Magellan Linux

Contents of /trunk/mkinitrd-magellan/busybox/archival/gzip.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 984 - (show annotations) (download)
Sun May 30 11:32:42 2010 UTC (13 years, 11 months ago) by niro
File MIME type: text/plain
File size: 65853 byte(s)
-updated to busybox-1.16.1 and enabled blkid/uuid support in default config
1 /* vi: set sw=4 ts=4: */
2 /*
3 * Gzip implementation for busybox
4 *
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6 *
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
11 *
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
15 *
16 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
17 */
18
19 /* big objects in bss:
20 * 00000020 b bl_count
21 * 00000074 b base_length
22 * 00000078 b base_dist
23 * 00000078 b static_dtree
24 * 0000009c b bl_tree
25 * 000000f4 b dyn_dtree
26 * 00000100 b length_code
27 * 00000200 b dist_code
28 * 0000023d b depth
29 * 00000400 b flag_buf
30 * 0000047a b heap
31 * 00000480 b static_ltree
32 * 000008f4 b dyn_ltree
33 */
34
35 /* TODO: full support for -v for DESKTOP
36 * "/usr/bin/gzip -v a bogus aa" should say:
37 a: 85.1% -- replaced with a.gz
38 gzip: bogus: No such file or directory
39 aa: 85.1% -- replaced with aa.gz
40 */
41
42 #include "libbb.h"
43 #include "unarchive.h"
44
45
46 /* ===========================================================================
47 */
48 //#define DEBUG 1
49 /* Diagnostic functions */
50 #ifdef DEBUG
51 # define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
52 # define Trace(x) fprintf x
53 # define Tracev(x) {if (verbose) fprintf x; }
54 # define Tracevv(x) {if (verbose > 1) fprintf x; }
55 # define Tracec(c,x) {if (verbose && (c)) fprintf x; }
56 # define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
57 #else
58 # define Assert(cond,msg)
59 # define Trace(x)
60 # define Tracev(x)
61 # define Tracevv(x)
62 # define Tracec(c,x)
63 # define Tracecv(c,x)
64 #endif
65
66
67 /* ===========================================================================
68 */
69 #define SMALL_MEM
70
71 #ifndef INBUFSIZ
72 # ifdef SMALL_MEM
73 # define INBUFSIZ 0x2000 /* input buffer size */
74 # else
75 # define INBUFSIZ 0x8000 /* input buffer size */
76 # endif
77 #endif
78
79 #ifndef OUTBUFSIZ
80 # ifdef SMALL_MEM
81 # define OUTBUFSIZ 8192 /* output buffer size */
82 # else
83 # define OUTBUFSIZ 16384 /* output buffer size */
84 # endif
85 #endif
86
87 #ifndef DIST_BUFSIZE
88 # ifdef SMALL_MEM
89 # define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
90 # else
91 # define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
92 # endif
93 #endif
94
95 /* gzip flag byte */
96 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
97 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
98 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
99 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
100 #define COMMENT 0x10 /* bit 4 set: file comment present */
101 #define RESERVED 0xC0 /* bit 6,7: reserved */
102
103 /* internal file attribute */
104 #define UNKNOWN 0xffff
105 #define BINARY 0
106 #define ASCII 1
107
108 #ifndef WSIZE
109 # define WSIZE 0x8000 /* window size--must be a power of two, and */
110 #endif /* at least 32K for zip's deflate method */
111
112 #define MIN_MATCH 3
113 #define MAX_MATCH 258
114 /* The minimum and maximum match lengths */
115
116 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
117 /* Minimum amount of lookahead, except at the end of the input file.
118 * See deflate.c for comments about the MIN_MATCH+1.
119 */
120
121 #define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
122 /* In order to simplify the code, particularly on 16 bit machines, match
123 * distances are limited to MAX_DIST instead of WSIZE.
124 */
125
126 #ifndef MAX_PATH_LEN
127 # define MAX_PATH_LEN 1024 /* max pathname length */
128 #endif
129
130 #define seekable() 0 /* force sequential output */
131 #define translate_eol 0 /* no option -a yet */
132
133 #ifndef BITS
134 # define BITS 16
135 #endif
136 #define INIT_BITS 9 /* Initial number of bits per code */
137
138 #define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
139 /* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
140 * It's a pity that old uncompress does not check bit 0x20. That makes
141 * extension of the format actually undesirable because old compress
142 * would just crash on the new format instead of giving a meaningful
143 * error message. It does check the number of bits, but it's more
144 * helpful to say "unsupported format, get a new version" than
145 * "can only handle 16 bits".
146 */
147
148 #ifdef MAX_EXT_CHARS
149 # define MAX_SUFFIX MAX_EXT_CHARS
150 #else
151 # define MAX_SUFFIX 30
152 #endif
153
154
155 /* ===========================================================================
156 * Compile with MEDIUM_MEM to reduce the memory requirements or
157 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
158 * entire input file can be held in memory (not possible on 16 bit systems).
159 * Warning: defining these symbols affects HASH_BITS (see below) and thus
160 * affects the compression ratio. The compressed output
161 * is still correct, and might even be smaller in some cases.
162 */
163
164 #ifdef SMALL_MEM
165 # define HASH_BITS 13 /* Number of bits used to hash strings */
166 #endif
167 #ifdef MEDIUM_MEM
168 # define HASH_BITS 14
169 #endif
170 #ifndef HASH_BITS
171 # define HASH_BITS 15
172 /* For portability to 16 bit machines, do not use values above 15. */
173 #endif
174
175 #define HASH_SIZE (unsigned)(1<<HASH_BITS)
176 #define HASH_MASK (HASH_SIZE-1)
177 #define WMASK (WSIZE-1)
178 /* HASH_SIZE and WSIZE must be powers of two */
179 #ifndef TOO_FAR
180 # define TOO_FAR 4096
181 #endif
182 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
183
184
185 /* ===========================================================================
186 * These types are not really 'char', 'short' and 'long'
187 */
188 typedef uint8_t uch;
189 typedef uint16_t ush;
190 typedef uint32_t ulg;
191 typedef int32_t lng;
192
193 typedef ush Pos;
194 typedef unsigned IPos;
195 /* A Pos is an index in the character window. We use short instead of int to
196 * save space in the various tables. IPos is used only for parameter passing.
197 */
198
199 enum {
200 WINDOW_SIZE = 2 * WSIZE,
201 /* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
202 * input file length plus MIN_LOOKAHEAD.
203 */
204
205 max_chain_length = 4096,
206 /* To speed up deflation, hash chains are never searched beyond this length.
207 * A higher limit improves compression ratio but degrades the speed.
208 */
209
210 max_lazy_match = 258,
211 /* Attempt to find a better match only when the current match is strictly
212 * smaller than this value. This mechanism is used only for compression
213 * levels >= 4.
214 */
215
216 max_insert_length = max_lazy_match,
217 /* Insert new strings in the hash table only if the match length
218 * is not greater than this length. This saves time but degrades compression.
219 * max_insert_length is used only for compression levels <= 3.
220 */
221
222 good_match = 32,
223 /* Use a faster search when the previous match is longer than this */
224
225 /* Values for max_lazy_match, good_match and max_chain_length, depending on
226 * the desired pack level (0..9). The values given below have been tuned to
227 * exclude worst case performance for pathological files. Better values may be
228 * found for specific files.
229 */
230
231 nice_match = 258, /* Stop searching when current match exceeds this */
232 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
233 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
234 * meaning.
235 */
236 };
237
238
239 struct globals {
240
241 lng block_start;
242
243 /* window position at the beginning of the current output block. Gets
244 * negative when the window is moved backwards.
245 */
246 unsigned ins_h; /* hash index of string to be inserted */
247
248 #define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
249 /* Number of bits by which ins_h and del_h must be shifted at each
250 * input step. It must be such that after MIN_MATCH steps, the oldest
251 * byte no longer takes part in the hash key, that is:
252 * H_SHIFT * MIN_MATCH >= HASH_BITS
253 */
254
255 unsigned prev_length;
256
257 /* Length of the best match at previous step. Matches not greater than this
258 * are discarded. This is used in the lazy match evaluation.
259 */
260
261 unsigned strstart; /* start of string to insert */
262 unsigned match_start; /* start of matching string */
263 unsigned lookahead; /* number of valid bytes ahead in window */
264
265 /* ===========================================================================
266 */
267 #define DECLARE(type, array, size) \
268 type * array
269 #define ALLOC(type, array, size) \
270 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type))
271 #define FREE(array) \
272 do { free(array); array = NULL; } while (0)
273
274 /* global buffers */
275
276 /* buffer for literals or lengths */
277 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
278 DECLARE(uch, l_buf, INBUFSIZ);
279
280 DECLARE(ush, d_buf, DIST_BUFSIZE);
281 DECLARE(uch, outbuf, OUTBUFSIZ);
282
283 /* Sliding window. Input bytes are read into the second half of the window,
284 * and move to the first half later to keep a dictionary of at least WSIZE
285 * bytes. With this organization, matches are limited to a distance of
286 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
287 * performed with a length multiple of the block size. Also, it limits
288 * the window size to 64K, which is quite useful on MSDOS.
