break;
1030    
1031     /* Exchange v with the smallest son */
1032 niro 816 G2.heap[k] = G2.heap[j];
1033 niro 532 k = j;
1034    
1035     /* And continue down the tree, setting j to the left son of k */
1036     j <<= 1;
1037     }
1038 niro 816 G2.heap[k] = v;
1039 niro 532 }
1040    
1041    
1042     /* ===========================================================================
1043     * Compute the optimal bit lengths for a tree and update the total bit length
1044     * for the current block.
1045     * IN assertion: the fields freq and dad are set, heap[heap_max] and
1046     * above are the tree nodes sorted by increasing frequency.
1047     * OUT assertions: the field len is set to the optimal bit length, the
1048     * array bl_count contains the frequencies for each bit length.
1049     * The length opt_len is updated; static_len is also updated if stree is
1050     * not null.
1051     */
1052     static void gen_bitlen(tree_desc * desc)
1053     {
1054     ct_data *tree = desc->dyn_tree;
1055 niro 816 const uint8_t *extra = desc->extra_bits;
1056 niro 532 int base = desc->extra_base;
1057     int max_code = desc->max_code;
1058     int max_length = desc->max_length;
1059     ct_data *stree = desc->static_tree;
1060     int h; /* heap index */
1061     int n, m; /* iterate over the tree elements */
1062     int bits; /* bit length */
1063     int xbits; /* extra bits */
1064     ush f; /* frequency */
1065     int overflow = 0; /* number of elements with bit length too large */
1066    
1067     for (bits = 0; bits <= MAX_BITS; bits++)
1068 niro 816 G2.bl_count[bits] = 0;
1069 niro 532
1070     /* In a first pass, compute the optimal bit lengths (which may
1071     * overflow in the case of the bit length tree).
1072     */
1073 niro 816 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
1074 niro 532
1075 niro 816 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1076     n = G2.heap[h];
1077 niro 532 bits = tree[tree[n].Dad].Len + 1;
1078     if (bits > max_length) {
1079     bits = max_length;
1080     overflow++;
1081     }
1082     tree[n].Len = (ush) bits;
1083     /* We overwrite tree[n].Dad which is no longer needed */
1084    
1085     if (n > max_code)
1086     continue; /* not a leaf node */
1087    
1088 niro 816 G2.bl_count[bits]++;
1089 niro 532 xbits = 0;
1090     if (n >= base)
1091     xbits = extra[n - base];
1092     f = tree[n].Freq;
1093 niro 816 G2.opt_len += (ulg) f *(bits + xbits);
1094 niro 532
1095     if (stree)
1096 niro 816 G2.static_len += (ulg) f * (stree[n].Len + xbits);
1097 niro 532 }
1098     if (overflow == 0)
1099     return;
1100    
1101     Trace((stderr, "\nbit length overflow\n"));
1102     /* This happens for example on obj2 and pic of the Calgary corpus */
1103    
1104     /* Find the first bit length which could increase: */
1105     do {
1106     bits = max_length - 1;
1107 niro 816 while (G2.bl_count[bits] == 0)
1108 niro 532 bits--;
1109 niro 816 G2.bl_count[bits]--; /* move one leaf down the tree */
1110     G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1111     G2.bl_count[max_length]--;
1112 niro 532 /* The brother of the overflow item also moves one step up,
1113     * but this does not affect bl_count[max_length]
1114     */
1115     overflow -= 2;
1116     } while (overflow > 0);
1117    
1118     /* Now recompute all bit lengths, scanning in increasing frequency.
1119     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1120     * lengths instead of fixing only the wrong ones. This idea is taken
1121     * from 'ar' written by Haruhiko Okumura.)
1122     */
1123     for (bits = max_length; bits != 0; bits--) {
1124 niro 816 n = G2.bl_count[bits];
1125 niro 532 while (n != 0) {
1126 niro 816 m = G2.heap[--h];
1127 niro 532 if (m > max_code)
1128     continue;
1129     if (tree[m].Len != (unsigned) bits) {
1130     Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1131 niro 816 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1132 niro 532 tree[m].Len = bits;
1133     }
1134     n--;
1135     }
1136     }
1137     }
1138    
1139    
1140     /* ===========================================================================
1141     * Generate the codes for a given tree and bit counts (which need not be
1142     * optimal).
1143     * IN assertion: the array bl_count contains the bit length statistics for
1144     * the given tree and the field len is set for all tree elements.
1145     * OUT assertion: the field code is set for all tree elements of non
1146     * zero code length.
1147     */
1148     static void gen_codes(ct_data * tree, int max_code)
1149     {
1150     ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1151     ush code = 0; /* running code value */
1152     int bits; /* bit index */
1153     int n; /* code index */
1154    
1155     /* The distribution counts are first used to generate the code values
1156     * without bit reversal.
1157     */
1158     for (bits = 1; bits <= MAX_BITS; bits++) {
1159 niro 816 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1160 niro 532 }
1161     /* Check that the bit counts in bl_count are consistent. The last code
1162     * must be all ones.
