Magellan Linux

Annotation of /trunk/mkinitrd-magellan/busybox/archival/libunarchive/decompress_bunzip2.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 532 - (hide annotations) (download)
Sat Sep 1 22:45:15 2007 UTC (16 years, 8 months ago) by niro
File MIME type: text/plain
File size: 22540 byte(s)
-import if magellan mkinitrd; it is a fork of redhats mkinitrd-5.0.8 with all magellan patches and features; deprecates magellan-src/mkinitrd

1 niro 532 /* vi: set sw=4 ts=4: */
2     /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3    
4     Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5     which also acknowledges contributions by Mike Burrows, David Wheeler,
6     Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7     Robert Sedgewick, and Jon L. Bentley.
8    
9     Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
10     */
11    
12     /*
13     Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
14    
15     More efficient reading of Huffman codes, a streamlined read_bunzip()
16     function, and various other tweaks. In (limited) tests, approximately
17     20% faster than bzcat on x86 and about 10% faster on arm.
18    
19     Note that about 2/3 of the time is spent in read_unzip() reversing
20     the Burrows-Wheeler transformation. Much of that time is delay
21     resulting from cache misses.
22    
23     I would ask that anyone benefiting from this work, especially those
24     using it in commercial products, consider making a donation to my local
25     non-profit hospice organization (www.hospiceacadiana.com) in the name of
26     the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
27    
28     Manuel
29     */
30    
31     #include "libbb.h"
32     #include "unarchive.h"
33    
34     /* Constants for Huffman coding */
35     #define MAX_GROUPS 6
36     #define GROUP_SIZE 50 /* 64 would have been more efficient */
37     #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
38     #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
39     #define SYMBOL_RUNA 0
40     #define SYMBOL_RUNB 1
41    
42     /* Status return values */
43     #define RETVAL_OK 0
44     #define RETVAL_LAST_BLOCK (-1)
45     #define RETVAL_NOT_BZIP_DATA (-2)
46     #define RETVAL_UNEXPECTED_INPUT_EOF (-3)
47     #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
48     #define RETVAL_DATA_ERROR (-5)
49     #define RETVAL_OUT_OF_MEMORY (-6)
50     #define RETVAL_OBSOLETE_INPUT (-7)
51    
52     /* Other housekeeping constants */
53     #define IOBUF_SIZE 4096
54    
55     /* This is what we know about each Huffman coding group */
56     struct group_data {
57     /* We have an extra slot at the end of limit[] for a sentinal value. */
58     int limit[MAX_HUFCODE_BITS+1],base[MAX_HUFCODE_BITS],permute[MAX_SYMBOLS];
59     int minLen, maxLen;
60     };
61    
62     /* Structure holding all the housekeeping data, including IO buffers and
63     memory that persists between calls to bunzip */
64    
65     typedef struct {
66     /* State for interrupting output loop */
67    
68     int writeCopies,writePos,writeRunCountdown,writeCount,writeCurrent;
69    
70     /* I/O tracking data (file handles, buffers, positions, etc.) */
71    
72     int in_fd,out_fd,inbufCount,inbufPos /*,outbufPos*/;
73     unsigned char *inbuf /*,*outbuf*/;
74     unsigned int inbufBitCount, inbufBits;
75    
76     /* The CRC values stored in the block header and calculated from the data */
77    
78     uint32_t headerCRC, totalCRC, writeCRC;
79     uint32_t *crc32Table;
80     /* Intermediate buffer and its size (in bytes) */
81    
82     unsigned int *dbuf, dbufSize;
83    
84     /* These things are a bit too big to go on the stack */
85    
86     unsigned char selectors[32768]; /* nSelectors=15 bits */
87     struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
88    
89     /* For I/O error handling */
90    
91     jmp_buf jmpbuf;
92     } bunzip_data;
93    
94     /* Return the next nnn bits of input. All reads from the compressed input
95     are done through this function. All reads are big endian */
96    
97     static unsigned int get_bits(bunzip_data *bd, char bits_wanted)
98     {
99     unsigned int bits=0;
100    
101     /* If we need to get more data from the byte buffer, do so. (Loop getting
102     one byte at a time to enforce endianness and avoid unaligned access.) */
103    
104     while (bd->inbufBitCount<bits_wanted) {