289 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
290 * be less efficient).
291 */
292 DECLARE(uch, window, 2L * WSIZE);
293
294 /* Link to older string with same hash index. To limit the size of this
295 * array to 64K, this link is maintained only for the last 32K strings.
296 * An index in this array is thus a window index modulo 32K.
297 */
298 /* DECLARE(Pos, prev, WSIZE); */
299 DECLARE(ush, prev, 1L << BITS);
300
301 /* Heads of the hash chains or 0. */
302 /* DECLARE(Pos, head, 1<<HASH_BITS); */
303 #define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
304
305 /* number of input bytes */
306 ulg isize; /* only 32 bits stored in .gz file */
307
308 /* bbox always use stdin/stdout */
309 #define ifd STDIN_FILENO /* input file descriptor */
310 #define ofd STDOUT_FILENO /* output file descriptor */
311
312 #ifdef DEBUG
313 unsigned insize; /* valid bytes in l_buf */
314 #endif
315 unsigned outcnt; /* bytes in output buffer */
316
317 smallint eofile; /* flag set at end of input file */
318
319 /* ===========================================================================
320 * Local data used by the "bit string" routines.
321 */
322
323 unsigned short bi_buf;
324
325 /* Output buffer. bits are inserted starting at the bottom (least significant
326 * bits).
327 */
328
329 #undef BUF_SIZE
330 #define BUF_SIZE (8 * sizeof(G1.bi_buf))
331 /* Number of bits used within bi_buf. (bi_buf might be implemented on
332 * more than 16 bits on some systems.)
333 */
334
335 int bi_valid;
336
337 /* Current input function. Set to mem_read for in-memory compression */
338
339 #ifdef DEBUG
340 ulg bits_sent; /* bit length of the compressed data */
341 #endif
342
343 uint32_t *crc_32_tab;
344 uint32_t crc; /* shift register contents */
345 };
346
347 #define G1 (*(ptr_to_globals - 1))
348
349
350 /* ===========================================================================
351 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
352 * (used for the compressed data only)
353 */
354 static void flush_outbuf(void)
355 {
356 if (G1.outcnt == 0)
357 return;
358
359 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
360 G1.outcnt = 0;
361 }
362
363
364 /* ===========================================================================
365 */
366 /* put_8bit is used for the compressed output */
367 #define put_8bit(c) \
368 do { \
369 G1.outbuf[G1.outcnt++] = (c); \
370 if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
371 } while (0)
372
373 /* Output a 16 bit value, lsb first */
374 static void put_16bit(ush w)
375 {
376 if (G1.outcnt < OUTBUFSIZ - 2) {
377 G1.outbuf[G1.outcnt++] = w;
378 G1.outbuf[G1.outcnt++] = w >> 8;
379 } else {
380 put_8bit(w);
381 put_8bit(w >> 8);
382 }
383 }
384
385 static void put_32bit(ulg n)
386 {
387 put_16bit(n);
388 put_16bit(n >> 16);
389 }
390
391 /* ===========================================================================
392 * Run a set of bytes through the crc shift register. If s is a NULL
393 * pointer, then initialize the crc shift register contents instead.
394 * Return the current crc in either case.
395 */
396 static uint32_t updcrc(uch * s, unsigned n)
397 {
398 uint32_t c = G1.crc;
399 while (n) {
400 c = G1.crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
401 n--;
402 }
403 G1.crc = c;
404 return c;
405 }
406
407
408 /* ===========================================================================
409 * Read a new buffer from the current input file, perform end-of-line
410 * translation, and update the crc and input file size.
411 * IN assertion: size >= 2 (for end-of-line translation)
412 */
413 static unsigned file_read(void *buf, unsigned size)
414 {
415 unsigned len;
416
417 Assert(G1.insize == 0, "l_buf not empty");
418
419 len = safe_read(ifd, buf, size);
420 if (len == (unsigned)(-1) || len == 0)
421 return len;
422
423 updcrc(buf, len);
424 G1.isize += len;
425 return len;
426 }
427
428
429 /* ===========================================================================
430 * Send a value on a given number of bits.
431 * IN assertion: length <= 16 and value fits in length bits.
432 */
433 static void send_bits(int value, int length)
434 {
435 #ifdef DEBUG
436 Tracev((stderr, " l %2d v %4x ", length, value));
437 Assert(length > 0 && length <= 15, "invalid length");
438 G1.bits_sent += length;
439 #endif
440 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
441 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
442 * unused bits in value.
443 */
444 if (G1.bi_valid > (int) BUF_SIZE - length) {
445 G1.bi_buf |= (value << G1.bi_valid);
446 put_16bit(G1.bi_buf);
447 G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
448 G1.bi_valid += length - BUF_SIZE;
449 } else {
450 G1.bi_buf |= value << G1.bi_valid;
451 G1.bi_valid += length;
452 }
453 }
454
455
456 /* ===========================================================================
457 * Reverse the first len bits of a code, using straightforward code (a faster
458 * method would use a table)
459 * IN assertion: 1 <= len <= 15
460 */
461 static unsigned bi_reverse(unsigned code, int len)
462 {
463 unsigned res = 0;
464
465 while (1) {
466 res |= code & 1;
467 if (--len <= 0) return res;
468 code >>= 1;
469 res <<= 1;
470 }
471 }
472
473
474 /* ===========================================================================
475 * Write out any remaining bits in an incomplete byte.
476 */
477 static void bi_windup(void)
478 {
479 if (G1.bi_valid > 8) {
480 put_16bit(G1.bi_buf);
481 } else if (G1.bi_valid > 0) {
482 put_8bit(G1.bi_buf);
483 }
484 G1.bi_buf = 0;
485 G1.bi_valid = 0;
486 #ifdef DEBUG
487 G1.bits_sent = (G1.bits_sent + 7) & ~7;
488 #endif
489 }
490
491
492 /* ===========================================================================
493 * Copy a stored block to the zip file, storing first the length and its
494 * one's complement if requested.
495 */
496 static void copy_block(char *buf, unsigned len, int header)
497 {
498 bi_windup(); /* align on byte boundary */
499
500 if (header) {
501 put_16bit(len);
502 put_16bit(~len);
503 #ifdef DEBUG
504 G1.bits_sent += 2 * 16;
505 #endif
506 }
507 #ifdef DEBUG
508 G1.bits_sent += (ulg) len << 3;
509 #endif
510 while (len--) {
511 put_8bit(*buf++);
512 }
513 }
514
515
516 /* ===========================================================================
517 * Fill the window when the lookahead becomes insufficient.
518 * Updates strstart and lookahead, and sets eofile if end of input file.
519 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
520 * OUT assertions: at least one byte has been read, or eofile is set;
521 * file reads are performed for at least two bytes (required for the
522 * translate_eol option).
523 */
524 static void fill_window(void)
525 {
526 unsigned n, m;
527 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
528 /* Amount of free space at the end of the window. */
529
530 /* If the window is almost full and there is insufficient lookahead,
531 * move the upper half to the lower one to make room in the upper half.
532 */
533 if (more == (unsigned) -1) {
534 /* Very unlikely, but possible on 16 bit machine if strstart == 0
535 * and lookahead == 1 (input done one byte at time)
536 */
537 more--;
538 } else if (G1.strstart >= WSIZE + MAX_DIST) {
539 /* By the IN assertion, the window is not empty so we can't confuse
540 * more == 0 with more == 64K on a 16 bit machine.
541 */
542 Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
543
544 memcpy(G1.window, G1.window + WSIZE, WSIZE);
545 G1.match_start -= WSIZE;
546 G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
547
548 G1.block_start -= WSIZE;
549
550 for (n = 0; n < HASH_SIZE; n++) {
551 m = head[n];
552 head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
553 }
554 for (n = 0; n < WSIZE; n++) {
555 m = G1.prev[n];
556 G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
557 /* If n is not on any hash chain, prev[n] is garbage but
558 * its value will never be used.
559 */
560 }
561 more += WSIZE;
562 }
563 /* At this point, more >= 2 */
564 if (!G1.eofile) {
565 n = file_read(G1.window + G1.strstart + G1.lookahead, more);
566 if (n == 0 || n == (unsigned) -1) {
567 G1.eofile = 1;
568 } else {
569 G1.lookahead += n;
570 }
571 }
572 }
573
574
575 /* ===========================================================================
576 * Set match_start to the longest match starting at the given string and
577 * return its length. Matches shorter or equal to prev_length are discarded,
578 * in which case the result is equal to prev_length and match_start is
579 * garbage.