1163     */
1164 niro 816 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1165 niro 532 "inconsistent bit counts");
1166     Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1167    
1168     for (n = 0; n <= max_code; n++) {
1169     int len = tree[n].Len;
1170    
1171     if (len == 0)
1172     continue;
1173     /* Now reverse the bits */
1174     tree[n].Code = bi_reverse(next_code[len]++, len);
1175    
1176 niro 816 Tracec(tree != G2.static_ltree,
1177 niro 532 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1178 niro 984 (n > ' ' ? n : ' '), len, tree[n].Code,
1179 niro 532 next_code[len] - 1));
1180     }
1181     }
1182    
1183    
1184     /* ===========================================================================
1185     * Construct one Huffman tree and assigns the code bit strings and lengths.
1186     * Update the total bit length for the current block.
1187     * IN assertion: the field freq is set for all tree elements.
1188     * OUT assertions: the fields len and code are set to the optimal bit length
1189     * and corresponding code. The length opt_len is updated; static_len is
1190     * also updated if stree is not null. The field max_code is set.
1191     */
1192    
1193     /* Remove the smallest element from the heap and recreate the heap with
1194     * one less element. Updates heap and heap_len. */
1195    
1196     #define SMALLEST 1
1197     /* Index within the heap array of least frequent node in the Huffman tree */
1198    
1199     #define PQREMOVE(tree, top) \
1200 niro 816 do { \
1201     top = G2.heap[SMALLEST]; \
1202     G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1203 niro 532 pqdownheap(tree, SMALLEST); \
1204 niro 816 } while (0)
1205 niro 532
1206     static void build_tree(tree_desc * desc)
1207     {
1208     ct_data *tree = desc->dyn_tree;
1209     ct_data *stree = desc->static_tree;
1210     int elems = desc->elems;
1211     int n, m; /* iterate over heap elements */
1212     int max_code = -1; /* largest code with non zero frequency */
1213     int node = elems; /* next internal node of the tree */
1214    
1215     /* Construct the initial heap, with least frequent element in
1216     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1217     * heap[0] is not used.
1218     */
1219 niro 816 G2.heap_len = 0;
1220     G2.heap_max = HEAP_SIZE;
1221 niro 532
1222     for (n = 0; n < elems; n++) {
1223     if (tree[n].Freq != 0) {
1224 niro 816 G2.heap[++G2.heap_len] = max_code = n;
1225     G2.depth[n] = 0;
1226 niro 532 } else {
1227     tree[n].Len = 0;
1228     }
1229     }
1230    
1231     /* The pkzip format requires that at least one distance code exists,
1232     * and that at least one bit should be sent even if there is only one
1233     * possible code. So to avoid special checks later on we force at least
1234     * two codes of non zero frequency.
1235     */
1236 niro 816 while (G2.heap_len < 2) {
1237     int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1238 niro 532
1239     tree[new].Freq = 1;
1240 niro 816 G2.depth[new] = 0;
1241     G2.opt_len--;
1242 niro 532 if (stree)
1243 niro 816 G2.static_len -= stree[new].Len;
1244 niro 532 /* new is 0 or 1 so it does not have extra bits */
1245     }
1246     desc->max_code = max_code;
1247    
1248     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1249     * establish sub-heaps of increasing lengths:
1250     */
1251 niro 816 for (n = G2.heap_len / 2; n >= 1; n--)
1252 niro 532 pqdownheap(tree, n);
1253    
1254     /* Construct the Huffman tree by repeatedly combining the least two
1255     * frequent nodes.
1256     */
1257     do {
1258     PQREMOVE(tree, n); /* n = node of least frequency */
1259 niro 816 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
1260 niro 532
1261 niro 816 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1262     G2.heap[--G2.heap_max] = m;
1263 niro 532
1264     /* Create a new node father of n and m */
1265     tree[node].Freq = tree[n].Freq + tree[m].Freq;
1266 niro 816 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1267 niro 532 tree[n].Dad = tree[m].Dad = (ush) node;
1268     #ifdef DUMP_BL_TREE
1269 niro 816 if (tree == G2.bl_tree) {
1270 niro 532 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1271     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1272     }
1273     #endif
1274     /* and insert the new node in the heap */
1275 niro 816 G2.heap[SMALLEST] = node++;
1276 niro 532 pqdownheap(tree, SMALLEST);
1277    
1278 niro 816 } while (G2.heap_len >= 2);
1279 niro 532
1280 niro 816 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1281 niro 532
1282     /* At this point, the fields freq and dad are set. We can now
1283     * generate the bit lengths.
1284     */
1285     gen_bitlen((tree_desc *) desc);
1286    
1287     /* The field len is now set, we can generate the bit codes */
1288     gen_codes((ct_data *) tree, max_code);
1289     }
1290    
1291    
1292     /* ===========================================================================
1293     * Scan a literal or distance tree to determine the frequencies of the codes
1294     * in the bit length tree. Updates opt_len to take into account the repeat
1295     * counts. (The contribution of the bit length codes will be added later
1296     * during the construction of bl_tree.)