105    
106     /* If we need to read more data from file into byte buffer, do so */
107    
108     if(bd->inbufPos==bd->inbufCount) {
109     if((bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)) <= 0)
110     longjmp(bd->jmpbuf,RETVAL_UNEXPECTED_INPUT_EOF);
111     bd->inbufPos=0;
112     }
113    
114     /* Avoid 32-bit overflow (dump bit buffer to top of output) */
115    
116     if(bd->inbufBitCount>=24) {
117     bits=bd->inbufBits&((1<<bd->inbufBitCount)-1);
118     bits_wanted-=bd->inbufBitCount;
119     bits<<=bits_wanted;
120     bd->inbufBitCount=0;
121     }
122    
123     /* Grab next 8 bits of input from buffer. */
124    
125     bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
126     bd->inbufBitCount+=8;
127     }
128    
129     /* Calculate result */
130    
131     bd->inbufBitCount-=bits_wanted;
132     bits|=(bd->inbufBits>>bd->inbufBitCount)&((1<<bits_wanted)-1);
133    
134     return bits;
135     }
136    
137     /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
138    
139     static int get_next_block(bunzip_data *bd)
140     {
141     struct group_data *hufGroup;
142     int dbufCount,nextSym,dbufSize,groupCount,*base,*limit,selector,
143     i,j,k,t,runPos,symCount,symTotal,nSelectors,byteCount[256];
144     unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
145     unsigned int *dbuf,origPtr;
146    
147     dbuf=bd->dbuf;
148     dbufSize=bd->dbufSize;
149     selectors=bd->selectors;
150    
151     /* Reset longjmp I/O error handling */
152    
153     i=setjmp(bd->jmpbuf);
154     if (i) return i;
155    
156     /* Read in header signature and CRC, then validate signature.
157     (last block signature means CRC is for whole file, return now) */
158    
159     i = get_bits(bd,24);
160     j = get_bits(bd,24);
161     bd->headerCRC=get_bits(bd,32);
162     if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
163     if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
164    
165     /* We can add support for blockRandomised if anybody complains. There was
166     some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
167     it didn't actually work. */
168    
169     if (get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
170     if ((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR;
171    
172     /* mapping table: if some byte values are never used (encoding things
173     like ascii text), the compression code removes the gaps to have fewer
174     symbols to deal with, and writes a sparse bitfield indicating which
175     values were present. We make a translation table to convert the symbols
176     back to the corresponding bytes. */
177    
178     t=get_bits(bd, 16);
179     symTotal=0;
180     for (i=0;i<16;i++) {
181     if(t&(1<<(15-i))) {
182     k=get_bits(bd,16);
183     for (j=0;j<16;j++)
184     if(k&(1<<(15-j))) symToByte[symTotal++]=(16*i)+j;
185     }
186     }
187    
188     /* How many different Huffman coding groups does this block use? */
189    
190     groupCount=get_bits(bd,3);
191     if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
192    
193     /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
194     group. Read in the group selector list, which is stored as MTF encoded
195     bit runs. (MTF=Move To Front, as each value is used it's moved to the
196     start of the list.) */
197    
198     if(!(nSelectors=get_bits(bd, 15))) return RETVAL_DATA_ERROR;
199     for (i=0; i<groupCount; i++) mtfSymbol[i] = i;
200     for (i=0; i<nSelectors; i++) {
201    
202     /* Get next value */
203    
204     for (j=0;get_bits(bd,1);j++) if (j>=groupCount) return RETVAL_DATA_ERROR;
205    
206     /* Decode MTF to get the next selector */
207    
208     uc = mtfSymbol[j];
209     for (;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
210     mtfSymbol[0]=selectors[i]=uc;
211     }
212    
213     /* Read the Huffman coding tables for each group, which code for symTotal
214     literal symbols, plus two run symbols (RUNA, RUNB) */
215    
216     symCount=symTotal+2;
217     for (j=0; j<groupCount; j++) {
218     unsigned char length[MAX_SYMBOLS],temp[MAX_HUFCODE_BITS+1];
219     int minLen, maxLen, pp;
220    
221     /* Read Huffman code lengths for each symbol. They're stored in
222     a way similar to mtf; record a starting value for the first symbol,
223     and an offset from the previous value for everys symbol after that.