580 * IN assertions: cur_match is the head of the hash chain for the current
581 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
582 */
583
584 /* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
585 * match.s. The code is functionally equivalent, so you can use the C version
586 * if desired.
587 */
588 static int longest_match(IPos cur_match)
589 {
590 unsigned chain_length = max_chain_length; /* max hash chain length */
591 uch *scan = G1.window + G1.strstart; /* current string */
592 uch *match; /* matched string */
593 int len; /* length of current match */
594 int best_len = G1.prev_length; /* best match length so far */
595 IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
596 /* Stop when cur_match becomes <= limit. To simplify the code,
597 * we prevent matches with the string of window index 0.
598 */
599
600 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
601 * It is easy to get rid of this optimization if necessary.
602 */
603 #if HASH_BITS < 8 || MAX_MATCH != 258
604 # error Code too clever
605 #endif
606 uch *strend = G1.window + G1.strstart + MAX_MATCH;
607 uch scan_end1 = scan[best_len - 1];
608 uch scan_end = scan[best_len];
609
610 /* Do not waste too much time if we already have a good match: */
611 if (G1.prev_length >= good_match) {
612 chain_length >>= 2;
613 }
614 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
615
616 do {
617 Assert(cur_match < G1.strstart, "no future");
618 match = G1.window + cur_match;
619
620 /* Skip to next match if the match length cannot increase
621 * or if the match length is less than 2:
622 */
623 if (match[best_len] != scan_end ||
624 match[best_len - 1] != scan_end1 ||
625 *match != *scan || *++match != scan[1])
626 continue;
627
628 /* The check at best_len-1 can be removed because it will be made
629 * again later. (This heuristic is not always a win.)
630 * It is not necessary to compare scan[2] and match[2] since they
631 * are always equal when the other bytes match, given that
632 * the hash keys are equal and that HASH_BITS >= 8.
633 */
634 scan += 2, match++;
635
636 /* We check for insufficient lookahead only every 8th comparison;
637 * the 256th check will be made at strstart+258.
638 */
639 do {
640 } while (*++scan == *++match && *++scan == *++match &&
641 *++scan == *++match && *++scan == *++match &&
642 *++scan == *++match && *++scan == *++match &&
643 *++scan == *++match && *++scan == *++match && scan < strend);
644
645 len = MAX_MATCH - (int) (strend - scan);
646 scan = strend - MAX_MATCH;
647
648 if (len > best_len) {
649 G1.match_start = cur_match;
650 best_len = len;
651 if (len >= nice_match)
652 break;
653 scan_end1 = scan[best_len - 1];
654 scan_end = scan[best_len];
655 }
656 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
657 && --chain_length != 0);
658
659 return best_len;
660 }
661
662
663 #ifdef DEBUG
664 /* ===========================================================================
665 * Check that the match at match_start is indeed a match.
666 */
667 static void check_match(IPos start, IPos match, int length)
668 {
669 /* check that the match is indeed a match */
670 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
671 bb_error_msg(" start %d, match %d, length %d", start, match, length);
672 bb_error_msg("invalid match");
673 }
674 if (verbose > 1) {
675 bb_error_msg("\\[%d,%d]", start - match, length);
676 do {
677 fputc(G1.window[start++], stderr);
678 } while (--length != 0);
679 }
680 }
681 #else
682 # define check_match(start, match, length) ((void)0)
683 #endif
684
685
686 /* trees.c -- output deflated data using Huffman coding
687 * Copyright (C) 1992-1993 Jean-loup Gailly
688 * This is free software; you can redistribute it and/or modify it under the
689 * terms of the GNU General Public License, see the file COPYING.
690 */
691
692 /* PURPOSE
693 * Encode various sets of source values using variable-length
694 * binary code trees.
695 *
696 * DISCUSSION
697 * The PKZIP "deflation" process uses several Huffman trees. The more
698 * common source values are represented by shorter bit sequences.
699 *
700 * Each code tree is stored in the ZIP file in a compressed form
701 * which is itself a Huffman encoding of the lengths of
702 * all the code strings (in ascending order by source values).
703 * The actual code strings are reconstructed from the lengths in
704 * the UNZIP process, as described in the "application note"
705 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
706 *
707 * REFERENCES
708 * Lynch, Thomas J.
709 * Data Compression: Techniques and Applications, pp. 53-55.
710 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
711 *
712 * Storer, James A.
713 * Data Compression: Methods and Theory, pp. 49-50.
714 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
715 *
716 * Sedgewick, R.
717 * Algorithms, p290.
718 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
719 *
720 * INTERFACE
721 * void ct_init()
722 * Allocate the match buffer, initialize the various tables [and save
723 * the location of the internal file attribute (ascii/binary) and
724 * method (DEFLATE/STORE) -- deleted in bbox]
725 *
726 * void ct_tally(int dist, int lc);
727 * Save the match info and tally the frequency counts.
728 *
729 * ulg flush_block(char *buf, ulg stored_len, int eof)
730 * Determine the best encoding for the current block: dynamic trees,
731 * static trees or store, and output the encoded block to the zip
732 * file. Returns the total compressed length for the file so far.
733 */
734
735 #define MAX_BITS 15
736 /* All codes must not exceed MAX_BITS bits */
737
738 #define MAX_BL_BITS 7
739 /* Bit length codes must not exceed MAX_BL_BITS bits */
740
741 #define LENGTH_CODES 29
742 /* number of length codes, not counting the special END_BLOCK code */
743
744 #define LITERALS 256
745 /* number of literal bytes 0..255 */
746
747 #define END_BLOCK 256
748 /* end of block literal code */
749
750 #define L_CODES (LITERALS+1+LENGTH_CODES)
751 /* number of Literal or Length codes, including the END_BLOCK code */
752
753 #define D_CODES 30
754 /* number of distance codes */
755
756 #define BL_CODES 19
757 /* number of codes used to transfer the bit lengths */
758
759 /* extra bits for each length code */
760 static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
761 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
762 4, 4, 5, 5, 5, 5, 0
763 };
764
765 /* extra bits for each distance code */
766 static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
767 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
768 10, 10, 11, 11, 12, 12, 13, 13
769 };
770
771 /* extra bits for each bit length code */
772 static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
773 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
774
775 /* number of codes at each bit length for an optimal tree */
776 static const uint8_t bl_order[BL_CODES] ALIGN1 = {
777 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
778
779 #define STORED_BLOCK 0
780 #define STATIC_TREES 1
781 #define DYN_TREES 2
782 /* The three kinds of block type */
783
784 #ifndef LIT_BUFSIZE
785 # ifdef SMALL_MEM
786 # define LIT_BUFSIZE 0x2000
787 # else
788 # ifdef MEDIUM_MEM
789 # define LIT_BUFSIZE 0x4000
790 # else
791 # define LIT_BUFSIZE 0x8000
792 # endif
793 # endif
794 #endif
795 #ifndef DIST_BUFSIZE
796 # define DIST_BUFSIZE LIT_BUFSIZE
797 #endif
798 /* Sizes of match buffers for literals/lengths and distances. There are
799 * 4 reasons for limiting LIT_BUFSIZE to 64K:
800 * - frequencies can be kept in 16 bit counters
801 * - if compression is not successful for the first block, all input data is
802 * still in the window so we can still emit a stored block even when input
803 * comes from standard input. (This can also be done for all blocks if
804 * LIT_BUFSIZE is not greater than 32K.)
805 * - if compression is not successful for a file smaller than 64K, we can
806 * even emit a stored file instead of a stored block (saving 5 bytes).
807 * - creating new Huffman trees less frequently may not provide fast
808 * adaptation to changes in the input data statistics. (Take for
809 * example a binary file with poorly compressible code followed by
810 * a highly compressible string table.) Smaller buffer sizes give
811 * fast adaptation but have of course the overhead of transmitting trees
812 * more frequently.