1297     */
1298     static void scan_tree(ct_data * tree, int max_code)
1299     {
1300     int n; /* iterates over all tree elements */
1301     int prevlen = -1; /* last emitted length */
1302     int curlen; /* length of current code */
1303     int nextlen = tree[0].Len; /* length of next code */
1304     int count = 0; /* repeat count of the current code */
1305     int max_count = 7; /* max repeat count */
1306     int min_count = 4; /* min repeat count */
1307    
1308     if (nextlen == 0) {
1309     max_count = 138;
1310     min_count = 3;
1311     }
1312     tree[max_code + 1].Len = 0xffff; /* guard */
1313    
1314     for (n = 0; n <= max_code; n++) {
1315     curlen = nextlen;
1316     nextlen = tree[n + 1].Len;
1317     if (++count < max_count && curlen == nextlen)
1318     continue;
1319    
1320     if (count < min_count) {
1321 niro 816 G2.bl_tree[curlen].Freq += count;
1322 niro 532 } else if (curlen != 0) {
1323     if (curlen != prevlen)
1324 niro 816 G2.bl_tree[curlen].Freq++;
1325     G2.bl_tree[REP_3_6].Freq++;
1326 niro 532 } else if (count <= 10) {
1327 niro 816 G2.bl_tree[REPZ_3_10].Freq++;
1328 niro 532 } else {
1329 niro 816 G2.bl_tree[REPZ_11_138].Freq++;
1330 niro 532 }
1331     count = 0;
1332     prevlen = curlen;
1333    
1334     max_count = 7;
1335     min_count = 4;
1336     if (nextlen == 0) {
1337     max_count = 138;
1338     min_count = 3;
1339     } else if (curlen == nextlen) {
1340     max_count = 6;
1341     min_count = 3;
1342     }
1343     }
1344     }
1345    
1346    
1347     /* ===========================================================================
1348     * Send a literal or distance tree in compressed form, using the codes in
1349     * bl_tree.
1350     */
1351     static void send_tree(ct_data * tree, int max_code)
1352     {
1353     int n; /* iterates over all tree elements */
1354     int prevlen = -1; /* last emitted length */
1355     int curlen; /* length of current code */
1356     int nextlen = tree[0].Len; /* length of next code */
1357     int count = 0; /* repeat count of the current code */
1358     int max_count = 7; /* max repeat count */
1359     int min_count = 4; /* min repeat count */
1360    
1361     /* tree[max_code+1].Len = -1; *//* guard already set */
1362     if (nextlen == 0)
1363     max_count = 138, min_count = 3;
1364    
1365     for (n = 0; n <= max_code; n++) {
1366     curlen = nextlen;
1367     nextlen = tree[n + 1].Len;
1368     if (++count < max_count && curlen == nextlen) {
1369     continue;
1370     } else if (count < min_count) {
1371     do {
1372 niro 816 SEND_CODE(curlen, G2.bl_tree);
1373 niro 532 } while (--count);
1374     } else if (curlen != 0) {
1375     if (curlen != prevlen) {
1376 niro 816 SEND_CODE(curlen, G2.bl_tree);
1377 niro 532 count--;
1378     }
1379     Assert(count >= 3 && count <= 6, " 3_6?");
1380 niro 816 SEND_CODE(REP_3_6, G2.bl_tree);
1381 niro 532 send_bits(count - 3, 2);
1382     } else if (count <= 10) {
1383 niro 816 SEND_CODE(REPZ_3_10, G2.bl_tree);
1384 niro 532 send_bits(count - 3, 3);
1385     } else {
1386 niro 816 SEND_CODE(REPZ_11_138, G2.bl_tree);
1387 niro 532 send_bits(count - 11, 7);
1388     }
1389     count = 0;
1390     prevlen = curlen;
1391     if (nextlen == 0) {
1392     max_count = 138;
1393     min_count = 3;
1394     } else if (curlen == nextlen) {
1395     max_count = 6;
1396     min_count = 3;
1397     } else {
1398     max_count = 7;
1399     min_count = 4;
1400     }
1401     }
1402     }
1403    
1404    
1405     /* ===========================================================================
1406     * Construct the Huffman tree for the bit lengths and return the index in
1407     * bl_order of the last bit length code to send.
1408     */
1409     static int build_bl_tree(void)
1410     {
1411     int max_blindex; /* index of last bit length code of non zero freq */
1412    
1413     /* Determine the bit length frequencies for literal and distance trees */
1414 niro 816 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1415     scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1416 niro 532
1417     /* Build the bit length tree: */
1418 niro 816 build_tree(&G2.bl_desc);
1419 niro 532 /* opt_len now includes the length of the tree representations, except
1420     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1421     */
1422    
1423     /* Determine the number of bit length codes to send. The pkzip format
1424     * requires that at least 4 bit length codes be sent. (appnote.txt says
1425     * 3 but the actual value used is 4.)
1426     */
1427     for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1428 niro 816 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1429 niro 532 break;
1430     }
1431     /* Update opt_len to include the bit length tree and counts */
1432 niro 816 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1433     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1434 niro 532
1435     return max_blindex;
1436     }
1437    
1438    
1439     /* ===========================================================================
1440     * Send the header for a block using dynamic Huffman trees: the counts, the
1441     * lengths of the bit length codes, the literal tree and the distance tree.