224     (Subtracting 1 before the loop and then adding it back at the end is
225     an optimization that makes the test inside the loop simpler: symbol
226     length 0 becomes negative, so an unsigned inequality catches it.) */
227    
228     t=get_bits(bd, 5)-1;
229     for (i = 0; i < symCount; i++) {
230     for (;;) {
231     if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
232     return RETVAL_DATA_ERROR;
233    
234     /* If first bit is 0, stop. Else second bit indicates whether
235     to increment or decrement the value. Optimization: grab 2
236     bits and unget the second if the first was 0. */
237    
238     k = get_bits(bd,2);
239     if (k < 2) {
240     bd->inbufBitCount++;
241     break;
242     }
243    
244     /* Add one if second bit 1, else subtract 1. Avoids if/else */
245    
246     t+=(((k+1)&2)-1);
247     }
248    
249     /* Correct for the initial -1, to get the final symbol length */
250    
251     length[i]=t+1;
252     }
253    
254     /* Find largest and smallest lengths in this group */
255    
256     minLen=maxLen=length[0];
257     for (i = 1; i < symCount; i++) {
258     if(length[i] > maxLen) maxLen = length[i];
259     else if(length[i] < minLen) minLen = length[i];
260     }
261    
262     /* Calculate permute[], base[], and limit[] tables from length[].
263     *
264     * permute[] is the lookup table for converting Huffman coded symbols
265     * into decoded symbols. base[] is the amount to subtract from the
266     * value of a Huffman symbol of a given length when using permute[].
267     *
268     * limit[] indicates the largest numerical value a symbol with a given
269     * number of bits can have. This is how the Huffman codes can vary in
270     * length: each code with a value>limit[length] needs another bit.
271     */
272    
273     hufGroup=bd->groups+j;
274     hufGroup->minLen = minLen;
275     hufGroup->maxLen = maxLen;
276    
277     /* Note that minLen can't be smaller than 1, so we adjust the base
278     and limit array pointers so we're not always wasting the first
279     entry. We do this again when using them (during symbol decoding).*/
280    
281     base=hufGroup->base-1;
282     limit=hufGroup->limit-1;
283    
284     /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
285    
286     pp=0;
287     for (i=minLen;i<=maxLen;i++) {
288     temp[i]=limit[i]=0;
289     for (t=0;t<symCount;t++)
290     if(length[t]==i) hufGroup->permute[pp++] = t;
291     }
292    
293     /* Count symbols coded for at each bit length */
294    
295     for (i=0;i<symCount;i++) temp[length[i]]++;
296    
297     /* Calculate limit[] (the largest symbol-coding value at each bit
298     * length, which is (previous limit<<1)+symbols at this level), and
299     * base[] (number of symbols to ignore at each bit length, which is
300     * limit minus the cumulative count of symbols coded for already). */
301    
302     pp=t=0;
303     for (i=minLen; i<maxLen; i++) {
304     pp+=temp[i];
305    
306     /* We read the largest possible symbol size and then unget bits
307     after determining how many we need, and those extra bits could
308     be set to anything. (They're noise from future symbols.) At
309     each level we're really only interested in the first few bits,
310     so here we set all the trailing to-be-ignored bits to 1 so they
311     don't affect the value>limit[length] comparison. */
312    
313     limit[i]= (pp << (maxLen - i)) - 1;
314     pp<<=1;
315     base[i+1]=pp-(t+=temp[i]);
316     }
317     limit[maxLen+1] = INT_MAX; /* Sentinal value for reading next sym. */
318     limit[maxLen]=pp+temp[maxLen]-1;
319     base[minLen]=0;
320     }
321    
322     /* We've finished reading and digesting the block header. Now read this
323     block's Huffman coded symbols from the file and undo the Huffman coding
324     and run length encoding, saving the result into dbuf[dbufCount++]=uc */
325    
326     /* Initialize symbol occurrence counters and symbol Move To Front table */
327    
328     for (i=0;i<256;i++) {
329     byteCount[i] = 0;
330     mtfSymbol[i]=(unsigned char)i;
331     }
332    
333     /* Loop through compressed symbols. */
334    
335     runPos=dbufCount=selector=0;
336     for (;;) {
337    
338     /* fetch next Huffman coding group from list. */
339    
340     symCount=GROUP_SIZE-1;
341     if(selector>=nSelectors) return RETVAL_DATA_ERROR;
342     hufGroup=bd->groups+selectors[selector++];
343     base=hufGroup->base-1;
344     limit=hufGroup->limit-1;
345     continue_this_group:
346    
347     /* Read next Huffman-coded symbol. */
348    
