Magellan Linux

Contents of /trunk/mkinitrd-magellan/busybox/archival/gzip.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 816 - (show annotations) (download)
Fri Apr 24 18:33:46 2009 UTC (15 years ago) by niro
File MIME type: text/plain
File size: 65265 byte(s)
-updated to busybox-1.13.4
1 /* vi: set sw=4 ts=4: */
2 /*
3 * Gzip implementation for busybox
4 *
5 * Based on GNU gzip Copyright (C) 1992-1993 Jean-loup Gailly.
6 *
7 * Originally adjusted for busybox by Charles P. Wright <cpw@unix.asb.com>
8 * "this is a stripped down version of gzip I put into busybox, it does
9 * only standard in to standard out with -9 compression. It also requires
10 * the zcat module for some important functions."
11 *
12 * Adjusted further by Erik Andersen <andersen@codepoet.org> to support
13 * files as well as stdin/stdout, and to generally behave itself wrt
14 * command line handling.
15 *
16 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
17 */
18
19 /* big objects in bss:
20 * 00000020 b bl_count
21 * 00000074 b base_length
22 * 00000078 b base_dist
23 * 00000078 b static_dtree
24 * 0000009c b bl_tree
25 * 000000f4 b dyn_dtree
26 * 00000100 b length_code
27 * 00000200 b dist_code
28 * 0000023d b depth
29 * 00000400 b flag_buf
30 * 0000047a b heap
31 * 00000480 b static_ltree
32 * 000008f4 b dyn_ltree
33 */
34
35 /* TODO: full support for -v for DESKTOP
36 * "/usr/bin/gzip -v a bogus aa" should say:
37 a: 85.1% -- replaced with a.gz
38 gzip: bogus: No such file or directory
39 aa: 85.1% -- replaced with aa.gz
40 */
41
42 #include "libbb.h"
43 #include "unarchive.h"
44
45
46 /* ===========================================================================
47 */
48 //#define DEBUG 1
49 /* Diagnostic functions */
50 #ifdef DEBUG
51 # define Assert(cond,msg) { if (!(cond)) bb_error_msg(msg); }
52 # define Trace(x) fprintf x
53 # define Tracev(x) {if (verbose) fprintf x; }
54 # define Tracevv(x) {if (verbose > 1) fprintf x; }
55 # define Tracec(c,x) {if (verbose && (c)) fprintf x; }
56 # define Tracecv(c,x) {if (verbose > 1 && (c)) fprintf x; }
57 #else
58 # define Assert(cond,msg)
59 # define Trace(x)
60 # define Tracev(x)
61 # define Tracevv(x)
62 # define Tracec(c,x)
63 # define Tracecv(c,x)
64 #endif
65
66
67 /* ===========================================================================
68 */
69 #define SMALL_MEM
70
71 #ifndef INBUFSIZ
72 # ifdef SMALL_MEM
73 # define INBUFSIZ 0x2000 /* input buffer size */
74 # else
75 # define INBUFSIZ 0x8000 /* input buffer size */
76 # endif
77 #endif
78
79 #ifndef OUTBUFSIZ
80 # ifdef SMALL_MEM
81 # define OUTBUFSIZ 8192 /* output buffer size */
82 # else
83 # define OUTBUFSIZ 16384 /* output buffer size */
84 # endif
85 #endif
86
87 #ifndef DIST_BUFSIZE
88 # ifdef SMALL_MEM
89 # define DIST_BUFSIZE 0x2000 /* buffer for distances, see trees.c */
90 # else
91 # define DIST_BUFSIZE 0x8000 /* buffer for distances, see trees.c */
92 # endif
93 #endif
94
95 /* gzip flag byte */
96 #define ASCII_FLAG 0x01 /* bit 0 set: file probably ascii text */
97 #define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */
98 #define EXTRA_FIELD 0x04 /* bit 2 set: extra field present */
99 #define ORIG_NAME 0x08 /* bit 3 set: original file name present */
100 #define COMMENT 0x10 /* bit 4 set: file comment present */
101 #define RESERVED 0xC0 /* bit 6,7: reserved */
102
103 /* internal file attribute */
104 #define UNKNOWN 0xffff
105 #define BINARY 0
106 #define ASCII 1
107
108 #ifndef WSIZE
109 # define WSIZE 0x8000 /* window size--must be a power of two, and */
110 #endif /* at least 32K for zip's deflate method */
111
112 #define MIN_MATCH 3
113 #define MAX_MATCH 258
114 /* The minimum and maximum match lengths */
115
116 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
117 /* Minimum amount of lookahead, except at the end of the input file.
118 * See deflate.c for comments about the MIN_MATCH+1.
119 */
120
121 #define MAX_DIST (WSIZE-MIN_LOOKAHEAD)
122 /* In order to simplify the code, particularly on 16 bit machines, match
123 * distances are limited to MAX_DIST instead of WSIZE.
124 */
125
126 #ifndef MAX_PATH_LEN
127 # define MAX_PATH_LEN 1024 /* max pathname length */
128 #endif
129
130 #define seekable() 0 /* force sequential output */
131 #define translate_eol 0 /* no option -a yet */
132
133 #ifndef BITS
134 # define BITS 16
135 #endif
136 #define INIT_BITS 9 /* Initial number of bits per code */
137
138 #define BIT_MASK 0x1f /* Mask for 'number of compression bits' */
139 /* Mask 0x20 is reserved to mean a fourth header byte, and 0x40 is free.
140 * It's a pity that old uncompress does not check bit 0x20. That makes
141 * extension of the format actually undesirable because old compress
142 * would just crash on the new format instead of giving a meaningful
143 * error message. It does check the number of bits, but it's more
144 * helpful to say "unsupported format, get a new version" than
145 * "can only handle 16 bits".
146 */
147
148 #ifdef MAX_EXT_CHARS
149 # define MAX_SUFFIX MAX_EXT_CHARS
150 #else
151 # define MAX_SUFFIX 30
152 #endif
153
154
155 /* ===========================================================================
156 * Compile with MEDIUM_MEM to reduce the memory requirements or
157 * with SMALL_MEM to use as little memory as possible. Use BIG_MEM if the
158 * entire input file can be held in memory (not possible on 16 bit systems).
159 * Warning: defining these symbols affects HASH_BITS (see below) and thus
160 * affects the compression ratio. The compressed output
161 * is still correct, and might even be smaller in some cases.
162 */
163
164 #ifdef SMALL_MEM
165 # define HASH_BITS 13 /* Number of bits used to hash strings */
166 #endif
167 #ifdef MEDIUM_MEM
168 # define HASH_BITS 14
169 #endif
170 #ifndef HASH_BITS
171 # define HASH_BITS 15
172 /* For portability to 16 bit machines, do not use values above 15. */
173 #endif
174
175 #define HASH_SIZE (unsigned)(1<<HASH_BITS)
176 #define HASH_MASK (HASH_SIZE-1)
177 #define WMASK (WSIZE-1)
178 /* HASH_SIZE and WSIZE must be powers of two */
179 #ifndef TOO_FAR
180 # define TOO_FAR 4096
181 #endif
182 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
183
184
185 /* ===========================================================================
186 * These types are not really 'char', 'short' and 'long'
187 */
188 typedef uint8_t uch;
189 typedef uint16_t ush;
190 typedef uint32_t ulg;
191 typedef int32_t lng;
192
193 typedef ush Pos;
194 typedef unsigned IPos;
195 /* A Pos is an index in the character window. We use short instead of int to
196 * save space in the various tables. IPos is used only for parameter passing.
197 */
198
199 enum {
200 WINDOW_SIZE = 2 * WSIZE,
201 /* window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the
202 * input file length plus MIN_LOOKAHEAD.
203 */
204
205 max_chain_length = 4096,
206 /* To speed up deflation, hash chains are never searched beyond this length.
207 * A higher limit improves compression ratio but degrades the speed.
208 */
209
210 max_lazy_match = 258,
211 /* Attempt to find a better match only when the current match is strictly
212 * smaller than this value. This mechanism is used only for compression
213 * levels >= 4.
214 */
215
216 max_insert_length = max_lazy_match,
217 /* Insert new strings in the hash table only if the match length
218 * is not greater than this length. This saves time but degrades compression.
219 * max_insert_length is used only for compression levels <= 3.
220 */
221
222 good_match = 32,
223 /* Use a faster search when the previous match is longer than this */
224
225 /* Values for max_lazy_match, good_match and max_chain_length, depending on
226 * the desired pack level (0..9). The values given below have been tuned to
227 * exclude worst case performance for pathological files. Better values may be
228 * found for specific files.
229 */
230
231 nice_match = 258, /* Stop searching when current match exceeds this */
232 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
233 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
234 * meaning.
235 */
236 };
237
238
239 struct globals {
240
241 lng block_start;
242
243 /* window position at the beginning of the current output block. Gets
244 * negative when the window is moved backwards.
245 */
246 unsigned ins_h; /* hash index of string to be inserted */
247
248 #define H_SHIFT ((HASH_BITS+MIN_MATCH-1) / MIN_MATCH)
249 /* Number of bits by which ins_h and del_h must be shifted at each
250 * input step. It must be such that after MIN_MATCH steps, the oldest
251 * byte no longer takes part in the hash key, that is:
252 * H_SHIFT * MIN_MATCH >= HASH_BITS
253 */
254
255 unsigned prev_length;
256
257 /* Length of the best match at previous step. Matches not greater than this
258 * are discarded. This is used in the lazy match evaluation.