813 * - I can't count above 4
814 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
815 * memory at the expense of compression). Some optimizations would be possible
816 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
817 */
818 #define REP_3_6 16
819 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
820 #define REPZ_3_10 17
821 /* repeat a zero length 3-10 times (3 bits of repeat count) */
822 #define REPZ_11_138 18
823 /* repeat a zero length 11-138 times (7 bits of repeat count) */
824
825 /* ===========================================================================
826 */
827 /* Data structure describing a single value and its code string. */
828 typedef struct ct_data {
829 union {
830 ush freq; /* frequency count */
831 ush code; /* bit string */
832 } fc;
833 union {
834 ush dad; /* father node in Huffman tree */
835 ush len; /* length of bit string */
836 } dl;
837 } ct_data;
838
839 #define Freq fc.freq
840 #define Code fc.code
841 #define Dad dl.dad
842 #define Len dl.len
843
844 #define HEAP_SIZE (2*L_CODES + 1)
845 /* maximum heap size */
846
847 typedef struct tree_desc {
848 ct_data *dyn_tree; /* the dynamic tree */
849 ct_data *static_tree; /* corresponding static tree or NULL */
850 const uint8_t *extra_bits; /* extra bits for each code or NULL */
851 int extra_base; /* base index for extra_bits */
852 int elems; /* max number of elements in the tree */
853 int max_length; /* max bit length for the codes */
854 int max_code; /* largest code with non zero frequency */
855 } tree_desc;
856
857 struct globals2 {
858
859 ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
860 int heap_len; /* number of elements in the heap */
861 int heap_max; /* element of largest frequency */
862
863 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
864 * The same heap array is used to build all trees.
865 */
866
867 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
868 ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
869
870 ct_data static_ltree[L_CODES + 2];
871
872 /* The static literal tree. Since the bit lengths are imposed, there is no
873 * need for the L_CODES extra codes used during heap construction. However
874 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
875 * below).
876 */
877
878 ct_data static_dtree[D_CODES];
879
880 /* The static distance tree. (Actually a trivial tree since all codes use
881 * 5 bits.)
882 */
883
884 ct_data bl_tree[2 * BL_CODES + 1];
885
886 /* Huffman tree for the bit lengths */
887
888 tree_desc l_desc;
889 tree_desc d_desc;
890 tree_desc bl_desc;
891
892 ush bl_count[MAX_BITS + 1];
893
894 /* The lengths of the bit length codes are sent in order of decreasing
895 * probability, to avoid transmitting the lengths for unused bit length codes.
896 */
897
898 uch depth[2 * L_CODES + 1];
899
900 /* Depth of each subtree used as tie breaker for trees of equal frequency */
901
902 uch length_code[MAX_MATCH - MIN_MATCH + 1];
903
904 /* length code for each normalized match length (0 == MIN_MATCH) */
905
906 uch dist_code[512];
907
908 /* distance codes. The first 256 values correspond to the distances
909 * 3 .. 258, the last 256 values correspond to the top 8 bits of
910 * the 15 bit distances.
911 */
912
913 int base_length[LENGTH_CODES];
914
915 /* First normalized length for each code (0 = MIN_MATCH) */
916
917 int base_dist[D_CODES];
918
919 /* First normalized distance for each code (0 = distance of 1) */
920
921 uch flag_buf[LIT_BUFSIZE / 8];
922
923 /* flag_buf is a bit array distinguishing literals from lengths in
924 * l_buf, thus indicating the presence or absence of a distance.
925 */
926
927 unsigned last_lit; /* running index in l_buf */
928 unsigned last_dist; /* running index in d_buf */
929 unsigned last_flags; /* running index in flag_buf */
930 uch flags; /* current flags not yet saved in flag_buf */
931 uch flag_bit; /* current bit used in flags */
932
933 /* bits are filled in flags starting at bit 0 (least significant).
934 * Note: these flags are overkill in the current code since we don't
935 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
936 */
937
938 ulg opt_len; /* bit length of current block with optimal trees */
939 ulg static_len; /* bit length of current block with static trees */
940
941 ulg compressed_len; /* total bit length of compressed file */
942 };
943
944 #define G2ptr ((struct globals2*)(ptr_to_globals))
945 #define G2 (*G2ptr)
946
947
948 /* ===========================================================================
949 */
950 static void gen_codes(ct_data * tree, int max_code);
951 static void build_tree(tree_desc * desc);
952 static void scan_tree(ct_data * tree, int max_code);
953 static void send_tree(ct_data * tree, int max_code);
954 static int build_bl_tree(void);
955 static void send_all_trees(int lcodes, int dcodes, int blcodes);
956 static void compress_block(ct_data * ltree, ct_data * dtree);
957
958
959 #ifndef DEBUG
960 /* Send a code of the given tree. c and tree must not have side effects */
961 # define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
962 #else
963 # define SEND_CODE(c, tree) \
964 { \
965 if (verbose > 1) bb_error_msg("\ncd %3d ",(c)); \
966 send_bits(tree[c].Code, tree[c].Len); \
967 }
968 #endif
969
970 #define D_CODE(dist) \
971 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
972 /* Mapping from a distance to a distance code. dist is the distance - 1 and
973 * must not have side effects. dist_code[256] and dist_code[257] are never
974 * used.
975 * The arguments must not have side effects.
976 */
977
978
979 /* ===========================================================================
980 * Initialize a new block.
981 */
982 static void init_block(void)
983 {
984 int n; /* iterates over tree elements */
985
986 /* Initialize the trees. */
987 for (n = 0; n < L_CODES; n++)
988 G2.dyn_ltree[n].Freq = 0;
989 for (n = 0; n < D_CODES; n++)
990 G2.dyn_dtree[n].Freq = 0;
991 for (n = 0; n < BL_CODES; n++)
992 G2.bl_tree[n].Freq = 0;
993
994 G2.dyn_ltree[END_BLOCK].Freq = 1;
995 G2.opt_len = G2.static_len = 0;
996 G2.last_lit = G2.last_dist = G2.last_flags = 0;
997 G2.flags = 0;
998 G2.flag_bit = 1;
999 }
1000
1001
1002 /* ===========================================================================
1003 * Restore the heap property by moving down the tree starting at node k,
1004 * exchanging a node with the smallest of its two sons if necessary, stopping
1005 * when the heap property is re-established (each father smaller than its
1006 * two sons).
1007 */
1008
1009 /* Compares to subtrees, using the tree depth as tie breaker when
1010 * the subtrees have equal frequency. This minimizes the worst case length. */
1011 #define SMALLER(tree, n, m) \
1012 (tree[n].Freq < tree[m].Freq \
1013 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1014
1015 static void pqdownheap(ct_data * tree, int k)
1016 {
1017 int v = G2.heap[k];
1018 int j = k << 1; /* left son of k */
1019
1020 while (j <= G2.heap_len) {
1021 /* Set j to the smallest of the two sons: */
1022 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1023 j++;
1024
1025 /* Exit if v is smaller than both sons */
1026 if (SMALLER(tree, v, G2.heap[j]))
1027 break;
1028
1029 /* Exchange v with the smallest son */
1030 G2.heap[k] = G2.heap[j];
1031 k = j;
1032
1033 /* And continue down the tree, setting j to the left son of k */
1034 j <<= 1;
1035 }
1036 G2.heap[k] = v;
1037 }
1038
1039
1040 /* ===========================================================================
1041 * Compute the optimal bit lengths for a tree and update the total bit length
1042 * for the current block.
1043 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1044 * above are the tree nodes sorted by increasing frequency.
1045 * OUT assertions: the field len is set to the optimal bit length, the
1046 * array bl_count contains the frequencies for each bit length.
1047 * The length opt_len is updated; static_len is also updated if stree is
1048 * not null.
1049 */
1050 static void gen_bitlen(tree_desc * desc)
1051 {
1052 ct_data *tree = desc->dyn_tree;
1053 const uint8_t *extra = desc->extra_bits;
1054 int base = desc->extra_base;
1055 int max_code = desc->max_code;
1056 int max_length = desc->max_length;
1057 ct_data *stree = desc->static_tree;
1058 int h; /* heap index */
1059 int n, m; /* iterate over the tree elements */
1060 int bits; /* bit length */
1061 int xbits; /* extra bits */
1062 ush f; /* frequency */
1063 int overflow = 0; /* number of elements with bit length too large */
1064
1065 for (bits = 0; bits <= MAX_BITS; bits++)
1066 G2.bl_count[bits] = 0;
1067
1068 /* In a first pass, compute the optimal bit lengths (which may
1069 * overflow in the case of the bit length tree).
1070 */
1071 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
1072
1073 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1074 n = G2.heap[h];
1075 bits = tree[tree[n].Dad].Len + 1;
1076 if (bits > max_length) {
1077 bits = max_length;
1078 overflow++;
1079 }
1080 tree[n].Len = (ush) bits;
1081 /* We overwrite tree[n].Dad which is no longer needed */
1082
1083 if (n > max_code)
1084 continue; /* not a leaf node */
1085
1086 G2.bl_count[bits]++;
1087 xbits = 0;
1088 if (n >= base)
1089 xbits = extra[n - base];
1090 f = tree[n].Freq;
1091 G2.opt_len += (ulg) f *(bits + xbits);
1092
1093 if (stree)
1094 G2.static_len += (ulg) f * (stree[n].Len + xbits);
1095 }
1096 if (overflow == 0)
1097 return;
1098
1099 Trace((stderr, "\nbit length overflow\n"));
1100 /* This happens for example on obj2 and pic of the Calgary corpus */
1101
1102 /* Find the first bit length which could increase: */
1103 do {
1104 bits = max_length - 1;
1105 while (G2.bl_count[bits] == 0)
1106 bits--;
1107 G2.bl_count[bits]--; /* move one leaf down the tree */
1108 G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1109 G2.bl_count[max_length]--;
1110 /* The brother of the overflow item also moves one step up,
1111 * but this does not affect bl_count[max_length]
1112 */
1113 overflow -= 2;
1114 } while (overflow > 0);
1115
1116 /* Now recompute all bit lengths, scanning in increasing frequency.