349     /* Note: It is far cheaper to read maxLen bits and back up than it is
350     to read minLen bits and then an additional bit at a time, testing
351     as we go. Because there is a trailing last block (with file CRC),
352     there is no danger of the overread causing an unexpected EOF for a
353     valid compressed file. As a further optimization, we do the read
354     inline (falling back to a call to get_bits if the buffer runs
355     dry). The following (up to got_huff_bits:) is equivalent to
356     j=get_bits(bd,hufGroup->maxLen);
357     */
358    
359     while (bd->inbufBitCount<hufGroup->maxLen) {
360     if(bd->inbufPos==bd->inbufCount) {
361     j = get_bits(bd,hufGroup->maxLen);
362     goto got_huff_bits;
363     }
364     bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
365     bd->inbufBitCount+=8;
366     };
367     bd->inbufBitCount-=hufGroup->maxLen;
368     j = (bd->inbufBits>>bd->inbufBitCount)&((1<<hufGroup->maxLen)-1);
369    
370     got_huff_bits:
371    
372     /* Figure how how many bits are in next symbol and unget extras */
373    
374     i=hufGroup->minLen;
375     while (j>limit[i]) ++i;
376     bd->inbufBitCount += (hufGroup->maxLen - i);
377    
378     /* Huffman decode value to get nextSym (with bounds checking) */
379    
380     if ((i > hufGroup->maxLen)
381     || (((unsigned)(j=(j>>(hufGroup->maxLen-i))-base[i]))
382     >= MAX_SYMBOLS))
383     return RETVAL_DATA_ERROR;
384     nextSym = hufGroup->permute[j];
385    
386     /* We have now decoded the symbol, which indicates either a new literal
387     byte, or a repeated run of the most recent literal byte. First,
388     check if nextSym indicates a repeated run, and if so loop collecting
389     how many times to repeat the last literal. */
390    
391     if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
392    
393     /* If this is the start of a new run, zero out counter */
394    
395     if(!runPos) {
396     runPos = 1;
397     t = 0;
398     }
399    
400     /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
401     each bit position, add 1 or 2 instead. For example,
402     1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
403     You can make any bit pattern that way using 1 less symbol than
404     the basic or 0/1 method (except all bits 0, which would use no
405     symbols, but a run of length 0 doesn't mean anything in this
406     context). Thus space is saved. */
407    
408     t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
409     if(runPos < dbufSize) runPos <<= 1;
410     goto end_of_huffman_loop;
411     }
412    
413     /* When we hit the first non-run symbol after a run, we now know
414     how many times to repeat the last literal, so append that many
415     copies to our buffer of decoded symbols (dbuf) now. (The last
416     literal used is the one at the head of the mtfSymbol array.) */
417    
418     if(runPos) {
419     runPos=0;
420     if(dbufCount+t>=dbufSize) return RETVAL_DATA_ERROR;
421    
422     uc = symToByte[mtfSymbol[0]];
423     byteCount[uc] += t;
424     while (t--) dbuf[dbufCount++]=uc;
425     }
426    
427     /* Is this the terminating symbol? */
428    
429     if(nextSym>symTotal) break;
430    
431     /* At this point, nextSym indicates a new literal character. Subtract
432     one to get the position in the MTF array at which this literal is
433     currently to be found. (Note that the result can't be -1 or 0,
434     because 0 and 1 are RUNA and RUNB. But another instance of the
435     first symbol in the mtf array, position 0, would have been handled
436     as part of a run above. Therefore 1 unused mtf position minus
437     2 non-literal nextSym values equals -1.) */
438    
439     if(dbufCount>=dbufSize) return RETVAL_DATA_ERROR;
440     i = nextSym - 1;
441     uc = mtfSymbol[i];
442    
443     /* Adjust the MTF array. Since we typically expect to move only a
444     * small number of symbols, and are bound by 256 in any case, using
445     * memmove here would typically be bigger and slower due to function
446     * call overhead and other assorted setup costs. */
447    
448     do {
449     mtfSymbol[i] = mtfSymbol[i-1];
450     } while (--i);
451     mtfSymbol[0] = uc;
452     uc=symToByte[uc];
453    
454     /* We have our literal byte. Save it into dbuf. */
455    
456     byteCount[uc]++;
457     dbuf[dbufCount++] = (unsigned int)uc;
458    
459     /* Skip group initialization if we're not done with this group. Done
460     * this way to avoid compiler warning. */
461    
462     end_of_huffman_loop:
463     if(symCount--) goto continue_this_group;