259 */
260
261 unsigned strstart; /* start of string to insert */
262 unsigned match_start; /* start of matching string */
263 unsigned lookahead; /* number of valid bytes ahead in window */
264
265 /* ===========================================================================
266 */
267 #define DECLARE(type, array, size) \
268 type * array
269 #define ALLOC(type, array, size) \
270 array = xzalloc((size_t)(((size)+1L)/2) * 2*sizeof(type));
271 #define FREE(array) \
272 do { free(array); array = NULL; } while (0)
273
274 /* global buffers */
275
276 /* buffer for literals or lengths */
277 /* DECLARE(uch, l_buf, LIT_BUFSIZE); */
278 DECLARE(uch, l_buf, INBUFSIZ);
279
280 DECLARE(ush, d_buf, DIST_BUFSIZE);
281 DECLARE(uch, outbuf, OUTBUFSIZ);
282
283 /* Sliding window. Input bytes are read into the second half of the window,
284 * and move to the first half later to keep a dictionary of at least WSIZE
285 * bytes. With this organization, matches are limited to a distance of
286 * WSIZE-MAX_MATCH bytes, but this ensures that IO is always
287 * performed with a length multiple of the block size. Also, it limits
288 * the window size to 64K, which is quite useful on MSDOS.
289 * To do: limit the window size to WSIZE+BSZ if SMALL_MEM (the code would
290 * be less efficient).
291 */
292 DECLARE(uch, window, 2L * WSIZE);
293
294 /* Link to older string with same hash index. To limit the size of this
295 * array to 64K, this link is maintained only for the last 32K strings.
296 * An index in this array is thus a window index modulo 32K.
297 */
298 /* DECLARE(Pos, prev, WSIZE); */
299 DECLARE(ush, prev, 1L << BITS);
300
301 /* Heads of the hash chains or 0. */
302 /* DECLARE(Pos, head, 1<<HASH_BITS); */
303 #define head (G1.prev + WSIZE) /* hash head (see deflate.c) */
304
305 /* number of input bytes */
306 ulg isize; /* only 32 bits stored in .gz file */
307
308 /* bbox always use stdin/stdout */
309 #define ifd STDIN_FILENO /* input file descriptor */
310 #define ofd STDOUT_FILENO /* output file descriptor */
311
312 #ifdef DEBUG
313 unsigned insize; /* valid bytes in l_buf */
314 #endif
315 unsigned outcnt; /* bytes in output buffer */
316
317 smallint eofile; /* flag set at end of input file */
318
319 /* ===========================================================================
320 * Local data used by the "bit string" routines.
321 */
322
323 unsigned short bi_buf;
324
325 /* Output buffer. bits are inserted starting at the bottom (least significant
326 * bits).
327 */
328
329 #undef BUF_SIZE
330 #define BUF_SIZE (8 * sizeof(G1.bi_buf))
331 /* Number of bits used within bi_buf. (bi_buf might be implemented on
332 * more than 16 bits on some systems.)
333 */
334
335 int bi_valid;
336
337 /* Current input function. Set to mem_read for in-memory compression */
338
339 #ifdef DEBUG
340 ulg bits_sent; /* bit length of the compressed data */
341 #endif
342
343 uint32_t *crc_32_tab;
344 uint32_t crc; /* shift register contents */
345 };
346
347 #define G1 (*(ptr_to_globals - 1))
348
349
350 /* ===========================================================================
351 * Write the output buffer outbuf[0..outcnt-1] and update bytes_out.
352 * (used for the compressed data only)
353 */
354 static void flush_outbuf(void)
355 {
356 if (G1.outcnt == 0)
357 return;
358
359 xwrite(ofd, (char *) G1.outbuf, G1.outcnt);
360 G1.outcnt = 0;
361 }
362
363
364 /* ===========================================================================
365 */
366 /* put_8bit is used for the compressed output */
367 #define put_8bit(c) \
368 do { \
369 G1.outbuf[G1.outcnt++] = (c); \
370 if (G1.outcnt == OUTBUFSIZ) flush_outbuf(); \
371 } while (0)
372
373 /* Output a 16 bit value, lsb first */
374 static void put_16bit(ush w)
375 {
376 if (G1.outcnt < OUTBUFSIZ - 2) {
377 G1.outbuf[G1.outcnt++] = w;
378 G1.outbuf[G1.outcnt++] = w >> 8;
379 } else {
380 put_8bit(w);
381 put_8bit(w >> 8);
382 }
383 }
384
385 static void put_32bit(ulg n)
386 {
387 put_16bit(n);
388 put_16bit(n >> 16);
389 }
390
391 /* ===========================================================================
392 * Clear input and output buffers
393 */
394 static void clear_bufs(void)
395 {
396 G1.outcnt = 0;
397 #ifdef DEBUG
398 G1.insize = 0;
399 #endif
400 G1.isize = 0;
401 }
402
403
404 /* ===========================================================================
405 * Run a set of bytes through the crc shift register. If s is a NULL
406 * pointer, then initialize the crc shift register contents instead.
407 * Return the current crc in either case.
408 */
409 static uint32_t updcrc(uch * s, unsigned n)
410 {
411 uint32_t c = G1.crc;
412 while (n) {
413 c = G1.crc_32_tab[(uch)(c ^ *s++)] ^ (c >> 8);
414 n--;
415 }
416 G1.crc = c;
417 return c;
418 }
419
420
421 /* ===========================================================================
422 * Read a new buffer from the current input file, perform end-of-line
423 * translation, and update the crc and input file size.
424 * IN assertion: size >= 2 (for end-of-line translation)
425 */
426 static unsigned file_read(void *buf, unsigned size)
427 {
428 unsigned len;
429
430 Assert(G1.insize == 0, "l_buf not empty");
431
432 len = safe_read(ifd, buf, size);
433 if (len == (unsigned)(-1) || len == 0)
434 return len;
435
436 updcrc(buf, len);
437 G1.isize += len;
438 return len;
439 }
440
441
442 /* ===========================================================================
443 * Send a value on a given number of bits.
444 * IN assertion: length <= 16 and value fits in length bits.
445 */
446 static void send_bits(int value, int length)
447 {
448 #ifdef DEBUG
449 Tracev((stderr, " l %2d v %4x ", length, value));
450 Assert(length > 0 && length <= 15, "invalid length");
451 G1.bits_sent += length;
452 #endif
453 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
454 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
455 * unused bits in value.
456 */
457 if (G1.bi_valid > (int) BUF_SIZE - length) {
458 G1.bi_buf |= (value << G1.bi_valid);
459 put_16bit(G1.bi_buf);
460 G1.bi_buf = (ush) value >> (BUF_SIZE - G1.bi_valid);
461 G1.bi_valid += length - BUF_SIZE;
462 } else {
463 G1.bi_buf |= value << G1.bi_valid;
464 G1.bi_valid += length;
465 }
466 }
467
468
469 /* ===========================================================================
470 * Reverse the first len bits of a code, using straightforward code (a faster
471 * method would use a table)
472 * IN assertion: 1 <= len <= 15
473 */
474 static unsigned bi_reverse(unsigned code, int len)
475 {
476 unsigned res = 0;
477
478 while (1) {
479 res |= code & 1;
480 if (--len <= 0) return res;
481 code >>= 1;
482 res <<= 1;
483 }
484 }
485
486
487 /* ===========================================================================
488 * Write out any remaining bits in an incomplete byte.
489 */
490 static void bi_windup(void)
491 {
492 if (G1.bi_valid > 8) {
493 put_16bit(G1.bi_buf);
494 } else if (G1.bi_valid > 0) {
495 put_8bit(G1.bi_buf);
496 }
497 G1.bi_buf = 0;
498 G1.bi_valid = 0;
499 #ifdef DEBUG
500 G1.bits_sent = (G1.bits_sent + 7) & ~7;
501 #endif
502 }
503
504
505 /* ===========================================================================
506 * Copy a stored block to the zip file, storing first the length and its
507 * one's complement if requested.
508 */
509 static void copy_block(char *buf, unsigned len, int header)
510 {
511 bi_windup(); /* align on byte boundary */
512
513 if (header) {
514 put_16bit(len);
515 put_16bit(~len);
516 #ifdef DEBUG
517 G1.bits_sent += 2 * 16;
518 #endif
519 }
520 #ifdef DEBUG
521 G1.bits_sent += (ulg) len << 3;
522 #endif
523 while (len--) {
524 put_8bit(*buf++);
525 }
526 }
527
528
529 /* ===========================================================================
530 * Fill the window when the lookahead becomes insufficient.
531 * Updates strstart and lookahead, and sets eofile if end of input file.
532 * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
533 * OUT assertions: at least one byte has been read, or eofile is set;
534 * file reads are performed for at least two bytes (required for the
535 * translate_eol option).
536 */
537 static void fill_window(void)
538 {
539 unsigned n, m;
540 unsigned more = WINDOW_SIZE - G1.lookahead - G1.strstart;
541 /* Amount of free space at the end of the window. */
542
543 /* If the window is almost full and there is insufficient lookahead,
544 * move the upper half to the lower one to make room in the upper half.
545 */
546 if (more == (unsigned) -1) {
547 /* Very unlikely, but possible on 16 bit machine if strstart == 0
548 * and lookahead == 1 (input done one byte at time)
549 */
550 more--;
551 } else if (G1.strstart >= WSIZE + MAX_DIST) {
552 /* By the IN assertion, the window is not empty so we can't confuse
553 * more == 0 with more == 64K on a 16 bit machine.
554 */
555 Assert(WINDOW_SIZE == 2 * WSIZE, "no sliding with BIG_MEM");
556
557 memcpy(G1.window, G1.window + WSIZE, WSIZE);
558 G1.match_start -= WSIZE;
559 G1.strstart -= WSIZE; /* we now have strstart >= MAX_DIST: */
560
561 G1.block_start -= WSIZE;
562
563 for (n = 0; n < HASH_SIZE; n++) {
564 m = head[n];
565 head[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
566 }
567 for (n = 0; n < WSIZE; n++) {
568 m = G1.prev[n];
569 G1.prev[n] = (Pos) (m >= WSIZE ? m - WSIZE : 0);
570 /* If n is not on any hash chain, prev[n] is garbage but
571 * its value will never be used.