1117 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1118 * lengths instead of fixing only the wrong ones. This idea is taken
1119 * from 'ar' written by Haruhiko Okumura.)
1120 */
1121 for (bits = max_length; bits != 0; bits--) {
1122 n = G2.bl_count[bits];
1123 while (n != 0) {
1124 m = G2.heap[--h];
1125 if (m > max_code)
1126 continue;
1127 if (tree[m].Len != (unsigned) bits) {
1128 Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1129 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1130 tree[m].Len = bits;
1131 }
1132 n--;
1133 }
1134 }
1135 }
1136
1137
1138 /* ===========================================================================
1139 * Generate the codes for a given tree and bit counts (which need not be
1140 * optimal).
1141 * IN assertion: the array bl_count contains the bit length statistics for
1142 * the given tree and the field len is set for all tree elements.
1143 * OUT assertion: the field code is set for all tree elements of non
1144 * zero code length.
1145 */
1146 static void gen_codes(ct_data * tree, int max_code)
1147 {
1148 ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1149 ush code = 0; /* running code value */
1150 int bits; /* bit index */
1151 int n; /* code index */
1152
1153 /* The distribution counts are first used to generate the code values
1154 * without bit reversal.
1155 */
1156 for (bits = 1; bits <= MAX_BITS; bits++) {
1157 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1158 }
1159 /* Check that the bit counts in bl_count are consistent. The last code
1160 * must be all ones.
1161 */
1162 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1163 "inconsistent bit counts");
1164 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1165
1166 for (n = 0; n <= max_code; n++) {
1167 int len = tree[n].Len;
1168
1169 if (len == 0)
1170 continue;
1171 /* Now reverse the bits */
1172 tree[n].Code = bi_reverse(next_code[len]++, len);
1173
1174 Tracec(tree != G2.static_ltree,
1175 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1176 (n > ' ' ? n : ' '), len, tree[n].Code,
1177 next_code[len] - 1));
1178 }
1179 }
1180
1181
1182 /* ===========================================================================
1183 * Construct one Huffman tree and assigns the code bit strings and lengths.
1184 * Update the total bit length for the current block.
1185 * IN assertion: the field freq is set for all tree elements.
1186 * OUT assertions: the fields len and code are set to the optimal bit length
1187 * and corresponding code. The length opt_len is updated; static_len is
1188 * also updated if stree is not null. The field max_code is set.
1189 */
1190
1191 /* Remove the smallest element from the heap and recreate the heap with
1192 * one less element. Updates heap and heap_len. */
1193
1194 #define SMALLEST 1
1195 /* Index within the heap array of least frequent node in the Huffman tree */
1196
1197 #define PQREMOVE(tree, top) \
1198 do { \
1199 top = G2.heap[SMALLEST]; \
1200 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1201 pqdownheap(tree, SMALLEST); \
1202 } while (0)
1203
1204 static void build_tree(tree_desc * desc)
1205 {
1206 ct_data *tree = desc->dyn_tree;
1207 ct_data *stree = desc->static_tree;
1208 int elems = desc->elems;
1209 int n, m; /* iterate over heap elements */
1210 int max_code = -1; /* largest code with non zero frequency */
1211 int node = elems; /* next internal node of the tree */
1212
1213 /* Construct the initial heap, with least frequent element in
1214 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1215 * heap[0] is not used.
1216 */
1217 G2.heap_len = 0;
1218 G2.heap_max = HEAP_SIZE;
1219
1220 for (n = 0; n < elems; n++) {
1221 if (tree[n].Freq != 0) {
1222 G2.heap[++G2.heap_len] = max_code = n;
1223 G2.depth[n] = 0;
1224 } else {
1225 tree[n].Len = 0;
1226 }
1227 }
1228
1229 /* The pkzip format requires that at least one distance code exists,
1230 * and that at least one bit should be sent even if there is only one
1231 * possible code. So to avoid special checks later on we force at least
1232 * two codes of non zero frequency.
1233 */
1234 while (G2.heap_len < 2) {
1235 int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1236
1237 tree[new].Freq = 1;
1238 G2.depth[new] = 0;
1239 G2.opt_len--;
1240 if (stree)
1241 G2.static_len -= stree[new].Len;
1242 /* new is 0 or 1 so it does not have extra bits */
1243 }
1244 desc->max_code = max_code;
1245
1246 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1247 * establish sub-heaps of increasing lengths:
1248 */
1249 for (n = G2.heap_len / 2; n >= 1; n--)
1250 pqdownheap(tree, n);
1251
1252 /* Construct the Huffman tree by repeatedly combining the least two
1253 * frequent nodes.
1254 */
1255 do {
1256 PQREMOVE(tree, n); /* n = node of least frequency */
1257 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
1258
1259 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1260 G2.heap[--G2.heap_max] = m;
1261
1262 /* Create a new node father of n and m */
1263 tree[node].Freq = tree[n].Freq + tree[m].Freq;
1264 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1265 tree[n].Dad = tree[m].Dad = (ush) node;
1266 #ifdef DUMP_BL_TREE
1267 if (tree == G2.bl_tree) {
1268 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1269 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1270 }
1271 #endif
1272 /* and insert the new node in the heap */
1273 G2.heap[SMALLEST] = node++;
1274 pqdownheap(tree, SMALLEST);
1275
1276 } while (G2.heap_len >= 2);
1277
1278 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1279
1280 /* At this point, the fields freq and dad are set. We can now
1281 * generate the bit lengths.
1282 */
1283 gen_bitlen((tree_desc *) desc);
1284
1285 /* The field len is now set, we can generate the bit codes */
1286 gen_codes((ct_data *) tree, max_code);
1287 }
1288
1289
1290 /* ===========================================================================
1291 * Scan a literal or distance tree to determine the frequencies of the codes
1292 * in the bit length tree. Updates opt_len to take into account the repeat
1293 * counts. (The contribution of the bit length codes will be added later
1294 * during the construction of bl_tree.)
1295 */
1296 static void scan_tree(ct_data * tree, int max_code)
1297 {
1298 int n; /* iterates over all tree elements */
1299 int prevlen = -1; /* last emitted length */
1300 int curlen; /* length of current code */
1301 int nextlen = tree[0].Len; /* length of next code */
1302 int count = 0; /* repeat count of the current code */
1303 int max_count = 7; /* max repeat count */
1304 int min_count = 4; /* min repeat count */
1305
1306 if (nextlen == 0) {
1307 max_count = 138;
1308 min_count = 3;
1309 }
1310 tree[max_code + 1].Len = 0xffff; /* guard */
1311
1312 for (n = 0; n <= max_code; n++) {
1313 curlen = nextlen;
1314 nextlen = tree[n + 1].Len;
1315 if (++count < max_count && curlen == nextlen)
1316 continue;
1317
1318 if (count < min_count) {
1319 G2.bl_tree[curlen].Freq += count;
1320 } else if (curlen != 0) {
1321 if (curlen != prevlen)
1322 G2.bl_tree[curlen].Freq++;
1323 G2.bl_tree[REP_3_6].Freq++;
1324 } else if (count <= 10) {
1325 G2.bl_tree[REPZ_3_10].Freq++;
1326 } else {
1327 G2.bl_tree[REPZ_11_138].Freq++;
1328 }
1329 count = 0;
1330 prevlen = curlen;
1331
1332 max_count = 7;
1333 min_count = 4;
1334 if (nextlen == 0) {
1335 max_count = 138;
1336 min_count = 3;
1337 } else if (curlen == nextlen) {
1338 max_count = 6;
1339 min_count = 3;
1340 }
1341 }
1342 }
1343
1344
1345 /* ===========================================================================
1346 * Send a literal or distance tree in compressed form, using the codes in
1347 * bl_tree.