1442     * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1443     */
1444     static void send_all_trees(int lcodes, int dcodes, int blcodes)
1445     {
1446     int rank; /* index in bl_order */
1447    
1448     Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1449     Assert(lcodes <= L_CODES && dcodes <= D_CODES
1450     && blcodes <= BL_CODES, "too many codes");
1451     Tracev((stderr, "\nbl counts: "));
1452     send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1453     send_bits(dcodes - 1, 5);
1454     send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1455     for (rank = 0; rank < blcodes; rank++) {
1456     Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1457 niro 816 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1458 niro 532 }
1459 niro 816 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1460 niro 532
1461 niro 816 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1462     Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1463 niro 532
1464 niro 816 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1465     Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1466 niro 532 }
1467    
1468    
1469     /* ===========================================================================
1470     * Save the match info and tally the frequency counts. Return true if
1471     * the current block must be flushed.
1472     */
1473     static int ct_tally(int dist, int lc)
1474     {
1475 niro 816 G1.l_buf[G2.last_lit++] = lc;
1476 niro 532 if (dist == 0) {
1477     /* lc is the unmatched char */
1478 niro 816 G2.dyn_ltree[lc].Freq++;
1479 niro 532 } else {
1480     /* Here, lc is the match length - MIN_MATCH */
1481     dist--; /* dist = match distance - 1 */
1482     Assert((ush) dist < (ush) MAX_DIST
1483     && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1484     && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1485     );
1486    
1487 niro 816 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1488     G2.dyn_dtree[D_CODE(dist)].Freq++;
1489 niro 532
1490 niro 816 G1.d_buf[G2.last_dist++] = dist;
1491     G2.flags |= G2.flag_bit;
1492 niro 532 }
1493 niro 816 G2.flag_bit <<= 1;
1494 niro 532
1495     /* Output the flags if they fill a byte: */
1496 niro 816 if ((G2.last_lit & 7) == 0) {
1497     G2.flag_buf[G2.last_flags++] = G2.flags;
1498     G2.flags = 0;
1499     G2.flag_bit = 1;
1500 niro 532 }
1501     /* Try to guess if it is profitable to stop the current block here */
1502 niro 816 if ((G2.last_lit & 0xfff) == 0) {
1503 niro 532 /* Compute an upper bound for the compressed length */
1504 niro 816 ulg out_length = G2.last_lit * 8L;
1505     ulg in_length = (ulg) G1.strstart - G1.block_start;
1506 niro 532 int dcode;
1507    
1508     for (dcode = 0; dcode < D_CODES; dcode++) {
1509 niro 816 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1510 niro 532 }
1511     out_length >>= 3;
1512     Trace((stderr,
1513     "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1514 niro 816 G2.last_lit, G2.last_dist, in_length, out_length,
1515 niro 532 100L - out_length * 100L / in_length));
1516 niro 816 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1517 niro 532 return 1;
1518     }
1519 niro 816 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1520 niro 532 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1521     * on 16 bit machines and because stored blocks are restricted to
1522     * 64K-1 bytes.
1523     */
1524     }
1525    
1526     /* ===========================================================================
1527     * Send the block data compressed using the given Huffman trees
1528     */
1529     static void compress_block(ct_data * ltree, ct_data * dtree)
1530     {
1531     unsigned dist; /* distance of matched string */
1532     int lc; /* match length or unmatched char (if dist == 0) */
1533     unsigned lx = 0; /* running index in l_buf */
1534     unsigned dx = 0; /* running index in d_buf */
1535     unsigned fx = 0; /* running index in flag_buf */
1536     uch flag = 0; /* current flags */
1537     unsigned code; /* the code to send */
1538     int extra; /* number of extra bits to send */
1539    
1540 niro 816 if (G2.last_lit != 0) do {
1541 niro 532 if ((lx & 7) == 0)
1542 niro 816 flag = G2.flag_buf[fx++];
1543     lc = G1.l_buf[lx++];
1544 niro 532 if ((flag & 1) == 0) {
1545     SEND_CODE(lc, ltree); /* send a literal byte */
1546 niro 984 Tracecv(lc > ' ', (stderr, " '%c' ", lc));
1547 niro 532 } else {
1548     /* Here, lc is the match length - MIN_MATCH */
1549 niro 816 code = G2.length_code[lc];
1550 niro 532 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1551     extra = extra_lbits[code];
1552     if (extra != 0) {
1553 niro 816 lc -= G2.base_length[code];
1554 niro 532 send_bits(lc, extra); /* send the extra length bits */
1555     }
1556 niro 816 dist = G1.d_buf[dx++];
1557 niro 532 /* Here, dist is the match distance - 1 */
1558     code = D_CODE(dist);
1559     Assert(code < D_CODES, "bad d_code");
1560    
1561     SEND_CODE(code, dtree); /* send the distance code */
1562     extra = extra_dbits[code];
1563     if (extra != 0) {
1564 niro 816 dist -= G2.base_dist[code];
1565 niro 532 send_bits(dist, extra); /* send the extra distance bits */
1566     }
1567     } /* literal or match pair ? */
1568     flag >>= 1;
1569 niro 816 } while (lx < G2.last_lit);
1570 niro 532
1571     SEND_CODE(END_BLOCK, ltree);
1572     }
1573    
1574    
1575     /* ===========================================================================
1576     * Determine the best encoding for the current block: dynamic trees, static
1577     * trees or store, and output the encoded block to the zip file. This function
1578     * returns the total compressed length for the file so far.