572 */
573 }
574 more += WSIZE;
575 }
576 /* At this point, more >= 2 */
577 if (!G1.eofile) {
578 n = file_read(G1.window + G1.strstart + G1.lookahead, more);
579 if (n == 0 || n == (unsigned) -1) {
580 G1.eofile = 1;
581 } else {
582 G1.lookahead += n;
583 }
584 }
585 }
586
587
588 /* ===========================================================================
589 * Set match_start to the longest match starting at the given string and
590 * return its length. Matches shorter or equal to prev_length are discarded,
591 * in which case the result is equal to prev_length and match_start is
592 * garbage.
593 * IN assertions: cur_match is the head of the hash chain for the current
594 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
595 */
596
597 /* For MSDOS, OS/2 and 386 Unix, an optimized version is in match.asm or
598 * match.s. The code is functionally equivalent, so you can use the C version
599 * if desired.
600 */
601 static int longest_match(IPos cur_match)
602 {
603 unsigned chain_length = max_chain_length; /* max hash chain length */
604 uch *scan = G1.window + G1.strstart; /* current string */
605 uch *match; /* matched string */
606 int len; /* length of current match */
607 int best_len = G1.prev_length; /* best match length so far */
608 IPos limit = G1.strstart > (IPos) MAX_DIST ? G1.strstart - (IPos) MAX_DIST : 0;
609 /* Stop when cur_match becomes <= limit. To simplify the code,
610 * we prevent matches with the string of window index 0.
611 */
612
613 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
614 * It is easy to get rid of this optimization if necessary.
615 */
616 #if HASH_BITS < 8 || MAX_MATCH != 258
617 # error Code too clever
618 #endif
619 uch *strend = G1.window + G1.strstart + MAX_MATCH;
620 uch scan_end1 = scan[best_len - 1];
621 uch scan_end = scan[best_len];
622
623 /* Do not waste too much time if we already have a good match: */
624 if (G1.prev_length >= good_match) {
625 chain_length >>= 2;
626 }
627 Assert(G1.strstart <= WINDOW_SIZE - MIN_LOOKAHEAD, "insufficient lookahead");
628
629 do {
630 Assert(cur_match < G1.strstart, "no future");
631 match = G1.window + cur_match;
632
633 /* Skip to next match if the match length cannot increase
634 * or if the match length is less than 2:
635 */
636 if (match[best_len] != scan_end ||
637 match[best_len - 1] != scan_end1 ||
638 *match != *scan || *++match != scan[1])
639 continue;
640
641 /* The check at best_len-1 can be removed because it will be made
642 * again later. (This heuristic is not always a win.)
643 * It is not necessary to compare scan[2] and match[2] since they
644 * are always equal when the other bytes match, given that
645 * the hash keys are equal and that HASH_BITS >= 8.
646 */
647 scan += 2, match++;
648
649 /* We check for insufficient lookahead only every 8th comparison;
650 * the 256th check will be made at strstart+258.
651 */
652 do {
653 } while (*++scan == *++match && *++scan == *++match &&
654 *++scan == *++match && *++scan == *++match &&
655 *++scan == *++match && *++scan == *++match &&
656 *++scan == *++match && *++scan == *++match && scan < strend);
657
658 len = MAX_MATCH - (int) (strend - scan);
659 scan = strend - MAX_MATCH;
660
661 if (len > best_len) {
662 G1.match_start = cur_match;
663 best_len = len;
664 if (len >= nice_match)
665 break;
666 scan_end1 = scan[best_len - 1];
667 scan_end = scan[best_len];
668 }
669 } while ((cur_match = G1.prev[cur_match & WMASK]) > limit
670 && --chain_length != 0);
671
672 return best_len;
673 }
674
675
676 #ifdef DEBUG
677 /* ===========================================================================
678 * Check that the match at match_start is indeed a match.
679 */
680 static void check_match(IPos start, IPos match, int length)
681 {
682 /* check that the match is indeed a match */
683 if (memcmp(G1.window + match, G1.window + start, length) != 0) {
684 bb_error_msg(" start %d, match %d, length %d", start, match, length);
685 bb_error_msg("invalid match");
686 }
687 if (verbose > 1) {
688 bb_error_msg("\\[%d,%d]", start - match, length);
689 do {
690 fputc(G1.window[start++], stderr);
691 } while (--length != 0);
692 }
693 }
694 #else
695 # define check_match(start, match, length) ((void)0)
696 #endif
697
698
699 /* trees.c -- output deflated data using Huffman coding
700 * Copyright (C) 1992-1993 Jean-loup Gailly
701 * This is free software; you can redistribute it and/or modify it under the
702 * terms of the GNU General Public License, see the file COPYING.
703 */
704
705 /* PURPOSE
706 * Encode various sets of source values using variable-length
707 * binary code trees.
708 *
709 * DISCUSSION
710 * The PKZIP "deflation" process uses several Huffman trees. The more
711 * common source values are represented by shorter bit sequences.
712 *
713 * Each code tree is stored in the ZIP file in a compressed form
714 * which is itself a Huffman encoding of the lengths of
715 * all the code strings (in ascending order by source values).
716 * The actual code strings are reconstructed from the lengths in
717 * the UNZIP process, as described in the "application note"
718 * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
719 *
720 * REFERENCES
721 * Lynch, Thomas J.
722 * Data Compression: Techniques and Applications, pp. 53-55.
723 * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
724 *
725 * Storer, James A.
726 * Data Compression: Methods and Theory, pp. 49-50.
727 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
728 *
729 * Sedgewick, R.
730 * Algorithms, p290.
731 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
732 *
733 * INTERFACE
734 * void ct_init()
735 * Allocate the match buffer, initialize the various tables [and save
736 * the location of the internal file attribute (ascii/binary) and
737 * method (DEFLATE/STORE) -- deleted in bbox]
738 *
739 * void ct_tally(int dist, int lc);
740 * Save the match info and tally the frequency counts.
741 *
742 * ulg flush_block(char *buf, ulg stored_len, int eof)
743 * Determine the best encoding for the current block: dynamic trees,
744 * static trees or store, and output the encoded block to the zip
745 * file. Returns the total compressed length for the file so far.
746 */
747
748 #define MAX_BITS 15
749 /* All codes must not exceed MAX_BITS bits */
750
751 #define MAX_BL_BITS 7
752 /* Bit length codes must not exceed MAX_BL_BITS bits */
753
754 #define LENGTH_CODES 29
755 /* number of length codes, not counting the special END_BLOCK code */
756
757 #define LITERALS 256
758 /* number of literal bytes 0..255 */
759
760 #define END_BLOCK 256
761 /* end of block literal code */
762
763 #define L_CODES (LITERALS+1+LENGTH_CODES)
764 /* number of Literal or Length codes, including the END_BLOCK code */
765
766 #define D_CODES 30
767 /* number of distance codes */
768
769 #define BL_CODES 19
770 /* number of codes used to transfer the bit lengths */
771
772 /* extra bits for each length code */
773 static const uint8_t extra_lbits[LENGTH_CODES] ALIGN1 = {
774 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
775 4, 4, 5, 5, 5, 5, 0
776 };
777
778 /* extra bits for each distance code */
779 static const uint8_t extra_dbits[D_CODES] ALIGN1 = {
780 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9,
781 10, 10, 11, 11, 12, 12, 13, 13
782 };
783
784 /* extra bits for each bit length code */
785 static const uint8_t extra_blbits[BL_CODES] ALIGN1 = {
786 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7 };
787
788 /* number of codes at each bit length for an optimal tree */
789 static const uint8_t bl_order[BL_CODES] ALIGN1 = {
790 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
791
792 #define STORED_BLOCK 0
793 #define STATIC_TREES 1
794 #define DYN_TREES 2
795 /* The three kinds of block type */
796
797 #ifndef LIT_BUFSIZE
798 # ifdef SMALL_MEM
799 # define LIT_BUFSIZE 0x2000
800 # else
801 # ifdef MEDIUM_MEM
802 # define LIT_BUFSIZE 0x4000
803 # else
804 # define LIT_BUFSIZE 0x8000
805 # endif
806 # endif
807 #endif
808 #ifndef DIST_BUFSIZE
809 # define DIST_BUFSIZE LIT_BUFSIZE
810 #endif
811 /* Sizes of match buffers for literals/lengths and distances. There are
812 * 4 reasons for limiting LIT_BUFSIZE to 64K:
813 * - frequencies can be kept in 16 bit counters
814 * - if compression is not successful for the first block, all input data is
815 * still in the window so we can still emit a stored block even when input
816 * comes from standard input. (This can also be done for all blocks if
817 * LIT_BUFSIZE is not greater than 32K.)
818 * - if compression is not successful for a file smaller than 64K, we can
819 * even emit a stored file instead of a stored block (saving 5 bytes).
820 * - creating new Huffman trees less frequently may not provide fast
821 * adaptation to changes in the input data statistics. (Take for
822 * example a binary file with poorly compressible code followed by
823 * a highly compressible string table.) Smaller buffer sizes give
824 * fast adaptation but have of course the overhead of transmitting trees
825 * more frequently.