1348 */
1349 static void send_tree(ct_data * tree, int max_code)
1350 {
1351 int n; /* iterates over all tree elements */
1352 int prevlen = -1; /* last emitted length */
1353 int curlen; /* length of current code */
1354 int nextlen = tree[0].Len; /* length of next code */
1355 int count = 0; /* repeat count of the current code */
1356 int max_count = 7; /* max repeat count */
1357 int min_count = 4; /* min repeat count */
1358
1359 /* tree[max_code+1].Len = -1; *//* guard already set */
1360 if (nextlen == 0)
1361 max_count = 138, min_count = 3;
1362
1363 for (n = 0; n <= max_code; n++) {
1364 curlen = nextlen;
1365 nextlen = tree[n + 1].Len;
1366 if (++count < max_count && curlen == nextlen) {
1367 continue;
1368 } else if (count < min_count) {
1369 do {
1370 SEND_CODE(curlen, G2.bl_tree);
1371 } while (--count);
1372 } else if (curlen != 0) {
1373 if (curlen != prevlen) {
1374 SEND_CODE(curlen, G2.bl_tree);
1375 count--;
1376 }
1377 Assert(count >= 3 && count <= 6, " 3_6?");
1378 SEND_CODE(REP_3_6, G2.bl_tree);
1379 send_bits(count - 3, 2);
1380 } else if (count <= 10) {
1381 SEND_CODE(REPZ_3_10, G2.bl_tree);
1382 send_bits(count - 3, 3);
1383 } else {
1384 SEND_CODE(REPZ_11_138, G2.bl_tree);
1385 send_bits(count - 11, 7);
1386 }
1387 count = 0;
1388 prevlen = curlen;
1389 if (nextlen == 0) {
1390 max_count = 138;
1391 min_count = 3;
1392 } else if (curlen == nextlen) {
1393 max_count = 6;
1394 min_count = 3;
1395 } else {
1396 max_count = 7;
1397 min_count = 4;
1398 }
1399 }
1400 }
1401
1402
1403 /* ===========================================================================
1404 * Construct the Huffman tree for the bit lengths and return the index in
1405 * bl_order of the last bit length code to send.
1406 */
1407 static int build_bl_tree(void)
1408 {
1409 int max_blindex; /* index of last bit length code of non zero freq */
1410
1411 /* Determine the bit length frequencies for literal and distance trees */
1412 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1413 scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1414
1415 /* Build the bit length tree: */
1416 build_tree(&G2.bl_desc);
1417 /* opt_len now includes the length of the tree representations, except
1418 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1419 */
1420
1421 /* Determine the number of bit length codes to send. The pkzip format
1422 * requires that at least 4 bit length codes be sent. (appnote.txt says
1423 * 3 but the actual value used is 4.)
1424 */
1425 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1426 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1427 break;
1428 }
1429 /* Update opt_len to include the bit length tree and counts */
1430 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1431 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1432
1433 return max_blindex;
1434 }
1435
1436
1437 /* ===========================================================================
1438 * Send the header for a block using dynamic Huffman trees: the counts, the
1439 * lengths of the bit length codes, the literal tree and the distance tree.
1440 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1441 */
1442 static void send_all_trees(int lcodes, int dcodes, int blcodes)
1443 {
1444 int rank; /* index in bl_order */
1445
1446 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1447 Assert(lcodes <= L_CODES && dcodes <= D_CODES
1448 && blcodes <= BL_CODES, "too many codes");
1449 Tracev((stderr, "\nbl counts: "));
1450 send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1451 send_bits(dcodes - 1, 5);
1452 send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1453 for (rank = 0; rank < blcodes; rank++) {
1454 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1455 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1456 }
1457 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1458
1459 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1460 Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1461
1462 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1463 Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1464 }
1465
1466
1467 /* ===========================================================================
1468 * Save the match info and tally the frequency counts. Return true if
1469 * the current block must be flushed.
1470 */
1471 static int ct_tally(int dist, int lc)
1472 {
1473 G1.l_buf[G2.last_lit++] = lc;
1474 if (dist == 0) {
1475 /* lc is the unmatched char */
1476 G2.dyn_ltree[lc].Freq++;
1477 } else {
1478 /* Here, lc is the match length - MIN_MATCH */
1479 dist--; /* dist = match distance - 1 */
1480 Assert((ush) dist < (ush) MAX_DIST
1481 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1482 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1483 );
1484
1485 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1486 G2.dyn_dtree[D_CODE(dist)].Freq++;
1487
1488 G1.d_buf[G2.last_dist++] = dist;
1489 G2.flags |= G2.flag_bit;
1490 }
1491 G2.flag_bit <<= 1;
1492
1493 /* Output the flags if they fill a byte: */
1494 if ((G2.last_lit & 7) == 0) {
1495 G2.flag_buf[G2.last_flags++] = G2.flags;
1496 G2.flags = 0;
1497 G2.flag_bit = 1;
1498 }
1499 /* Try to guess if it is profitable to stop the current block here */
1500 if ((G2.last_lit & 0xfff) == 0) {
1501 /* Compute an upper bound for the compressed length */
1502 ulg out_length = G2.last_lit * 8L;
1503 ulg in_length = (ulg) G1.strstart - G1.block_start;
1504 int dcode;
1505
1506 for (dcode = 0; dcode < D_CODES; dcode++) {
1507 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1508 }
1509 out_length >>= 3;
1510 Trace((stderr,
1511 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1512 G2.last_lit, G2.last_dist, in_length, out_length,
1513 100L - out_length * 100L / in_length));
1514 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1515 return 1;
1516 }
1517 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1518 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1519 * on 16 bit machines and because stored blocks are restricted to
1520 * 64K-1 bytes.
1521 */
1522 }
1523
1524 /* ===========================================================================
1525 * Send the block data compressed using the given Huffman trees
1526 */
1527 static void compress_block(ct_data * ltree, ct_data * dtree)
1528 {
1529 unsigned dist; /* distance of matched string */
1530 int lc; /* match length or unmatched char (if dist == 0) */
1531 unsigned lx = 0; /* running index in l_buf */
1532 unsigned dx = 0; /* running index in d_buf */
1533 unsigned fx = 0; /* running index in flag_buf */
1534 uch flag = 0; /* current flags */
1535 unsigned code; /* the code to send */
1536 int extra; /* number of extra bits to send */
1537
1538 if (G2.last_lit != 0) do {
1539 if ((lx & 7) == 0)
1540 flag = G2.flag_buf[fx++];
1541 lc = G1.l_buf[lx++];
1542 if ((flag & 1) == 0) {
1543 SEND_CODE(lc, ltree); /* send a literal byte */
1544 Tracecv(lc > ' ', (stderr, " '%c' ", lc));
1545 } else {
1546 /* Here, lc is the match length - MIN_MATCH */
1547 code = G2.length_code[lc];
1548 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1549 extra = extra_lbits[code];
1550 if (extra != 0) {
1551 lc -= G2.base_length[code];
1552 send_bits(lc, extra); /* send the extra length bits */
1553 }
1554 dist = G1.d_buf[dx++];
1555 /* Here, dist is the match distance - 1 */
1556 code = D_CODE(dist);
1557 Assert(code < D_CODES, "bad d_code");
1558
1559 SEND_CODE(code, dtree); /* send the distance code */
1560 extra = extra_dbits[code];
1561 if (extra != 0) {
1562 dist -= G2.base_dist[code];
1563 send_bits(dist, extra); /* send the extra distance bits */
1564 }
1565 } /* literal or match pair ? */
1566 flag >>= 1;
1567 } while (lx < G2.last_lit);
1568
1569 SEND_CODE(END_BLOCK, ltree);
1570 }
1571
1572
1573 /* ===========================================================================
1574 * Determine the best encoding for the current block: dynamic trees, static
1575 * trees or store, and output the encoded block to the zip file. This function
1576 * returns the total compressed length for the file so far.
1577 */
1578 static ulg flush_block(char *buf, ulg stored_len, int eof)
1579 {
1580 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1581 int max_blindex; /* index of last bit length code of non zero freq */
1582
1583 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
1584
1585 /* Construct the literal and distance trees */
1586 build_tree(&G2.l_desc);
1587 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1588
1589 build_tree(&G2.d_desc);
1590 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1591 /* At this point, opt_len and static_len are the total bit lengths of
1592 * the compressed block data, excluding the tree representations.
1593 */
1594
1595 /* Build the bit length tree for the above two trees, and get the index
1596 * in bl_order of the last bit length code to send.