1579     */
1580     static ulg flush_block(char *buf, ulg stored_len, int eof)
1581     {
1582     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1583     int max_blindex; /* index of last bit length code of non zero freq */
1584    
1585 niro 816 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
1586 niro 532
1587     /* Construct the literal and distance trees */
1588 niro 816 build_tree(&G2.l_desc);
1589     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1590 niro 532
1591 niro 816 build_tree(&G2.d_desc);
1592     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1593 niro 532 /* At this point, opt_len and static_len are the total bit lengths of
1594     * the compressed block data, excluding the tree representations.
1595     */
1596    
1597     /* Build the bit length tree for the above two trees, and get the index
1598     * in bl_order of the last bit length code to send.
1599     */
1600     max_blindex = build_bl_tree();
1601    
1602     /* Determine the best encoding. Compute first the block length in bytes */
1603 niro 816 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1604     static_lenb = (G2.static_len + 3 + 7) >> 3;
1605 niro 532
1606     Trace((stderr,
1607     "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1608 niro 816 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1609     G2.last_lit, G2.last_dist));
1610 niro 532
1611     if (static_lenb <= opt_lenb)
1612     opt_lenb = static_lenb;
1613    
1614     /* If compression failed and this is the first and last block,
1615     * and if the zip file can be seeked (to rewrite the local header),
1616     * the whole file is transformed into a stored file:
1617     */
1618 niro 816 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1619 niro 532 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1620     if (buf == NULL)
1621     bb_error_msg("block vanished");
1622    
1623     copy_block(buf, (unsigned) stored_len, 0); /* without header */
1624 niro 816 G2.compressed_len = stored_len << 3;
1625 niro 532
1626     } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1627     /* 4: two words for the lengths */
1628     /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1629     * Otherwise we can't have processed more than WSIZE input bytes since
1630     * the last block flush, because compression would have been
1631     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1632     * transform a block into a stored block.
1633     */
1634     send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
1635 niro 816 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1636     G2.compressed_len += (stored_len + 4) << 3;
1637 niro 532
1638     copy_block(buf, (unsigned) stored_len, 1); /* with header */
1639    
1640     } else if (static_lenb == opt_lenb) {
1641     send_bits((STATIC_TREES << 1) + eof, 3);
1642 niro 816 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1643     G2.compressed_len += 3 + G2.static_len;
1644 niro 532 } else {
1645     send_bits((DYN_TREES << 1) + eof, 3);
1646 niro 816 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1647 niro 532 max_blindex + 1);
1648 niro 816 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1649     G2.compressed_len += 3 + G2.opt_len;
1650 niro 532 }
1651 niro 816 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1652 niro 532 init_block();
1653    
1654     if (eof) {
1655     bi_windup();
1656 niro 816 G2.compressed_len += 7; /* align on byte boundary */
1657 niro 532 }
1658 niro 816 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1659     G2.compressed_len - 7 * eof));
1660 niro 532
1661 niro 816 return G2.compressed_len >> 3;
1662 niro 532 }
1663    
1664    
1665     /* ===========================================================================
1666     * Update a hash value with the given input byte
1667     * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1668     * input characters, so that a running hash key can be computed from the
1669     * previous key instead of complete recalculation each time.
1670     */
1671     #define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1672    
1673    
1674     /* ===========================================================================
1675     * Same as above, but achieves better compression. We use a lazy
1676     * evaluation for matches: a match is finally adopted only if there is
1677     * no better match at the next window position.
1678     *
1679     * Processes a new input file and return its compressed length. Sets
1680     * the compressed length, crc, deflate flags and internal file
1681     * attributes.
1682     */
1683    
1684     /* Flush the current block, with given end-of-file flag.
1685     * IN assertion: strstart is set to the end of the current match. */
1686     #define FLUSH_BLOCK(eof) \
1687     flush_block( \
1688 niro 816 G1.block_start >= 0L \
1689     ? (char*)&G1.window[(unsigned)G1.block_start] \
1690 niro 532 : (char*)NULL, \
1691 niro 816 (ulg)G1.strstart - G1.block_start, \
1692 niro 532 (eof) \
1693     )
1694    
1695     /* Insert string s in the dictionary and set match_head to the previous head
1696     * of the hash chain (the most recent string with same hash key). Return
1697     * the previous length of the hash chain.
1698     * IN assertion: all calls to to INSERT_STRING are made with consecutive
1699     * input characters and the first MIN_MATCH bytes of s are valid
1700     * (except for the last MIN_MATCH-1 bytes of the input file). */
1701     #define INSERT_STRING(s, match_head) \
1702 niro 816 do { \
1703     UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1704     G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1705     head[G1.ins_h] = (s); \
1706     } while (0)
1707 niro 532
1708     static ulg deflate(void)
1709     {
1710     IPos hash_head; /* head of hash chain */
1711     IPos prev_match; /* previous match */
1712     int flush; /* set if current block must be flushed */
1713     int match_available = 0; /* set if previous match exists */
1714     unsigned match_length = MIN_MATCH - 1; /* length of best match */
1715    
1716     /* Process the input block. */
1717 niro 816 while (G1.lookahead != 0) {
1718 niro 532 /* Insert the string window[strstart .. strstart+2] in the
1719     * dictionary, and set hash_head to the head of the hash chain:
1720     */
1721 niro 816 INSERT_STRING(G1.strstart, hash_head);
1722 niro 532
1723     /* Find the longest match, discarding those <= prev_length.