826 * - I can't count above 4
827 * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
828 * memory at the expense of compression). Some optimizations would be possible
829 * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
830 */
831 #define REP_3_6 16
832 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
833 #define REPZ_3_10 17
834 /* repeat a zero length 3-10 times (3 bits of repeat count) */
835 #define REPZ_11_138 18
836 /* repeat a zero length 11-138 times (7 bits of repeat count) */
837
838 /* ===========================================================================
839 */
840 /* Data structure describing a single value and its code string. */
841 typedef struct ct_data {
842 union {
843 ush freq; /* frequency count */
844 ush code; /* bit string */
845 } fc;
846 union {
847 ush dad; /* father node in Huffman tree */
848 ush len; /* length of bit string */
849 } dl;
850 } ct_data;
851
852 #define Freq fc.freq
853 #define Code fc.code
854 #define Dad dl.dad
855 #define Len dl.len
856
857 #define HEAP_SIZE (2*L_CODES + 1)
858 /* maximum heap size */
859
860 typedef struct tree_desc {
861 ct_data *dyn_tree; /* the dynamic tree */
862 ct_data *static_tree; /* corresponding static tree or NULL */
863 const uint8_t *extra_bits; /* extra bits for each code or NULL */
864 int extra_base; /* base index for extra_bits */
865 int elems; /* max number of elements in the tree */
866 int max_length; /* max bit length for the codes */
867 int max_code; /* largest code with non zero frequency */
868 } tree_desc;
869
870 struct globals2 {
871
872 ush heap[HEAP_SIZE]; /* heap used to build the Huffman trees */
873 int heap_len; /* number of elements in the heap */
874 int heap_max; /* element of largest frequency */
875
876 /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
877 * The same heap array is used to build all trees.
878 */
879
880 ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
881 ct_data dyn_dtree[2 * D_CODES + 1]; /* distance tree */
882
883 ct_data static_ltree[L_CODES + 2];
884
885 /* The static literal tree. Since the bit lengths are imposed, there is no
886 * need for the L_CODES extra codes used during heap construction. However
887 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
888 * below).
889 */
890
891 ct_data static_dtree[D_CODES];
892
893 /* The static distance tree. (Actually a trivial tree since all codes use
894 * 5 bits.)
895 */
896
897 ct_data bl_tree[2 * BL_CODES + 1];
898
899 /* Huffman tree for the bit lengths */
900
901 tree_desc l_desc;
902 tree_desc d_desc;
903 tree_desc bl_desc;
904
905 ush bl_count[MAX_BITS + 1];
906
907 /* The lengths of the bit length codes are sent in order of decreasing
908 * probability, to avoid transmitting the lengths for unused bit length codes.
909 */
910
911 uch depth[2 * L_CODES + 1];
912
913 /* Depth of each subtree used as tie breaker for trees of equal frequency */
914
915 uch length_code[MAX_MATCH - MIN_MATCH + 1];
916
917 /* length code for each normalized match length (0 == MIN_MATCH) */
918
919 uch dist_code[512];
920
921 /* distance codes. The first 256 values correspond to the distances
922 * 3 .. 258, the last 256 values correspond to the top 8 bits of
923 * the 15 bit distances.
924 */
925
926 int base_length[LENGTH_CODES];
927
928 /* First normalized length for each code (0 = MIN_MATCH) */
929
930 int base_dist[D_CODES];
931
932 /* First normalized distance for each code (0 = distance of 1) */
933
934 uch flag_buf[LIT_BUFSIZE / 8];
935
936 /* flag_buf is a bit array distinguishing literals from lengths in
937 * l_buf, thus indicating the presence or absence of a distance.
938 */
939
940 unsigned last_lit; /* running index in l_buf */
941 unsigned last_dist; /* running index in d_buf */
942 unsigned last_flags; /* running index in flag_buf */
943 uch flags; /* current flags not yet saved in flag_buf */
944 uch flag_bit; /* current bit used in flags */
945
946 /* bits are filled in flags starting at bit 0 (least significant).
947 * Note: these flags are overkill in the current code since we don't
948 * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
949 */
950
951 ulg opt_len; /* bit length of current block with optimal trees */
952 ulg static_len; /* bit length of current block with static trees */
953
954 ulg compressed_len; /* total bit length of compressed file */
955 };
956
957 #define G2ptr ((struct globals2*)(ptr_to_globals))
958 #define G2 (*G2ptr)
959
960
961 /* ===========================================================================
962 */
963 static void gen_codes(ct_data * tree, int max_code);
964 static void build_tree(tree_desc * desc);
965 static void scan_tree(ct_data * tree, int max_code);
966 static void send_tree(ct_data * tree, int max_code);
967 static int build_bl_tree(void);
968 static void send_all_trees(int lcodes, int dcodes, int blcodes);
969 static void compress_block(ct_data * ltree, ct_data * dtree);
970
971
972 #ifndef DEBUG
973 /* Send a code of the given tree. c and tree must not have side effects */
974 # define SEND_CODE(c, tree) send_bits(tree[c].Code, tree[c].Len)
975 #else
976 # define SEND_CODE(c, tree) \
977 { \
978 if (verbose > 1) bb_error_msg("\ncd %3d ",(c)); \
979 send_bits(tree[c].Code, tree[c].Len); \
980 }
981 #endif
982
983 #define D_CODE(dist) \
984 ((dist) < 256 ? G2.dist_code[dist] : G2.dist_code[256 + ((dist)>>7)])
985 /* Mapping from a distance to a distance code. dist is the distance - 1 and
986 * must not have side effects. dist_code[256] and dist_code[257] are never
987 * used.
988 * The arguments must not have side effects.
989 */
990
991
992 /* ===========================================================================
993 * Initialize a new block.
994 */
995 static void init_block(void)
996 {
997 int n; /* iterates over tree elements */
998
999 /* Initialize the trees. */
1000 for (n = 0; n < L_CODES; n++)
1001 G2.dyn_ltree[n].Freq = 0;
1002 for (n = 0; n < D_CODES; n++)
1003 G2.dyn_dtree[n].Freq = 0;
1004 for (n = 0; n < BL_CODES; n++)
1005 G2.bl_tree[n].Freq = 0;
1006
1007 G2.dyn_ltree[END_BLOCK].Freq = 1;
1008 G2.opt_len = G2.static_len = 0;
1009 G2.last_lit = G2.last_dist = G2.last_flags = 0;
1010 G2.flags = 0;
1011 G2.flag_bit = 1;
1012 }
1013
1014
1015 /* ===========================================================================
1016 * Restore the heap property by moving down the tree starting at node k,
1017 * exchanging a node with the smallest of its two sons if necessary, stopping
1018 * when the heap property is re-established (each father smaller than its
1019 * two sons).
1020 */
1021
1022 /* Compares to subtrees, using the tree depth as tie breaker when
1023 * the subtrees have equal frequency. This minimizes the worst case length. */
1024 #define SMALLER(tree, n, m) \
1025 (tree[n].Freq < tree[m].Freq \
1026 || (tree[n].Freq == tree[m].Freq && G2.depth[n] <= G2.depth[m]))
1027
1028 static void pqdownheap(ct_data * tree, int k)
1029 {
1030 int v = G2.heap[k];
1031 int j = k << 1; /* left son of k */
1032
1033 while (j <= G2.heap_len) {
1034 /* Set j to the smallest of the two sons: */
1035 if (j < G2.heap_len && SMALLER(tree, G2.heap[j + 1], G2.heap[j]))
1036 j++;
1037
1038 /* Exit if v is smaller than both sons */
1039 if (SMALLER(tree, v, G2.heap[j]))
1040 break;
1041
1042 /* Exchange v with the smallest son */
1043 G2.heap[k] = G2.heap[j];
1044 k = j;
1045
1046 /* And continue down the tree, setting j to the left son of k */
1047 j <<= 1;
1048 }
1049 G2.heap[k] = v;
1050 }
1051
1052
1053 /* ===========================================================================
1054 * Compute the optimal bit lengths for a tree and update the total bit length
1055 * for the current block.
1056 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1057 * above are the tree nodes sorted by increasing frequency.
1058 * OUT assertions: the field len is set to the optimal bit length, the
1059 * array bl_count contains the frequencies for each bit length.
1060 * The length opt_len is updated; static_len is also updated if stree is
1061 * not null.
1062 */
1063 static void gen_bitlen(tree_desc * desc)
1064 {
1065 ct_data *tree = desc->dyn_tree;
1066 const uint8_t *extra = desc->extra_bits;
1067 int base = desc->extra_base;
1068 int max_code = desc->max_code;
1069 int max_length = desc->max_length;
1070 ct_data *stree = desc->static_tree;
1071 int h; /* heap index */
1072 int n, m; /* iterate over the tree elements */
1073 int bits; /* bit length */
1074 int xbits; /* extra bits */
1075 ush f; /* frequency */
1076 int overflow = 0; /* number of elements with bit length too large */
1077
1078 for (bits = 0; bits <= MAX_BITS; bits++)
1079 G2.bl_count[bits] = 0;
1080
1081 /* In a first pass, compute the optimal bit lengths (which may
1082 * overflow in the case of the bit length tree).
1083 */
1084 tree[G2.heap[G2.heap_max]].Len = 0; /* root of the heap */
1085
1086 for (h = G2.heap_max + 1; h < HEAP_SIZE; h++) {
1087 n = G2.heap[h];
1088 bits = tree[tree[n].Dad].Len + 1;
1089 if (bits > max_length) {
1090 bits = max_length;
1091 overflow++;
1092 }
1093 tree[n].Len = (ush) bits;
1094 /* We overwrite tree[n].Dad which is no longer needed */
1095
1096 if (n > max_code)
1097 continue; /* not a leaf node */
1098
1099 G2.bl_count[bits]++;
1100 xbits = 0;
1101 if (n >= base)
1102 xbits = extra[n - base];
1103 f = tree[n].Freq;
1104 G2.opt_len += (ulg) f *(bits + xbits);
1105
1106 if (stree)
1107 G2.static_len += (ulg) f * (stree[n].Len + xbits);
1108 }
1109 if (overflow == 0)
1110 return;
1111
1112 Trace((stderr, "\nbit length overflow\n"));
1113 /* This happens for example on obj2 and pic of the Calgary corpus */
1114
1115 /* Find the first bit length which could increase: */
1116 do {
1117 bits = max_length - 1;
1118 while (G2.bl_count[bits] == 0)
1119 bits--;
1120 G2.bl_count[bits]--; /* move one leaf down the tree */
1121 G2.bl_count[bits + 1] += 2; /* move one overflow item as its brother */
1122 G2.bl_count[max_length]--;
1123 /* The brother of the overflow item also moves one step up,
1124 * but this does not affect bl_count[max_length]
1125 */
1126 overflow -= 2;
1127 } while (overflow > 0);
1128
1129 /* Now recompute all bit lengths, scanning in increasing frequency.