464     }
465    
466     /* At this point, we've read all the Huffman-coded symbols (and repeated
467     runs) for this block from the input stream, and decoded them into the
468     intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
469     Now undo the Burrows-Wheeler transform on dbuf.
470     See http://dogma.net/markn/articles/bwt/bwt.htm
471     */
472    
473     /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
474    
475     j=0;
476     for (i=0;i<256;i++) {
477     k=j+byteCount[i];
478     byteCount[i] = j;
479     j=k;
480     }
481    
482     /* Figure out what order dbuf would be in if we sorted it. */
483    
484     for (i=0;i<dbufCount;i++) {
485     uc=(unsigned char)(dbuf[i] & 0xff);
486     dbuf[byteCount[uc]] |= (i << 8);
487     byteCount[uc]++;
488     }
489    
490     /* Decode first byte by hand to initialize "previous" byte. Note that it
491     doesn't get output, and if the first three characters are identical
492     it doesn't qualify as a run (hence writeRunCountdown=5). */
493    
494     if(dbufCount) {
495     if(origPtr>=dbufCount) return RETVAL_DATA_ERROR;
496     bd->writePos=dbuf[origPtr];
497     bd->writeCurrent=(unsigned char)(bd->writePos&0xff);
498     bd->writePos>>=8;
499     bd->writeRunCountdown=5;
500     }
501     bd->writeCount=dbufCount;
502    
503     return RETVAL_OK;
504     }
505    
506     /* Undo burrows-wheeler transform on intermediate buffer to produce output.
507     If start_bunzip was initialized with out_fd=-1, then up to len bytes of
508     data are written to outbuf. Return value is number of bytes written or
509     error (all errors are negative numbers). If out_fd!=-1, outbuf and len
510     are ignored, data is written to out_fd and return is RETVAL_OK or error.
511     */
512    
513     static int read_bunzip(bunzip_data *bd, char *outbuf, int len)
514     {
515     const unsigned int *dbuf;
516     int pos,current,previous,gotcount;
517    
518     /* If last read was short due to end of file, return last block now */
519     if(bd->writeCount<0) return bd->writeCount;
520    
521     gotcount = 0;
522     dbuf=bd->dbuf;
523     pos=bd->writePos;
524     current=bd->writeCurrent;
525    
526     /* We will always have pending decoded data to write into the output
527     buffer unless this is the very first call (in which case we haven't
528     Huffman-decoded a block into the intermediate buffer yet). */
529    
530     if (bd->writeCopies) {
531    
532     /* Inside the loop, writeCopies means extra copies (beyond 1) */
533    
534     --bd->writeCopies;
535    
536     /* Loop outputting bytes */
537    
538     for (;;) {
539    
540     /* If the output buffer is full, snapshot state and return */
541    
542     if(gotcount >= len) {
543     bd->writePos=pos;
544     bd->writeCurrent=current;
545     bd->writeCopies++;
546     return len;
547     }
548    
549     /* Write next byte into output buffer, updating CRC */
550    
551     outbuf[gotcount++] = current;
552     bd->writeCRC=(((bd->writeCRC)<<8)
553     ^bd->crc32Table[((bd->writeCRC)>>24)^current]);
554    
555     /* Loop now if we're outputting multiple copies of this byte */
556    
557     if (bd->writeCopies) {
558     --bd->writeCopies;
559     continue;
560     }
561     decode_next_byte:
562     if (!bd->writeCount--) break;
563     /* Follow sequence vector to undo Burrows-Wheeler transform */
564     previous=current;
565     pos=dbuf[pos];
566     current=pos&0xff;
567     pos>>=8;
568    
569     /* After 3 consecutive copies of the same byte, the 4th is a repeat
570     count. We count down from 4 instead
571     * of counting up because testing for non-zero is faster */
572    
573     if(--bd->writeRunCountdown) {
574     if(current!=previous) bd->writeRunCountdown=4;
575     } else {
576    
577     /* We have a repeated run, this byte indicates the count */
578    
579     bd->writeCopies=current;
580     current=previous;
581     bd->writeRunCountdown=5;
582    
583     /* Sometimes there are just 3 bytes (run length 0) */
584    
585     if(!bd->writeCopies) goto decode_next_byte;
586    
587     /* Subtract the 1 copy we'd output anyway to get extras */
588    
589     --bd->writeCopies;
590     }
591     }
592    
593     /* Decompression of this block completed successfully */