1724     */
1725 niro 816 G1.prev_length = match_length;
1726     prev_match = G1.match_start;
1727 niro 532 match_length = MIN_MATCH - 1;
1728    
1729 niro 816 if (hash_head != 0 && G1.prev_length < max_lazy_match
1730     && G1.strstart - hash_head <= MAX_DIST
1731 niro 532 ) {
1732     /* To simplify the code, we prevent matches with the string
1733     * of window index 0 (in particular we have to avoid a match
1734     * of the string with itself at the start of the input file).
1735     */
1736     match_length = longest_match(hash_head);
1737     /* longest_match() sets match_start */
1738 niro 816 if (match_length > G1.lookahead)
1739     match_length = G1.lookahead;
1740 niro 532
1741     /* Ignore a length 3 match if it is too distant: */
1742 niro 816 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1743     /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1744 niro 532 * but we will ignore the current match anyway.
1745     */
1746     match_length--;
1747     }
1748     }
1749     /* If there was a match at the previous step and the current
1750     * match is not better, output the previous match:
1751     */
1752 niro 816 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1753     check_match(G1.strstart - 1, prev_match, G1.prev_length);
1754     flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1755 niro 532
1756     /* Insert in hash table all strings up to the end of the match.
1757     * strstart-1 and strstart are already inserted.
1758     */
1759 niro 816 G1.lookahead -= G1.prev_length - 1;
1760     G1.prev_length -= 2;
1761 niro 532 do {
1762 niro 816 G1.strstart++;
1763     INSERT_STRING(G1.strstart, hash_head);
1764 niro 532 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1765     * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1766     * these bytes are garbage, but it does not matter since the
1767     * next lookahead bytes will always be emitted as literals.
1768     */
1769 niro 816 } while (--G1.prev_length != 0);
1770 niro 532 match_available = 0;
1771     match_length = MIN_MATCH - 1;
1772 niro 816 G1.strstart++;
1773 niro 532 if (flush) {
1774     FLUSH_BLOCK(0);
1775 niro 816 G1.block_start = G1.strstart;
1776 niro 532 }
1777     } else if (match_available) {
1778     /* If there was no match at the previous position, output a
1779     * single literal. If there was a match but the current match
1780     * is longer, truncate the previous match to a single literal.
1781     */
1782 niro 816 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1783     if (ct_tally(0, G1.window[G1.strstart - 1])) {
1784 niro 532 FLUSH_BLOCK(0);
1785 niro 816 G1.block_start = G1.strstart;
1786 niro 532 }
1787 niro 816 G1.strstart++;
1788     G1.lookahead--;
1789 niro 532 } else {
1790     /* There is no previous match to compare with, wait for
1791     * the next step to decide.
1792     */
1793     match_available = 1;
1794 niro 816 G1.strstart++;
1795     G1.lookahead--;
1796 niro 532 }
1797 niro 816 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1798 niro 532
1799     /* Make sure that we always have enough lookahead, except
1800     * at the end of the input file. We need MAX_MATCH bytes
1801     * for the next match, plus MIN_MATCH bytes to insert the
1802     * string following the next match.
1803     */
1804 niro 816 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1805 niro 532 fill_window();
1806     }
1807     if (match_available)
1808 niro 816 ct_tally(0, G1.window[G1.strstart - 1]);
1809 niro 532
1810     return FLUSH_BLOCK(1); /* eof */
1811     }
1812    
1813    
1814     /* ===========================================================================
1815     * Initialize the bit string routines.
1816     */
1817 niro 816 static void bi_init(void)
1818 niro 532 {
1819 niro 816 G1.bi_buf = 0;
1820     G1.bi_valid = 0;
1821 niro 532 #ifdef DEBUG
1822 niro 816 G1.bits_sent = 0L;
1823 niro 532 #endif
1824     }
1825    
1826    
1827     /* ===========================================================================
1828     * Initialize the "longest match" routines for a new file
1829     */
1830     static void lm_init(ush * flagsp)
1831     {
1832     unsigned j;
1833    
1834     /* Initialize the hash table. */
1835     memset(head, 0, HASH_SIZE * sizeof(*head));
1836     /* prev will be initialized on the fly */
1837    
1838     /* speed options for the general purpose bit flag */
1839     *flagsp |= 2; /* FAST 4, SLOW 2 */
1840     /* ??? reduce max_chain_length for binary files */
1841    
1842 niro 816 G1.strstart = 0;
1843     G1.block_start = 0L;
1844 niro 532
1845 niro 816 G1.lookahead = file_read(G1.window,
1846 niro 532 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1847    
1848 niro 816 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1849     G1.eofile = 1;
1850     G1.lookahead = 0;
1851 niro 532 return;
1852     }
1853 niro 816 G1.eofile = 0;
1854 niro 532 /* Make sure that we always have enough lookahead. This is important
1855     * if input comes from a device such as a tty.