1130 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1131 * lengths instead of fixing only the wrong ones. This idea is taken
1132 * from 'ar' written by Haruhiko Okumura.)
1133 */
1134 for (bits = max_length; bits != 0; bits--) {
1135 n = G2.bl_count[bits];
1136 while (n != 0) {
1137 m = G2.heap[--h];
1138 if (m > max_code)
1139 continue;
1140 if (tree[m].Len != (unsigned) bits) {
1141 Trace((stderr, "code %d bits %d->%d\n", m, tree[m].Len, bits));
1142 G2.opt_len += ((int32_t) bits - tree[m].Len) * tree[m].Freq;
1143 tree[m].Len = bits;
1144 }
1145 n--;
1146 }
1147 }
1148 }
1149
1150
1151 /* ===========================================================================
1152 * Generate the codes for a given tree and bit counts (which need not be
1153 * optimal).
1154 * IN assertion: the array bl_count contains the bit length statistics for
1155 * the given tree and the field len is set for all tree elements.
1156 * OUT assertion: the field code is set for all tree elements of non
1157 * zero code length.
1158 */
1159 static void gen_codes(ct_data * tree, int max_code)
1160 {
1161 ush next_code[MAX_BITS + 1]; /* next code value for each bit length */
1162 ush code = 0; /* running code value */
1163 int bits; /* bit index */
1164 int n; /* code index */
1165
1166 /* The distribution counts are first used to generate the code values
1167 * without bit reversal.
1168 */
1169 for (bits = 1; bits <= MAX_BITS; bits++) {
1170 next_code[bits] = code = (code + G2.bl_count[bits - 1]) << 1;
1171 }
1172 /* Check that the bit counts in bl_count are consistent. The last code
1173 * must be all ones.
1174 */
1175 Assert(code + G2.bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
1176 "inconsistent bit counts");
1177 Tracev((stderr, "\ngen_codes: max_code %d ", max_code));
1178
1179 for (n = 0; n <= max_code; n++) {
1180 int len = tree[n].Len;
1181
1182 if (len == 0)
1183 continue;
1184 /* Now reverse the bits */
1185 tree[n].Code = bi_reverse(next_code[len]++, len);
1186
1187 Tracec(tree != G2.static_ltree,
1188 (stderr, "\nn %3d %c l %2d c %4x (%x) ", n,
1189 (isgraph(n) ? n : ' '), len, tree[n].Code,
1190 next_code[len] - 1));
1191 }
1192 }
1193
1194
1195 /* ===========================================================================
1196 * Construct one Huffman tree and assigns the code bit strings and lengths.
1197 * Update the total bit length for the current block.
1198 * IN assertion: the field freq is set for all tree elements.
1199 * OUT assertions: the fields len and code are set to the optimal bit length
1200 * and corresponding code. The length opt_len is updated; static_len is
1201 * also updated if stree is not null. The field max_code is set.
1202 */
1203
1204 /* Remove the smallest element from the heap and recreate the heap with
1205 * one less element. Updates heap and heap_len. */
1206
1207 #define SMALLEST 1
1208 /* Index within the heap array of least frequent node in the Huffman tree */
1209
1210 #define PQREMOVE(tree, top) \
1211 do { \
1212 top = G2.heap[SMALLEST]; \
1213 G2.heap[SMALLEST] = G2.heap[G2.heap_len--]; \
1214 pqdownheap(tree, SMALLEST); \
1215 } while (0)
1216
1217 static void build_tree(tree_desc * desc)
1218 {
1219 ct_data *tree = desc->dyn_tree;
1220 ct_data *stree = desc->static_tree;
1221 int elems = desc->elems;
1222 int n, m; /* iterate over heap elements */
1223 int max_code = -1; /* largest code with non zero frequency */
1224 int node = elems; /* next internal node of the tree */
1225
1226 /* Construct the initial heap, with least frequent element in
1227 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
1228 * heap[0] is not used.
1229 */
1230 G2.heap_len = 0;
1231 G2.heap_max = HEAP_SIZE;
1232
1233 for (n = 0; n < elems; n++) {
1234 if (tree[n].Freq != 0) {
1235 G2.heap[++G2.heap_len] = max_code = n;
1236 G2.depth[n] = 0;
1237 } else {
1238 tree[n].Len = 0;
1239 }
1240 }
1241
1242 /* The pkzip format requires that at least one distance code exists,
1243 * and that at least one bit should be sent even if there is only one
1244 * possible code. So to avoid special checks later on we force at least
1245 * two codes of non zero frequency.
1246 */
1247 while (G2.heap_len < 2) {
1248 int new = G2.heap[++G2.heap_len] = (max_code < 2 ? ++max_code : 0);
1249
1250 tree[new].Freq = 1;
1251 G2.depth[new] = 0;
1252 G2.opt_len--;
1253 if (stree)
1254 G2.static_len -= stree[new].Len;
1255 /* new is 0 or 1 so it does not have extra bits */
1256 }
1257 desc->max_code = max_code;
1258
1259 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
1260 * establish sub-heaps of increasing lengths:
1261 */
1262 for (n = G2.heap_len / 2; n >= 1; n--)
1263 pqdownheap(tree, n);
1264
1265 /* Construct the Huffman tree by repeatedly combining the least two
1266 * frequent nodes.
1267 */
1268 do {
1269 PQREMOVE(tree, n); /* n = node of least frequency */
1270 m = G2.heap[SMALLEST]; /* m = node of next least frequency */
1271
1272 G2.heap[--G2.heap_max] = n; /* keep the nodes sorted by frequency */
1273 G2.heap[--G2.heap_max] = m;
1274
1275 /* Create a new node father of n and m */
1276 tree[node].Freq = tree[n].Freq + tree[m].Freq;
1277 G2.depth[node] = MAX(G2.depth[n], G2.depth[m]) + 1;
1278 tree[n].Dad = tree[m].Dad = (ush) node;
1279 #ifdef DUMP_BL_TREE
1280 if (tree == G2.bl_tree) {
1281 bb_error_msg("\nnode %d(%d), sons %d(%d) %d(%d)",
1282 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
1283 }
1284 #endif
1285 /* and insert the new node in the heap */
1286 G2.heap[SMALLEST] = node++;
1287 pqdownheap(tree, SMALLEST);
1288
1289 } while (G2.heap_len >= 2);
1290
1291 G2.heap[--G2.heap_max] = G2.heap[SMALLEST];
1292
1293 /* At this point, the fields freq and dad are set. We can now
1294 * generate the bit lengths.
1295 */
1296 gen_bitlen((tree_desc *) desc);
1297
1298 /* The field len is now set, we can generate the bit codes */
1299 gen_codes((ct_data *) tree, max_code);
1300 }
1301
1302
1303 /* ===========================================================================
1304 * Scan a literal or distance tree to determine the frequencies of the codes
1305 * in the bit length tree. Updates opt_len to take into account the repeat
1306 * counts. (The contribution of the bit length codes will be added later
1307 * during the construction of bl_tree.)
1308 */
1309 static void scan_tree(ct_data * tree, int max_code)
1310 {
1311 int n; /* iterates over all tree elements */
1312 int prevlen = -1; /* last emitted length */
1313 int curlen; /* length of current code */
1314 int nextlen = tree[0].Len; /* length of next code */
1315 int count = 0; /* repeat count of the current code */
1316 int max_count = 7; /* max repeat count */
1317 int min_count = 4; /* min repeat count */
1318
1319 if (nextlen == 0) {
1320 max_count = 138;
1321 min_count = 3;
1322 }
1323 tree[max_code + 1].Len = 0xffff; /* guard */
1324
1325 for (n = 0; n <= max_code; n++) {
1326 curlen = nextlen;
1327 nextlen = tree[n + 1].Len;
1328 if (++count < max_count && curlen == nextlen)
1329 continue;
1330
1331 if (count < min_count) {
1332 G2.bl_tree[curlen].Freq += count;
1333 } else if (curlen != 0) {
1334 if (curlen != prevlen)
1335 G2.bl_tree[curlen].Freq++;
1336 G2.bl_tree[REP_3_6].Freq++;
1337 } else if (count <= 10) {
1338 G2.bl_tree[REPZ_3_10].Freq++;
1339 } else {
1340 G2.bl_tree[REPZ_11_138].Freq++;
1341 }
1342 count = 0;
1343 prevlen = curlen;
1344
1345 max_count = 7;
1346 min_count = 4;
1347 if (nextlen == 0) {
1348 max_count = 138;
1349 min_count = 3;
1350 } else if (curlen == nextlen) {
1351 max_count = 6;
1352 min_count = 3;
1353 }
1354 }
1355 }
1356
1357
1358 /* ===========================================================================
1359 * Send a literal or distance tree in compressed form, using the codes in
1360 * bl_tree.