1597 */
1598 max_blindex = build_bl_tree();
1599
1600 /* Determine the best encoding. Compute first the block length in bytes */
1601 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1602 static_lenb = (G2.static_len + 3 + 7) >> 3;
1603
1604 Trace((stderr,
1605 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1606 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1607 G2.last_lit, G2.last_dist));
1608
1609 if (static_lenb <= opt_lenb)
1610 opt_lenb = static_lenb;
1611
1612 /* If compression failed and this is the first and last block,
1613 * and if the zip file can be seeked (to rewrite the local header),
1614 * the whole file is transformed into a stored file:
1615 */
1616 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1617 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1618 if (buf == NULL)
1619 bb_error_msg("block vanished");
1620
1621 copy_block(buf, (unsigned) stored_len, 0); /* without header */
1622 G2.compressed_len = stored_len << 3;
1623
1624 } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1625 /* 4: two words for the lengths */
1626 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1627 * Otherwise we can't have processed more than WSIZE input bytes since
1628 * the last block flush, because compression would have been
1629 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1630 * transform a block into a stored block.
1631 */
1632 send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
1633 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1634 G2.compressed_len += (stored_len + 4) << 3;
1635
1636 copy_block(buf, (unsigned) stored_len, 1); /* with header */
1637
1638 } else if (static_lenb == opt_lenb) {
1639 send_bits((STATIC_TREES << 1) + eof, 3);
1640 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1641 G2.compressed_len += 3 + G2.static_len;
1642 } else {
1643 send_bits((DYN_TREES << 1) + eof, 3);
1644 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1645 max_blindex + 1);
1646 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1647 G2.compressed_len += 3 + G2.opt_len;
1648 }
1649 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1650 init_block();
1651
1652 if (eof) {
1653 bi_windup();
1654 G2.compressed_len += 7; /* align on byte boundary */
1655 }
1656 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1657 G2.compressed_len - 7 * eof));
1658
1659 return G2.compressed_len >> 3;
1660 }
1661
1662
1663 /* ===========================================================================
1664 * Update a hash value with the given input byte
1665 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1666 * input characters, so that a running hash key can be computed from the
1667 * previous key instead of complete recalculation each time.
1668 */
1669 #define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1670
1671
1672 /* ===========================================================================
1673 * Same as above, but achieves better compression. We use a lazy
1674 * evaluation for matches: a match is finally adopted only if there is
1675 * no better match at the next window position.
1676 *
1677 * Processes a new input file and return its compressed length. Sets
1678 * the compressed length, crc, deflate flags and internal file
1679 * attributes.
1680 */
1681
1682 /* Flush the current block, with given end-of-file flag.
1683 * IN assertion: strstart is set to the end of the current match. */
1684 #define FLUSH_BLOCK(eof) \
1685 flush_block( \
1686 G1.block_start >= 0L \
1687 ? (char*)&G1.window[(unsigned)G1.block_start] \
1688 : (char*)NULL, \
1689 (ulg)G1.strstart - G1.block_start, \
1690 (eof) \
1691 )
1692
1693 /* Insert string s in the dictionary and set match_head to the previous head
1694 * of the hash chain (the most recent string with same hash key). Return
1695 * the previous length of the hash chain.
1696 * IN assertion: all calls to to INSERT_STRING are made with consecutive
1697 * input characters and the first MIN_MATCH bytes of s are valid
1698 * (except for the last MIN_MATCH-1 bytes of the input file). */
1699 #define INSERT_STRING(s, match_head) \
1700 do { \
1701 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1702 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1703 head[G1.ins_h] = (s); \
1704 } while (0)
1705
1706 static ulg deflate(void)
1707 {
1708 IPos hash_head; /* head of hash chain */
1709 IPos prev_match; /* previous match */
1710 int flush; /* set if current block must be flushed */
1711 int match_available = 0; /* set if previous match exists */
1712 unsigned match_length = MIN_MATCH - 1; /* length of best match */
1713
1714 /* Process the input block. */
1715 while (G1.lookahead != 0) {
1716 /* Insert the string window[strstart .. strstart+2] in the
1717 * dictionary, and set hash_head to the head of the hash chain:
1718 */
1719 INSERT_STRING(G1.strstart, hash_head);
1720
1721 /* Find the longest match, discarding those <= prev_length.
1722 */
1723 G1.prev_length = match_length;
1724 prev_match = G1.match_start;
1725 match_length = MIN_MATCH - 1;
1726
1727 if (hash_head != 0 && G1.prev_length < max_lazy_match
1728 && G1.strstart - hash_head <= MAX_DIST
1729 ) {
1730 /* To simplify the code, we prevent matches with the string
1731 * of window index 0 (in particular we have to avoid a match
1732 * of the string with itself at the start of the input file).
1733 */
1734 match_length = longest_match(hash_head);
1735 /* longest_match() sets match_start */
1736 if (match_length > G1.lookahead)
1737 match_length = G1.lookahead;
1738
1739 /* Ignore a length 3 match if it is too distant: */
1740 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1741 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1742 * but we will ignore the current match anyway.
1743 */
1744 match_length--;
1745 }
1746 }
1747 /* If there was a match at the previous step and the current
1748 * match is not better, output the previous match:
1749 */
1750 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1751 check_match(G1.strstart - 1, prev_match, G1.prev_length);
1752 flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1753
1754 /* Insert in hash table all strings up to the end of the match.
1755 * strstart-1 and strstart are already inserted.
1756 */
1757 G1.lookahead -= G1.prev_length - 1;
1758 G1.prev_length -= 2;
1759 do {
1760 G1.strstart++;
1761 INSERT_STRING(G1.strstart, hash_head);
1762 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1763 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1764 * these bytes are garbage, but it does not matter since the
1765 * next lookahead bytes will always be emitted as literals.
1766 */
1767 } while (--G1.prev_length != 0);
1768 match_available = 0;
1769 match_length = MIN_MATCH - 1;
1770 G1.strstart++;
1771 if (flush) {
1772 FLUSH_BLOCK(0);
1773 G1.block_start = G1.strstart;
1774 }
1775 } else if (match_available) {
1776 /* If there was no match at the previous position, output a
1777 * single literal. If there was a match but the current match
1778 * is longer, truncate the previous match to a single literal.
1779 */
1780 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1781 if (ct_tally(0, G1.window[G1.strstart - 1])) {
1782 FLUSH_BLOCK(0);
1783 G1.block_start = G1.strstart;
1784 }
1785 G1.strstart++;
1786 G1.lookahead--;
1787 } else {
1788 /* There is no previous match to compare with, wait for
1789 * the next step to decide.
1790 */
1791 match_available = 1;
1792 G1.strstart++;
1793 G1.lookahead--;
1794 }
1795 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1796
1797 /* Make sure that we always have enough lookahead, except
1798 * at the end of the input file. We need MAX_MATCH bytes
1799 * for the next match, plus MIN_MATCH bytes to insert the
1800 * string following the next match.
1801 */
1802 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1803 fill_window();
1804 }
1805 if (match_available)
1806 ct_tally(0, G1.window[G1.strstart - 1]);
1807
1808 return FLUSH_BLOCK(1); /* eof */
1809 }
1810
1811
1812 /* ===========================================================================
1813 * Initialize the bit string routines.
1814 */
1815 static void bi_init(void)
1816 {
1817 G1.bi_buf = 0;
1818 G1.bi_valid = 0;
1819 #ifdef DEBUG
1820 G1.bits_sent = 0L;
1821 #endif
1822 }
1823
1824
1825 /* ===========================================================================
1826 * Initialize the "longest match" routines for a new file
1827 */
1828 static void lm_init(ush * flagsp)
1829 {
1830 unsigned j;
1831
1832 /* Initialize the hash table. */
1833 memset(head, 0, HASH_SIZE * sizeof(*head));
1834 /* prev will be initialized on the fly */
1835
1836 /* speed options for the general purpose bit flag */
1837 *flagsp |= 2; /* FAST 4, SLOW 2 */
1838 /* ??? reduce max_chain_length for binary files */
1839
1840 G1.strstart = 0;
1841 G1.block_start = 0L;
1842
1843 G1.lookahead = file_read(G1.window,
1844 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1845
1846 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1847 G1.eofile = 1;
1848 G1.lookahead = 0;
1849 return;
1850 }
1851 G1.eofile = 0;
1852 /* Make sure that we always have enough lookahead. This is important
1853 * if input comes from a device such as a tty.
1854 */
1855 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1856 fill_window();
1857
1858 G1.ins_h = 0;
1859 for (j = 0; j < MIN_MATCH - 1; j++)
1860 UPDATE_HASH(G1.ins_h, G1.window[j]);
1861 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1862 * not important since only literal bytes will be emitted.
1863 */
1864 }
1865
1866
1867 /* ===========================================================================
1868 * Allocate the match buffer, initialize the various tables and save the
1869 * location of the internal file attribute (ascii/binary) and method
1870 * (DEFLATE/STORE).