1856     */
1857 niro 816 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1858 niro 532 fill_window();
1859    
1860 niro 816 G1.ins_h = 0;
1861 niro 532 for (j = 0; j < MIN_MATCH - 1; j++)
1862 niro 816 UPDATE_HASH(G1.ins_h, G1.window[j]);
1863 niro 532 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1864     * not important since only literal bytes will be emitted.
1865     */
1866     }
1867    
1868    
1869     /* ===========================================================================
1870     * Allocate the match buffer, initialize the various tables and save the
1871     * location of the internal file attribute (ascii/binary) and method
1872     * (DEFLATE/STORE).
1873     * One callsite in zip()
1874     */
1875 niro 816 static void ct_init(void)
1876 niro 532 {
1877     int n; /* iterates over tree elements */
1878     int length; /* length value */
1879     int code; /* code value */
1880     int dist; /* distance index */
1881    
1882 niro 816 G2.compressed_len = 0L;
1883 niro 532
1884     #ifdef NOT_NEEDED
1885 niro 816 if (G2.static_dtree[0].Len != 0)
1886 niro 532 return; /* ct_init already called */
1887     #endif
1888    
1889     /* Initialize the mapping length (0..255) -> length code (0..28) */
1890     length = 0;
1891     for (code = 0; code < LENGTH_CODES - 1; code++) {
1892 niro 816 G2.base_length[code] = length;
1893 niro 532 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1894 niro 816 G2.length_code[length++] = code;
1895 niro 532 }
1896     }
1897     Assert(length == 256, "ct_init: length != 256");
1898     /* Note that the length 255 (match length 258) can be represented
1899     * in two different ways: code 284 + 5 bits or code 285, so we
1900     * overwrite length_code[255] to use the best encoding:
1901     */
1902 niro 816 G2.length_code[length - 1] = code;
1903 niro 532
1904     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1905     dist = 0;
1906     for (code = 0; code < 16; code++) {
1907 niro 816 G2.base_dist[code] = dist;
1908 niro 532 for (n = 0; n < (1 << extra_dbits[code]); n++) {
1909 niro 816 G2.dist_code[dist++] = code;
1910 niro 532 }
1911     }
1912     Assert(dist == 256, "ct_init: dist != 256");
1913     dist >>= 7; /* from now on, all distances are divided by 128 */
1914     for (; code < D_CODES; code++) {
1915 niro 816 G2.base_dist[code] = dist << 7;
1916 niro 532 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1917 niro 816 G2.dist_code[256 + dist++] = code;
1918 niro 532 }
1919     }
1920     Assert(dist == 256, "ct_init: 256+dist != 512");
1921    
1922     /* Construct the codes of the static literal tree */
1923     /* already zeroed - it's in bss
1924     for (n = 0; n <= MAX_BITS; n++)
1925 niro 816 G2.bl_count[n] = 0; */
1926 niro 532
1927     n = 0;
1928     while (n <= 143) {
1929 niro 816 G2.static_ltree[n++].Len = 8;
1930     G2.bl_count[8]++;
1931 niro 532 }
1932     while (n <= 255) {
1933 niro 816 G2.static_ltree[n++].Len = 9;
1934     G2.bl_count[9]++;
1935 niro 532 }
1936     while (n <= 279) {
1937 niro 816 G2.static_ltree[n++].Len = 7;
1938     G2.bl_count[7]++;
1939 niro 532 }
1940     while (n <= 287) {
1941 niro 816 G2.static_ltree[n++].Len = 8;
1942     G2.bl_count[8]++;
1943 niro 532 }
1944     /* Codes 286 and 287 do not exist, but we must include them in the
1945     * tree construction to get a canonical Huffman tree (longest code
1946     * all ones)
1947     */
1948 niro 816 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1949 niro 532
1950     /* The static distance tree is trivial: */
1951     for (n = 0; n < D_CODES; n++) {
1952 niro 816 G2.static_dtree[n].Len = 5;
1953     G2.static_dtree[n].Code = bi_reverse(n, 5);
1954 niro 532 }
1955    
1956     /* Initialize the first block of the first file: */
1957     init_block();
1958     }
1959    
1960    
1961     /* ===========================================================================
1962     * Deflate in to out.
1963     * IN assertions: the input and output buffers are cleared.