1361 */
1362 static void send_tree(ct_data * tree, int max_code)
1363 {
1364 int n; /* iterates over all tree elements */
1365 int prevlen = -1; /* last emitted length */
1366 int curlen; /* length of current code */
1367 int nextlen = tree[0].Len; /* length of next code */
1368 int count = 0; /* repeat count of the current code */
1369 int max_count = 7; /* max repeat count */
1370 int min_count = 4; /* min repeat count */
1371
1372 /* tree[max_code+1].Len = -1; *//* guard already set */
1373 if (nextlen == 0)
1374 max_count = 138, min_count = 3;
1375
1376 for (n = 0; n <= max_code; n++) {
1377 curlen = nextlen;
1378 nextlen = tree[n + 1].Len;
1379 if (++count < max_count && curlen == nextlen) {
1380 continue;
1381 } else if (count < min_count) {
1382 do {
1383 SEND_CODE(curlen, G2.bl_tree);
1384 } while (--count);
1385 } else if (curlen != 0) {
1386 if (curlen != prevlen) {
1387 SEND_CODE(curlen, G2.bl_tree);
1388 count--;
1389 }
1390 Assert(count >= 3 && count <= 6, " 3_6?");
1391 SEND_CODE(REP_3_6, G2.bl_tree);
1392 send_bits(count - 3, 2);
1393 } else if (count <= 10) {
1394 SEND_CODE(REPZ_3_10, G2.bl_tree);
1395 send_bits(count - 3, 3);
1396 } else {
1397 SEND_CODE(REPZ_11_138, G2.bl_tree);
1398 send_bits(count - 11, 7);
1399 }
1400 count = 0;
1401 prevlen = curlen;
1402 if (nextlen == 0) {
1403 max_count = 138;
1404 min_count = 3;
1405 } else if (curlen == nextlen) {
1406 max_count = 6;
1407 min_count = 3;
1408 } else {
1409 max_count = 7;
1410 min_count = 4;
1411 }
1412 }
1413 }
1414
1415
1416 /* ===========================================================================
1417 * Construct the Huffman tree for the bit lengths and return the index in
1418 * bl_order of the last bit length code to send.
1419 */
1420 static int build_bl_tree(void)
1421 {
1422 int max_blindex; /* index of last bit length code of non zero freq */
1423
1424 /* Determine the bit length frequencies for literal and distance trees */
1425 scan_tree(G2.dyn_ltree, G2.l_desc.max_code);
1426 scan_tree(G2.dyn_dtree, G2.d_desc.max_code);
1427
1428 /* Build the bit length tree: */
1429 build_tree(&G2.bl_desc);
1430 /* opt_len now includes the length of the tree representations, except
1431 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
1432 */
1433
1434 /* Determine the number of bit length codes to send. The pkzip format
1435 * requires that at least 4 bit length codes be sent. (appnote.txt says
1436 * 3 but the actual value used is 4.)
1437 */
1438 for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) {
1439 if (G2.bl_tree[bl_order[max_blindex]].Len != 0)
1440 break;
1441 }
1442 /* Update opt_len to include the bit length tree and counts */
1443 G2.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
1444 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1445
1446 return max_blindex;
1447 }
1448
1449
1450 /* ===========================================================================
1451 * Send the header for a block using dynamic Huffman trees: the counts, the
1452 * lengths of the bit length codes, the literal tree and the distance tree.
1453 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
1454 */
1455 static void send_all_trees(int lcodes, int dcodes, int blcodes)
1456 {
1457 int rank; /* index in bl_order */
1458
1459 Assert(lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
1460 Assert(lcodes <= L_CODES && dcodes <= D_CODES
1461 && blcodes <= BL_CODES, "too many codes");
1462 Tracev((stderr, "\nbl counts: "));
1463 send_bits(lcodes - 257, 5); /* not +255 as stated in appnote.txt */
1464 send_bits(dcodes - 1, 5);
1465 send_bits(blcodes - 4, 4); /* not -3 as stated in appnote.txt */
1466 for (rank = 0; rank < blcodes; rank++) {
1467 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
1468 send_bits(G2.bl_tree[bl_order[rank]].Len, 3);
1469 }
1470 Tracev((stderr, "\nbl tree: sent %ld", G1.bits_sent));
1471
1472 send_tree((ct_data *) G2.dyn_ltree, lcodes - 1); /* send the literal tree */
1473 Tracev((stderr, "\nlit tree: sent %ld", G1.bits_sent));
1474
1475 send_tree((ct_data *) G2.dyn_dtree, dcodes - 1); /* send the distance tree */
1476 Tracev((stderr, "\ndist tree: sent %ld", G1.bits_sent));
1477 }
1478
1479
1480 /* ===========================================================================
1481 * Save the match info and tally the frequency counts. Return true if
1482 * the current block must be flushed.
1483 */
1484 static int ct_tally(int dist, int lc)
1485 {
1486 G1.l_buf[G2.last_lit++] = lc;
1487 if (dist == 0) {
1488 /* lc is the unmatched char */
1489 G2.dyn_ltree[lc].Freq++;
1490 } else {
1491 /* Here, lc is the match length - MIN_MATCH */
1492 dist--; /* dist = match distance - 1 */
1493 Assert((ush) dist < (ush) MAX_DIST
1494 && (ush) lc <= (ush) (MAX_MATCH - MIN_MATCH)
1495 && (ush) D_CODE(dist) < (ush) D_CODES, "ct_tally: bad match"
1496 );
1497
1498 G2.dyn_ltree[G2.length_code[lc] + LITERALS + 1].Freq++;
1499 G2.dyn_dtree[D_CODE(dist)].Freq++;
1500
1501 G1.d_buf[G2.last_dist++] = dist;
1502 G2.flags |= G2.flag_bit;
1503 }
1504 G2.flag_bit <<= 1;
1505
1506 /* Output the flags if they fill a byte: */
1507 if ((G2.last_lit & 7) == 0) {
1508 G2.flag_buf[G2.last_flags++] = G2.flags;
1509 G2.flags = 0;
1510 G2.flag_bit = 1;
1511 }
1512 /* Try to guess if it is profitable to stop the current block here */
1513 if ((G2.last_lit & 0xfff) == 0) {
1514 /* Compute an upper bound for the compressed length */
1515 ulg out_length = G2.last_lit * 8L;
1516 ulg in_length = (ulg) G1.strstart - G1.block_start;
1517 int dcode;
1518
1519 for (dcode = 0; dcode < D_CODES; dcode++) {
1520 out_length += G2.dyn_dtree[dcode].Freq * (5L + extra_dbits[dcode]);
1521 }
1522 out_length >>= 3;
1523 Trace((stderr,
1524 "\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
1525 G2.last_lit, G2.last_dist, in_length, out_length,
1526 100L - out_length * 100L / in_length));
1527 if (G2.last_dist < G2.last_lit / 2 && out_length < in_length / 2)
1528 return 1;
1529 }
1530 return (G2.last_lit == LIT_BUFSIZE - 1 || G2.last_dist == DIST_BUFSIZE);
1531 /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1532 * on 16 bit machines and because stored blocks are restricted to
1533 * 64K-1 bytes.
1534 */
1535 }
1536
1537 /* ===========================================================================
1538 * Send the block data compressed using the given Huffman trees
1539 */
1540 static void compress_block(ct_data * ltree, ct_data * dtree)
1541 {
1542 unsigned dist; /* distance of matched string */
1543 int lc; /* match length or unmatched char (if dist == 0) */
1544 unsigned lx = 0; /* running index in l_buf */
1545 unsigned dx = 0; /* running index in d_buf */
1546 unsigned fx = 0; /* running index in flag_buf */
1547 uch flag = 0; /* current flags */
1548 unsigned code; /* the code to send */
1549 int extra; /* number of extra bits to send */
1550
1551 if (G2.last_lit != 0) do {
1552 if ((lx & 7) == 0)
1553 flag = G2.flag_buf[fx++];
1554 lc = G1.l_buf[lx++];
1555 if ((flag & 1) == 0) {
1556 SEND_CODE(lc, ltree); /* send a literal byte */
1557 Tracecv(isgraph(lc), (stderr, " '%c' ", lc));
1558 } else {
1559 /* Here, lc is the match length - MIN_MATCH */
1560 code = G2.length_code[lc];
1561 SEND_CODE(code + LITERALS + 1, ltree); /* send the length code */
1562 extra = extra_lbits[code];
1563 if (extra != 0) {
1564 lc -= G2.base_length[code];
1565 send_bits(lc, extra); /* send the extra length bits */
1566 }
1567 dist = G1.d_buf[dx++];
1568 /* Here, dist is the match distance - 1 */
1569 code = D_CODE(dist);
1570 Assert(code < D_CODES, "bad d_code");
1571
1572 SEND_CODE(code, dtree); /* send the distance code */
1573 extra = extra_dbits[code];
1574 if (extra != 0) {
1575 dist -= G2.base_dist[code];
1576 send_bits(dist, extra); /* send the extra distance bits */
1577 }
1578 } /* literal or match pair ? */
1579 flag >>= 1;
1580 } while (lx < G2.last_lit);
1581
1582 SEND_CODE(END_BLOCK, ltree);
1583 }
1584
1585
1586 /* ===========================================================================
1587 * Determine the best encoding for the current block: dynamic trees, static
1588 * trees or store, and output the encoded block to the zip file. This function
1589 * returns the total compressed length for the file so far.
1590 */
1591 static ulg flush_block(char *buf, ulg stored_len, int eof)
1592 {
1593 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
1594 int max_blindex; /* index of last bit length code of non zero freq */
1595
1596 G2.flag_buf[G2.last_flags] = G2.flags; /* Save the flags for the last 8 items */
1597
1598 /* Construct the literal and distance trees */
1599 build_tree(&G2.l_desc);
1600 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1601
1602 build_tree(&G2.d_desc);
1603 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", G2.opt_len, G2.static_len));
1604 /* At this point, opt_len and static_len are the total bit lengths of
1605 * the compressed block data, excluding the tree representations.