1871 * One callsite in zip()
1872 */
1873 static void ct_init(void)
1874 {
1875 int n; /* iterates over tree elements */
1876 int length; /* length value */
1877 int code; /* code value */
1878 int dist; /* distance index */
1879
1880 G2.compressed_len = 0L;
1881
1882 #ifdef NOT_NEEDED
1883 if (G2.static_dtree[0].Len != 0)
1884 return; /* ct_init already called */
1885 #endif
1886
1887 /* Initialize the mapping length (0..255) -> length code (0..28) */
1888 length = 0;
1889 for (code = 0; code < LENGTH_CODES - 1; code++) {
1890 G2.base_length[code] = length;
1891 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1892 G2.length_code[length++] = code;
1893 }
1894 }
1895 Assert(length == 256, "ct_init: length != 256");
1896 /* Note that the length 255 (match length 258) can be represented
1897 * in two different ways: code 284 + 5 bits or code 285, so we
1898 * overwrite length_code[255] to use the best encoding:
1899 */
1900 G2.length_code[length - 1] = code;
1901
1902 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1903 dist = 0;
1904 for (code = 0; code < 16; code++) {
1905 G2.base_dist[code] = dist;
1906 for (n = 0; n < (1 << extra_dbits[code]); n++) {
1907 G2.dist_code[dist++] = code;
1908 }
1909 }
1910 Assert(dist == 256, "ct_init: dist != 256");
1911 dist >>= 7; /* from now on, all distances are divided by 128 */
1912 for (; code < D_CODES; code++) {
1913 G2.base_dist[code] = dist << 7;
1914 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1915 G2.dist_code[256 + dist++] = code;
1916 }
1917 }
1918 Assert(dist == 256, "ct_init: 256+dist != 512");
1919
1920 /* Construct the codes of the static literal tree */
1921 /* already zeroed - it's in bss
1922 for (n = 0; n <= MAX_BITS; n++)
1923 G2.bl_count[n] = 0; */
1924
1925 n = 0;
1926 while (n <= 143) {
1927 G2.static_ltree[n++].Len = 8;
1928 G2.bl_count[8]++;
1929 }
1930 while (n <= 255) {
1931 G2.static_ltree[n++].Len = 9;
1932 G2.bl_count[9]++;
1933 }
1934 while (n <= 279) {
1935 G2.static_ltree[n++].Len = 7;
1936 G2.bl_count[7]++;
1937 }
1938 while (n <= 287) {
1939 G2.static_ltree[n++].Len = 8;
1940 G2.bl_count[8]++;
1941 }
1942 /* Codes 286 and 287 do not exist, but we must include them in the
1943 * tree construction to get a canonical Huffman tree (longest code
1944 * all ones)
1945 */
1946 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1947
1948 /* The static distance tree is trivial: */
1949 for (n = 0; n < D_CODES; n++) {
1950 G2.static_dtree[n].Len = 5;
1951 G2.static_dtree[n].Code = bi_reverse(n, 5);
1952 }
1953
1954 /* Initialize the first block of the first file: */
1955 init_block();
1956 }
1957
1958
1959 /* ===========================================================================
1960 * Deflate in to out.
1961 * IN assertions: the input and output buffers are cleared.
1962 */
1963
1964 static void zip(ulg time_stamp)
1965 {
1966 ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
1967
1968 G1.outcnt = 0;
1969
1970 /* Write the header to the gzip file. See algorithm.doc for the format */
1971 /* magic header for gzip files: 1F 8B */
1972 /* compression method: 8 (DEFLATED) */
1973 /* general flags: 0 */
1974 put_32bit(0x00088b1f);
1975 put_32bit(time_stamp);
1976
1977 /* Write deflated file to zip file */
1978 G1.crc = ~0;
1979
1980 bi_init();
1981 ct_init();
1982 lm_init(&deflate_flags);
1983
1984 put_8bit(deflate_flags); /* extra flags */
1985 put_8bit(3); /* OS identifier = 3 (Unix) */
1986
1987 deflate();
1988
1989 /* Write the crc and uncompressed size */
1990 put_32bit(~G1.crc);
1991 put_32bit(G1.isize);
1992
1993 flush_outbuf();
1994 }
1995
1996
1997 /* ======================================================================== */
1998 static
1999 char* make_new_name_gzip(char *filename)
2000 {
2001 return xasprintf("%s.gz", filename);
2002 }
2003
2004 static
2005 IF_DESKTOP(long long) int pack_gzip(unpack_info_t *info UNUSED_PARAM)
2006 {
2007 struct stat s;
2008
2009 /* Clear input and output buffers */
2010 G1.outcnt = 0;
2011 #ifdef DEBUG
2012 G1.insize = 0;
2013 #endif
2014 G1.isize = 0;
2015
2016 /* Reinit G2.xxx */
2017 memset(&G2, 0, sizeof(G2));
2018 G2.l_desc.dyn_tree = G2.dyn_ltree;
2019 G2.l_desc.static_tree = G2.static_ltree;
2020 G2.l_desc.extra_bits = extra_lbits;
2021 G2.l_desc.extra_base = LITERALS + 1;
2022 G2.l_desc.elems = L_CODES;
2023 G2.l_desc.max_length = MAX_BITS;
2024 //G2.l_desc.max_code = 0;
2025 G2.d_desc.dyn_tree = G2.dyn_dtree;
2026 G2.d_desc.static_tree = G2.static_dtree;
2027 G2.d_desc.extra_bits = extra_dbits;
2028 //G2.d_desc.extra_base = 0;
2029 G2.d_desc.elems = D_CODES;
2030 G2.d_desc.max_length = MAX_BITS;
2031 //G2.d_desc.max_code = 0;
2032 G2.bl_desc.dyn_tree = G2.bl_tree;
2033 //G2.bl_desc.static_tree = NULL;
2034 G2.bl_desc.extra_bits = extra_blbits,
2035 //G2.bl_desc.extra_base = 0;
2036 G2.bl_desc.elems = BL_CODES;
2037 G2.bl_desc.max_length = MAX_BL_BITS;
2038 //G2.bl_desc.max_code = 0;
2039
2040 s.st_ctime = 0;
2041 fstat(STDIN_FILENO, &s);
2042 zip(s.st_ctime);
2043 return 0;
2044 }
2045
2046 #if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2047 static const char gzip_longopts[] ALIGN1 =
2048 "stdout\0" No_argument "c"
2049 "to-stdout\0" No_argument "c"
2050 "force\0" No_argument "f"
2051 "verbose\0" No_argument "v"
2052 #if ENABLE_GUNZIP
2053 "decompress\0" No_argument "d"
2054 "uncompress\0" No_argument "d"
2055 "test\0" No_argument "t"
2056 #endif
2057 "quiet\0" No_argument "q"
2058 "fast\0" No_argument "1"
2059 "best\0" No_argument "9"
2060 ;
2061 #endif
2062
2063 /*
2064 * Linux kernel build uses gzip -d -n. We accept and ignore it.
2065 * Man page says:
2066 * -n --no-name
2067 * gzip: do not save the original file name and time stamp.
2068 * (The original name is always saved if the name had to be truncated.)
2069 * gunzip: do not restore the original file name/time even if present
2070 * (remove only the gzip suffix from the compressed file name).
2071 * This option is the default when decompressing.
2072 * -N --name
2073 * gzip: always save the original file name and time stamp (this is the default)
2074 * gunzip: restore the original file name and time stamp if present.
2075 */
2076
2077 int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2078 #if ENABLE_GUNZIP
2079 int gzip_main(int argc, char **argv)
2080 #else
2081 int gzip_main(int argc UNUSED_PARAM, char **argv)
2082 #endif
2083 {
2084 unsigned opt;
2085
2086 #if ENABLE_FEATURE_GZIP_LONG_OPTIONS
2087 applet_long_options = gzip_longopts;
2088 #endif
2089 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2090 opt = getopt32(argv, "cfv" IF_GUNZIP("dt") "q123456789n");
2091 #if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2092 if (opt & 0x18) // -d and/or -t
2093 return gunzip_main(argc, argv);
2094 #endif
2095 option_mask32 &= 0x7; /* ignore -q, -0..9 */
2096 //if (opt & 0x1) // -c
2097 //if (opt & 0x2) // -f
2098 //if (opt & 0x4) // -v
2099 argv += optind;
2100
2101 SET_PTR_TO_GLOBALS((char *)xzalloc(sizeof(struct globals)+sizeof(struct globals2))
2102 + sizeof(struct globals));
2103
2104 /* Allocate all global buffers (for DYN_ALLOC option) */
2105 ALLOC(uch, G1.l_buf, INBUFSIZ);
2106 ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2107 ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2108 ALLOC(uch, G1.window, 2L * WSIZE);
2109 ALLOC(ush, G1.prev, 1L << BITS);
2110
2111 /* Initialise the CRC32 table */
2112 G1.crc_32_tab = crc32_filltable(NULL, 0);
2113
2114 return bbunpack(argv, make_new_name_gzip, pack_gzip);
2115 }