594    
595     bd->writeCRC=~bd->writeCRC;
596     bd->totalCRC=((bd->totalCRC<<1) | (bd->totalCRC>>31)) ^ bd->writeCRC;
597    
598     /* If this block had a CRC error, force file level CRC error. */
599    
600     if(bd->writeCRC!=bd->headerCRC) {
601     bd->totalCRC=bd->headerCRC+1;
602     return RETVAL_LAST_BLOCK;
603     }
604     }
605    
606     /* Refill the intermediate buffer by Huffman-decoding next block of input */
607     /* (previous is just a convenient unused temp variable here) */
608    
609     previous=get_next_block(bd);
610     if(previous) {
611     bd->writeCount=previous;
612     return (previous!=RETVAL_LAST_BLOCK) ? previous : gotcount;
613     }
614     bd->writeCRC=~0;
615     pos=bd->writePos;
616     current=bd->writeCurrent;
617     goto decode_next_byte;
618     }
619    
620     /* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
621     a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
622     ignored, and data is read from file handle into temporary buffer. */
623    
624     static int start_bunzip(bunzip_data **bdp, int in_fd, unsigned char *inbuf,
625     int len)
626     {
627     bunzip_data *bd;
628     unsigned int i;
629     const unsigned int BZh0=(((unsigned int)'B')<<24)+(((unsigned int)'Z')<<16)
630     +(((unsigned int)'h')<<8)+(unsigned int)'0';
631    
632     /* Figure out how much data to allocate */
633    
634     i=sizeof(bunzip_data);
635     if(in_fd!=-1) i+=IOBUF_SIZE;
636    
637     /* Allocate bunzip_data. Most fields initialize to zero. */
638    
639     bd=*bdp=xzalloc(i);
640    
641     /* Setup input buffer */
642    
643     if(-1==(bd->in_fd=in_fd)) {
644     bd->inbuf=inbuf;
645     bd->inbufCount=len;
646     } else bd->inbuf=(unsigned char *)(bd+1);
647    
648     /* Init the CRC32 table (big endian) */
649    
650     bd->crc32Table = crc32_filltable(1);
651    
652     /* Setup for I/O error handling via longjmp */
653    
654     i=setjmp(bd->jmpbuf);
655     if(i) return i;
656    
657     /* Ensure that file starts with "BZh['1'-'9']." */
658    
659     i = get_bits(bd,32);
660     if (((unsigned int)(i-BZh0-1)) >= 9) return RETVAL_NOT_BZIP_DATA;
661    
662     /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
663     uncompressed data. Allocate intermediate buffer for block. */
664    
665     bd->dbufSize=100000*(i-BZh0);
666    
667     bd->dbuf=xmalloc(bd->dbufSize * sizeof(int));
668     return RETVAL_OK;
669     }
670    
671     /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
672     not end of file.) */
673    
674     USE_DESKTOP(long long) int
675     uncompressStream(int src_fd, int dst_fd)
676     {
677     USE_DESKTOP(long long total_written = 0;)
678     char *outbuf;
679     bunzip_data *bd;
680     int i;
681    
682     outbuf=xmalloc(IOBUF_SIZE);
683     i=start_bunzip(&bd,src_fd,0,0);
684     if(!i) {
685     for (;;) {
686     if((i=read_bunzip(bd,outbuf,IOBUF_SIZE)) <= 0) break;
687     if(i!=write(dst_fd,outbuf,i)) {
688     i=RETVAL_UNEXPECTED_OUTPUT_EOF;
689     break;
690     }
691     USE_DESKTOP(total_written += i;)
692     }
693     }
694    
695     /* Check CRC and release memory */
696    
697     if(i==RETVAL_LAST_BLOCK) {
698     if (bd->headerCRC!=bd->totalCRC) {
699     bb_error_msg("data integrity error when decompressing");
700     } else {
701     i=RETVAL_OK;
702     }
703     } else if (i==RETVAL_UNEXPECTED_OUTPUT_EOF) {
704     bb_error_msg("compressed file ends unexpectedly");
705     } else {
706     bb_error_msg("decompression failed");
707     }
708     free(bd->dbuf);
709     free(bd);
710     free(outbuf);
711    
712     return i ? i : USE_DESKTOP(total_written) + 0;
713     }
714    
715     #ifdef TESTING
716    
717     static char * const bunzip_errors[]={NULL,"Bad file checksum","Not bzip data",
718     "Unexpected input EOF","Unexpected output EOF","Data error",
719     "Out of memory","Obsolete (pre 0.9.5) bzip format not supported."};
720    
721     /* Dumb little test thing, decompress stdin to stdout */
722     int main(int argc, char *argv[])
723     {
724     int i=uncompressStream(0,1);
725     char c;
726    
727     if(i<0) fprintf(stderr,"%s\n", bunzip_errors[-i]);
728     else if(read(0,&c,1)) fprintf(stderr,"Trailing garbage ignored\n");
729     return -i;
730     }
731     #endif