1964     */
1965    
1966 niro 816 static void zip(ulg time_stamp)
1967 niro 532 {
1968     ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
1969    
1970 niro 816 G1.outcnt = 0;
1971 niro 532
1972     /* Write the header to the gzip file. See algorithm.doc for the format */
1973 niro 816 /* magic header for gzip files: 1F 8B */
1974     /* compression method: 8 (DEFLATED) */
1975     /* general flags: 0 */
1976     put_32bit(0x00088b1f);
1977 niro 532 put_32bit(time_stamp);
1978    
1979     /* Write deflated file to zip file */
1980 niro 816 G1.crc = ~0;
1981 niro 532
1982 niro 816 bi_init();
1983     ct_init();
1984 niro 532 lm_init(&deflate_flags);
1985    
1986     put_8bit(deflate_flags); /* extra flags */
1987     put_8bit(3); /* OS identifier = 3 (Unix) */
1988    
1989     deflate();
1990    
1991     /* Write the crc and uncompressed size */
1992 niro 816 put_32bit(~G1.crc);
1993     put_32bit(G1.isize);
1994 niro 532
1995     flush_outbuf();
1996     }
1997    
1998    
1999     /* ======================================================================== */
2000 niro 816 static
2001 niro 1123 IF_DESKTOP(long long) int FAST_FUNC pack_gzip(unpack_info_t *info UNUSED_PARAM)
2002 niro 532 {
2003 niro 816 struct stat s;
2004 niro 532
2005 niro 984 /* Clear input and output buffers */
2006     G1.outcnt = 0;
2007     #ifdef DEBUG
2008     G1.insize = 0;
2009     #endif
2010     G1.isize = 0;
2011    
2012     /* Reinit G2.xxx */
2013     memset(&G2, 0, sizeof(G2));
2014     G2.l_desc.dyn_tree = G2.dyn_ltree;
2015     G2.l_desc.static_tree = G2.static_ltree;
2016     G2.l_desc.extra_bits = extra_lbits;
2017     G2.l_desc.extra_base = LITERALS + 1;
2018     G2.l_desc.elems = L_CODES;
2019     G2.l_desc.max_length = MAX_BITS;
2020     //G2.l_desc.max_code = 0;
2021     G2.d_desc.dyn_tree = G2.dyn_dtree;
2022     G2.d_desc.static_tree = G2.static_dtree;
2023     G2.d_desc.extra_bits = extra_dbits;
2024     //G2.d_desc.extra_base = 0;
2025     G2.d_desc.elems = D_CODES;
2026     G2.d_desc.max_length = MAX_BITS;
2027     //G2.d_desc.max_code = 0;
2028     G2.bl_desc.dyn_tree = G2.bl_tree;
2029     //G2.bl_desc.static_tree = NULL;
2030     G2.bl_desc.extra_bits = extra_blbits,
2031     //G2.bl_desc.extra_base = 0;
2032     G2.bl_desc.elems = BL_CODES;
2033     G2.bl_desc.max_length = MAX_BL_BITS;
2034     //G2.bl_desc.max_code = 0;
2035    
2036 niro 816 s.st_ctime = 0;
2037     fstat(STDIN_FILENO, &s);
2038     zip(s.st_ctime);
2039     return 0;
2040     }
2041 niro 532
2042 niro 984 #if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2043     static const char gzip_longopts[] ALIGN1 =
2044     "stdout\0" No_argument "c"
2045     "to-stdout\0" No_argument "c"
2046     "force\0" No_argument "f"
2047     "verbose\0" No_argument "v"
2048     #if ENABLE_GUNZIP
2049     "decompress\0" No_argument "d"
2050     "uncompress\0" No_argument "d"
2051     "test\0" No_argument "t"
2052     #endif
2053     "quiet\0" No_argument "q"
2054     "fast\0" No_argument "1"
2055     "best\0" No_argument "9"
2056     ;
2057     #endif
2058    
2059 niro 816 /*
2060 niro 1123 * Linux kernel build uses gzip -d -n. We accept and ignore -n.
2061 niro 816 * Man page says:
2062     * -n --no-name
2063     * gzip: do not save the original file name and time stamp.
2064     * (The original name is always saved if the name had to be truncated.)
2065     * gunzip: do not restore the original file name/time even if present
2066     * (remove only the gzip suffix from the compressed file name).
2067     * This option is the default when decompressing.
2068     * -N --name
2069     * gzip: always save the original file name and time stamp (this is the default)
2070     * gunzip: restore the original file name and time stamp if present.
2071     */
2072 niro 532
2073 niro 816 int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2074     #if ENABLE_GUNZIP
2075     int gzip_main(int argc, char **argv)
2076 niro 532 #else
2077 niro 816 int gzip_main(int argc UNUSED_PARAM, char **argv)
2078 niro 532 #endif
2079 niro 816 {
2080     unsigned opt;
2081 niro 532
2082 niro 984 #if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2083     applet_long_options = gzip_longopts;
2084     #endif
2085 niro 816 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2086 niro 984 opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "q123456789n");
2087 niro 816 #if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2088     if (opt & 0x18) // -d and/or -t
2089     return gunzip_main(argc, argv);
2090     #endif
2091     option_mask32 &= 0x7; /* ignore -q, -0..9 */
2092     //if (opt & 0x1) // -c
2093     //if (opt & 0x2) // -f
2094     //if (opt & 0x4) // -v
2095     argv += optind;
2096 niro 532
2097 niro 984 SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2098 niro 816 + sizeof(struct globals));
2099 niro 532
2100 niro 816 /* Allocate all global buffers (for DYN_ALLOC option) */
2101     ALLOC(uch, G1.l_buf, INBUFSIZ);
2102     ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2103     ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2104     ALLOC(uch, G1.window, 2L * WSIZE);
2105     ALLOC(ush, G1.prev, 1L << BITS);
2106 niro 532
2107 niro 816 /* Initialise the CRC32 table */
2108     G1.crc_32_tab = crc32_filltable(NULL, 0);
2109 niro 532
2110 niro 1123 return bbunpack(argv, pack_gzip, append_ext, "gz");
2111 niro 532 }