1606 */
1607
1608 /* Build the bit length tree for the above two trees, and get the index
1609 * in bl_order of the last bit length code to send.
1610 */
1611 max_blindex = build_bl_tree();
1612
1613 /* Determine the best encoding. Compute first the block length in bytes */
1614 opt_lenb = (G2.opt_len + 3 + 7) >> 3;
1615 static_lenb = (G2.static_len + 3 + 7) >> 3;
1616
1617 Trace((stderr,
1618 "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
1619 opt_lenb, G2.opt_len, static_lenb, G2.static_len, stored_len,
1620 G2.last_lit, G2.last_dist));
1621
1622 if (static_lenb <= opt_lenb)
1623 opt_lenb = static_lenb;
1624
1625 /* If compression failed and this is the first and last block,
1626 * and if the zip file can be seeked (to rewrite the local header),
1627 * the whole file is transformed into a stored file:
1628 */
1629 if (stored_len <= opt_lenb && eof && G2.compressed_len == 0L && seekable()) {
1630 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
1631 if (buf == NULL)
1632 bb_error_msg("block vanished");
1633
1634 copy_block(buf, (unsigned) stored_len, 0); /* without header */
1635 G2.compressed_len = stored_len << 3;
1636
1637 } else if (stored_len + 4 <= opt_lenb && buf != NULL) {
1638 /* 4: two words for the lengths */
1639 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1640 * Otherwise we can't have processed more than WSIZE input bytes since
1641 * the last block flush, because compression would have been
1642 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1643 * transform a block into a stored block.
1644 */
1645 send_bits((STORED_BLOCK << 1) + eof, 3); /* send block type */
1646 G2.compressed_len = (G2.compressed_len + 3 + 7) & ~7L;
1647 G2.compressed_len += (stored_len + 4) << 3;
1648
1649 copy_block(buf, (unsigned) stored_len, 1); /* with header */
1650
1651 } else if (static_lenb == opt_lenb) {
1652 send_bits((STATIC_TREES << 1) + eof, 3);
1653 compress_block((ct_data *) G2.static_ltree, (ct_data *) G2.static_dtree);
1654 G2.compressed_len += 3 + G2.static_len;
1655 } else {
1656 send_bits((DYN_TREES << 1) + eof, 3);
1657 send_all_trees(G2.l_desc.max_code + 1, G2.d_desc.max_code + 1,
1658 max_blindex + 1);
1659 compress_block((ct_data *) G2.dyn_ltree, (ct_data *) G2.dyn_dtree);
1660 G2.compressed_len += 3 + G2.opt_len;
1661 }
1662 Assert(G2.compressed_len == G1.bits_sent, "bad compressed size");
1663 init_block();
1664
1665 if (eof) {
1666 bi_windup();
1667 G2.compressed_len += 7; /* align on byte boundary */
1668 }
1669 Tracev((stderr, "\ncomprlen %lu(%lu) ", G2.compressed_len >> 3,
1670 G2.compressed_len - 7 * eof));
1671
1672 return G2.compressed_len >> 3;
1673 }
1674
1675
1676 /* ===========================================================================
1677 * Update a hash value with the given input byte
1678 * IN assertion: all calls to to UPDATE_HASH are made with consecutive
1679 * input characters, so that a running hash key can be computed from the
1680 * previous key instead of complete recalculation each time.
1681 */
1682 #define UPDATE_HASH(h, c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)
1683
1684
1685 /* ===========================================================================
1686 * Same as above, but achieves better compression. We use a lazy
1687 * evaluation for matches: a match is finally adopted only if there is
1688 * no better match at the next window position.
1689 *
1690 * Processes a new input file and return its compressed length. Sets
1691 * the compressed length, crc, deflate flags and internal file
1692 * attributes.
1693 */
1694
1695 /* Flush the current block, with given end-of-file flag.
1696 * IN assertion: strstart is set to the end of the current match. */
1697 #define FLUSH_BLOCK(eof) \
1698 flush_block( \
1699 G1.block_start >= 0L \
1700 ? (char*)&G1.window[(unsigned)G1.block_start] \
1701 : (char*)NULL, \
1702 (ulg)G1.strstart - G1.block_start, \
1703 (eof) \
1704 )
1705
1706 /* Insert string s in the dictionary and set match_head to the previous head
1707 * of the hash chain (the most recent string with same hash key). Return
1708 * the previous length of the hash chain.
1709 * IN assertion: all calls to to INSERT_STRING are made with consecutive
1710 * input characters and the first MIN_MATCH bytes of s are valid
1711 * (except for the last MIN_MATCH-1 bytes of the input file). */
1712 #define INSERT_STRING(s, match_head) \
1713 do { \
1714 UPDATE_HASH(G1.ins_h, G1.window[(s) + MIN_MATCH-1]); \
1715 G1.prev[(s) & WMASK] = match_head = head[G1.ins_h]; \
1716 head[G1.ins_h] = (s); \
1717 } while (0)
1718
1719 static ulg deflate(void)
1720 {
1721 IPos hash_head; /* head of hash chain */
1722 IPos prev_match; /* previous match */
1723 int flush; /* set if current block must be flushed */
1724 int match_available = 0; /* set if previous match exists */
1725 unsigned match_length = MIN_MATCH - 1; /* length of best match */
1726
1727 /* Process the input block. */
1728 while (G1.lookahead != 0) {
1729 /* Insert the string window[strstart .. strstart+2] in the
1730 * dictionary, and set hash_head to the head of the hash chain:
1731 */
1732 INSERT_STRING(G1.strstart, hash_head);
1733
1734 /* Find the longest match, discarding those <= prev_length.
1735 */
1736 G1.prev_length = match_length;
1737 prev_match = G1.match_start;
1738 match_length = MIN_MATCH - 1;
1739
1740 if (hash_head != 0 && G1.prev_length < max_lazy_match
1741 && G1.strstart - hash_head <= MAX_DIST
1742 ) {
1743 /* To simplify the code, we prevent matches with the string
1744 * of window index 0 (in particular we have to avoid a match
1745 * of the string with itself at the start of the input file).
1746 */
1747 match_length = longest_match(hash_head);
1748 /* longest_match() sets match_start */
1749 if (match_length > G1.lookahead)
1750 match_length = G1.lookahead;
1751
1752 /* Ignore a length 3 match if it is too distant: */
1753 if (match_length == MIN_MATCH && G1.strstart - G1.match_start > TOO_FAR) {
1754 /* If prev_match is also MIN_MATCH, G1.match_start is garbage
1755 * but we will ignore the current match anyway.
1756 */
1757 match_length--;
1758 }
1759 }
1760 /* If there was a match at the previous step and the current
1761 * match is not better, output the previous match:
1762 */
1763 if (G1.prev_length >= MIN_MATCH && match_length <= G1.prev_length) {
1764 check_match(G1.strstart - 1, prev_match, G1.prev_length);
1765 flush = ct_tally(G1.strstart - 1 - prev_match, G1.prev_length - MIN_MATCH);
1766
1767 /* Insert in hash table all strings up to the end of the match.
1768 * strstart-1 and strstart are already inserted.
1769 */
1770 G1.lookahead -= G1.prev_length - 1;
1771 G1.prev_length -= 2;
1772 do {
1773 G1.strstart++;
1774 INSERT_STRING(G1.strstart, hash_head);
1775 /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1776 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
1777 * these bytes are garbage, but it does not matter since the
1778 * next lookahead bytes will always be emitted as literals.
1779 */
1780 } while (--G1.prev_length != 0);
1781 match_available = 0;
1782 match_length = MIN_MATCH - 1;
1783 G1.strstart++;
1784 if (flush) {
1785 FLUSH_BLOCK(0);
1786 G1.block_start = G1.strstart;
1787 }
1788 } else if (match_available) {
1789 /* If there was no match at the previous position, output a
1790 * single literal. If there was a match but the current match
1791 * is longer, truncate the previous match to a single literal.
1792 */
1793 Tracevv((stderr, "%c", G1.window[G1.strstart - 1]));
1794 if (ct_tally(0, G1.window[G1.strstart - 1])) {
1795 FLUSH_BLOCK(0);
1796 G1.block_start = G1.strstart;
1797 }
1798 G1.strstart++;
1799 G1.lookahead--;
1800 } else {
1801 /* There is no previous match to compare with, wait for
1802 * the next step to decide.
1803 */
1804 match_available = 1;
1805 G1.strstart++;
1806 G1.lookahead--;
1807 }
1808 Assert(G1.strstart <= G1.isize && lookahead <= G1.isize, "a bit too far");
1809
1810 /* Make sure that we always have enough lookahead, except
1811 * at the end of the input file. We need MAX_MATCH bytes
1812 * for the next match, plus MIN_MATCH bytes to insert the
1813 * string following the next match.
1814 */
1815 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1816 fill_window();
1817 }
1818 if (match_available)
1819 ct_tally(0, G1.window[G1.strstart - 1]);
1820
1821 return FLUSH_BLOCK(1); /* eof */
1822 }
1823
1824
1825 /* ===========================================================================
1826 * Initialize the bit string routines.
1827 */
1828 static void bi_init(void)
1829 {
1830 G1.bi_buf = 0;
1831 G1.bi_valid = 0;
1832 #ifdef DEBUG
1833 G1.bits_sent = 0L;
1834 #endif
1835 }
1836
1837
1838 /* ===========================================================================
1839 * Initialize the "longest match" routines for a new file
1840 */
1841 static void lm_init(ush * flagsp)
1842 {
1843 unsigned j;
1844
1845 /* Initialize the hash table. */
1846 memset(head, 0, HASH_SIZE * sizeof(*head));
1847 /* prev will be initialized on the fly */
1848
1849 /* speed options for the general purpose bit flag */
1850 *flagsp |= 2; /* FAST 4, SLOW 2 */
1851 /* ??? reduce max_chain_length for binary files */
1852
1853 G1.strstart = 0;
1854 G1.block_start = 0L;
1855
1856 G1.lookahead = file_read(G1.window,
1857 sizeof(int) <= 2 ? (unsigned) WSIZE : 2 * WSIZE);
1858
1859 if (G1.lookahead == 0 || G1.lookahead == (unsigned) -1) {
1860 G1.eofile = 1;
1861 G1.lookahead = 0;
1862 return;
1863 }
1864 G1.eofile = 0;
1865 /* Make sure that we always have enough lookahead. This is important
1866 * if input comes from a device such as a tty.
1867 */
1868 while (G1.lookahead < MIN_LOOKAHEAD && !G1.eofile)
1869 fill_window();
1870
1871 G1.ins_h = 0;
1872 for (j = 0; j < MIN_MATCH - 1; j++)
1873 UPDATE_HASH(G1.ins_h, G1.window[j]);
1874 /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
1875 * not important since only literal bytes will be emitted.
1876 */
1877 }
1878
1879
1880 /* ===========================================================================
1881 * Allocate the match buffer, initialize the various tables and save the
1882 * location of the internal file attribute (ascii/binary) and method
1883 * (DEFLATE/STORE).
1884 * One callsite in zip()
1885 */
1886 static void ct_init(void)
1887 {
1888 int n; /* iterates over tree elements */
1889 int length; /* length value */
1890 int code; /* code value */
1891 int dist; /* distance index */
1892
1893 G2.compressed_len = 0L;
1894
1895 #ifdef NOT_NEEDED
1896 if (G2.static_dtree[0].Len != 0)
1897 return; /* ct_init already called */
1898 #endif
1899
1900 /* Initialize the mapping length (0..255) -> length code (0..28) */
1901 length = 0;
1902 for (code = 0; code < LENGTH_CODES - 1; code++) {
1903 G2.base_length[code] = length;
1904 for (n = 0; n < (1 << extra_lbits[code]); n++) {
1905 G2.length_code[length++] = code;
1906 }
1907 }
1908 Assert(length == 256, "ct_init: length != 256");
1909 /* Note that the length 255 (match length 258) can be represented
1910 * in two different ways: code 284 + 5 bits or code 285, so we
1911 * overwrite length_code[255] to use the best encoding:
1912 */
1913 G2.length_code[length - 1] = code;
1914
1915 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1916 dist = 0;
1917 for (code = 0; code < 16; code++) {
1918 G2.base_dist[code] = dist;
1919 for (n = 0; n < (1 << extra_dbits[code]); n++) {
1920 G2.dist_code[dist++] = code;
1921 }
1922 }
1923 Assert(dist == 256, "ct_init: dist != 256");
1924 dist >>= 7; /* from now on, all distances are divided by 128 */
1925 for (; code < D_CODES; code++) {
1926 G2.base_dist[code] = dist << 7;
1927 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
1928 G2.dist_code[256 + dist++] = code;
1929 }
1930 }
1931 Assert(dist == 256, "ct_init: 256+dist != 512");
1932
1933 /* Construct the codes of the static literal tree */
1934 /* already zeroed - it's in bss
1935 for (n = 0; n <= MAX_BITS; n++)
1936 G2.bl_count[n] = 0; */
1937
1938 n = 0;
1939 while (n <= 143) {
1940 G2.static_ltree[n++].Len = 8;
1941 G2.bl_count[8]++;
1942 }
1943 while (n <= 255) {
1944 G2.static_ltree[n++].Len = 9;
1945 G2.bl_count[9]++;
1946 }
1947 while (n <= 279) {
1948 G2.static_ltree[n++].Len = 7;
1949 G2.bl_count[7]++;
1950 }
1951 while (n <= 287) {
1952 G2.static_ltree[n++].Len = 8;
1953 G2.bl_count[8]++;
1954 }
1955 /* Codes 286 and 287 do not exist, but we must include them in the
1956 * tree construction to get a canonical Huffman tree (longest code
1957 * all ones)
1958 */
1959 gen_codes((ct_data *) G2.static_ltree, L_CODES + 1);
1960
1961 /* The static distance tree is trivial: */
1962 for (n = 0; n < D_CODES; n++) {
1963 G2.static_dtree[n].Len = 5;
1964 G2.static_dtree[n].Code = bi_reverse(n, 5);
1965 }
1966
1967 /* Initialize the first block of the first file: */
1968 init_block();
1969 }
1970
1971
1972 /* ===========================================================================
1973 * Deflate in to out.
1974 * IN assertions: the input and output buffers are cleared.
1975 */
1976
1977 static void zip(ulg time_stamp)
1978 {
1979 ush deflate_flags = 0; /* pkzip -es, -en or -ex equivalent */
1980
1981 G1.outcnt = 0;
1982
1983 /* Write the header to the gzip file. See algorithm.doc for the format */
1984 /* magic header for gzip files: 1F 8B */
1985 /* compression method: 8 (DEFLATED) */
1986 /* general flags: 0 */
1987 put_32bit(0x00088b1f);
1988 put_32bit(time_stamp);
1989
1990 /* Write deflated file to zip file */
1991 G1.crc = ~0;
1992
1993 bi_init();
1994 ct_init();
1995 lm_init(&deflate_flags);
1996
1997 put_8bit(deflate_flags); /* extra flags */
1998 put_8bit(3); /* OS identifier = 3 (Unix) */
1999
2000 deflate();
2001
2002 /* Write the crc and uncompressed size */
2003 put_32bit(~G1.crc);
2004 put_32bit(G1.isize);
2005
2006 flush_outbuf();
2007 }
2008
2009
2010 /* ======================================================================== */
2011 static
2012 char* make_new_name_gzip(char *filename)
2013 {
2014 return xasprintf("%s.gz", filename);
2015 }
2016
2017 static
2018 USE_DESKTOP(long long) int pack_gzip(unpack_info_t *info UNUSED_PARAM)
2019 {
2020 struct stat s;
2021
2022 clear_bufs();
2023 s.st_ctime = 0;
2024 fstat(STDIN_FILENO, &s);
2025 zip(s.st_ctime);
2026 return 0;
2027 }
2028
2029 /*
2030 * Linux kernel build uses gzip -d -n. We accept and ignore it.
2031 * Man page says:
2032 * -n --no-name
2033 * gzip: do not save the original file name and time stamp.
2034 * (The original name is always saved if the name had to be truncated.)
2035 * gunzip: do not restore the original file name/time even if present
2036 * (remove only the gzip suffix from the compressed file name).
2037 * This option is the default when decompressing.
2038 * -N --name
2039 * gzip: always save the original file name and time stamp (this is the default)
2040 * gunzip: restore the original file name and time stamp if present.
2041 */
2042
2043 int gzip_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;
2044 #if ENABLE_GUNZIP
2045 int gzip_main(int argc, char **argv)
2046 #else
2047 int gzip_main(int argc UNUSED_PARAM, char **argv)
2048 #endif
2049 {
2050 unsigned opt;
2051
2052 /* Must match bbunzip's constants OPT_STDOUT, OPT_FORCE! */
2053 opt = getopt32(argv, "cfv" USE_GUNZIP("dt") "q123456789n");
2054 #if ENABLE_GUNZIP /* gunzip_main may not be visible... */
2055 if (opt & 0x18) // -d and/or -t
2056 return gunzip_main(argc, argv);
2057 #endif
2058 option_mask32 &= 0x7; /* ignore -q, -0..9 */
2059 //if (opt & 0x1) // -c
2060 //if (opt & 0x2) // -f
2061 //if (opt & 0x4) // -v
2062 argv += optind;
2063
2064 SET_PTR_TO_GLOBALS(xzalloc(sizeof(struct globals) + sizeof(struct globals2))
2065 + sizeof(struct globals));
2066 barrier();
2067 G2.l_desc.dyn_tree = G2.dyn_ltree;
2068 G2.l_desc.static_tree = G2.static_ltree;
2069 G2.l_desc.extra_bits = extra_lbits;
2070 G2.l_desc.extra_base = LITERALS + 1;
2071 G2.l_desc.elems = L_CODES;
2072 G2.l_desc.max_length = MAX_BITS;
2073 //G2.l_desc.max_code = 0;
2074
2075 G2.d_desc.dyn_tree = G2.dyn_dtree;
2076 G2.d_desc.static_tree = G2.static_dtree;
2077 G2.d_desc.extra_bits = extra_dbits;
2078 //G2.d_desc.extra_base = 0;
2079 G2.d_desc.elems = D_CODES;
2080 G2.d_desc.max_length = MAX_BITS;
2081 //G2.d_desc.max_code = 0;
2082
2083 G2.bl_desc.dyn_tree = G2.bl_tree;
2084 //G2.bl_desc.static_tree = NULL;
2085 G2.bl_desc.extra_bits = extra_blbits,
2086 //G2.bl_desc.extra_base = 0;
2087 G2.bl_desc.elems = BL_CODES;
2088 G2.bl_desc.max_length = MAX_BL_BITS;
2089 //G2.bl_desc.max_code = 0;
2090
2091 /* Allocate all global buffers (for DYN_ALLOC option) */
2092 ALLOC(uch, G1.l_buf, INBUFSIZ);
2093 ALLOC(uch, G1.outbuf, OUTBUFSIZ);
2094 ALLOC(ush, G1.d_buf, DIST_BUFSIZE);
2095 ALLOC(uch, G1.window, 2L * WSIZE);
2096 ALLOC(ush, G1.prev, 1L << BITS);
2097
2098 /* Initialise the CRC32 table */
2099 G1.crc_32_tab = crc32_filltable(NULL, 0);
2100
2101 return bbunpack(argv, make_new_name_gzip, pack_gzip);
2102 }