Magellan Linux

Contents of /trunk/mkinitrd-magellan/busybox/archival/libunarchive/decompress_bunzip2.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 532 - (show annotations) (download)
Sat Sep 1 22:45:15 2007 UTC (16 years, 8 months ago) by niro
File MIME type: text/plain
File size: 22540 byte(s)
-import if magellan mkinitrd; it is a fork of redhats mkinitrd-5.0.8 with all magellan patches and features; deprecates magellan-src/mkinitrd

1 /* vi: set sw=4 ts=4: */
2 /* Small bzip2 deflate implementation, by Rob Landley (rob@landley.net).
3
4 Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
5 which also acknowledges contributions by Mike Burrows, David Wheeler,
6 Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
7 Robert Sedgewick, and Jon L. Bentley.
8
9 Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
10 */
11
12 /*
13 Size and speed optimizations by Manuel Novoa III (mjn3@codepoet.org).
14
15 More efficient reading of Huffman codes, a streamlined read_bunzip()
16 function, and various other tweaks. In (limited) tests, approximately
17 20% faster than bzcat on x86 and about 10% faster on arm.
18
19 Note that about 2/3 of the time is spent in read_unzip() reversing
20 the Burrows-Wheeler transformation. Much of that time is delay
21 resulting from cache misses.
22
23 I would ask that anyone benefiting from this work, especially those
24 using it in commercial products, consider making a donation to my local
25 non-profit hospice organization (www.hospiceacadiana.com) in the name of
26 the woman I loved, Toni W. Hagan, who passed away Feb. 12, 2003.
27
28 Manuel
29 */
30
31 #include "libbb.h"
32 #include "unarchive.h"
33
34 /* Constants for Huffman coding */
35 #define MAX_GROUPS 6
36 #define GROUP_SIZE 50 /* 64 would have been more efficient */
37 #define MAX_HUFCODE_BITS 20 /* Longest Huffman code allowed */
38 #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
39 #define SYMBOL_RUNA 0
40 #define SYMBOL_RUNB 1
41
42 /* Status return values */
43 #define RETVAL_OK 0
44 #define RETVAL_LAST_BLOCK (-1)
45 #define RETVAL_NOT_BZIP_DATA (-2)
46 #define RETVAL_UNEXPECTED_INPUT_EOF (-3)
47 #define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
48 #define RETVAL_DATA_ERROR (-5)
49 #define RETVAL_OUT_OF_MEMORY (-6)
50 #define RETVAL_OBSOLETE_INPUT (-7)
51
52 /* Other housekeeping constants */
53 #define IOBUF_SIZE 4096
54
55 /* This is what we know about each Huffman coding group */
56 struct group_data {
57 /* We have an extra slot at the end of limit[] for a sentinal value. */
58 int limit[MAX_HUFCODE_BITS+1],base[MAX_HUFCODE_BITS],permute[MAX_SYMBOLS];
59 int minLen, maxLen;
60 };
61
62 /* Structure holding all the housekeeping data, including IO buffers and
63 memory that persists between calls to bunzip */
64
65 typedef struct {
66 /* State for interrupting output loop */
67
68 int writeCopies,writePos,writeRunCountdown,writeCount,writeCurrent;
69
70 /* I/O tracking data (file handles, buffers, positions, etc.) */
71
72 int in_fd,out_fd,inbufCount,inbufPos /*,outbufPos*/;
73 unsigned char *inbuf /*,*outbuf*/;
74 unsigned int inbufBitCount, inbufBits;
75
76 /* The CRC values stored in the block header and calculated from the data */
77
78 uint32_t headerCRC, totalCRC, writeCRC;
79 uint32_t *crc32Table;
80 /* Intermediate buffer and its size (in bytes) */
81
82 unsigned int *dbuf, dbufSize;
83
84 /* These things are a bit too big to go on the stack */
85
86 unsigned char selectors[32768]; /* nSelectors=15 bits */
87 struct group_data groups[MAX_GROUPS]; /* Huffman coding tables */
88
89 /* For I/O error handling */
90
91 jmp_buf jmpbuf;
92 } bunzip_data;
93
94 /* Return the next nnn bits of input. All reads from the compressed input
95 are done through this function. All reads are big endian */
96
97 static unsigned int get_bits(bunzip_data *bd, char bits_wanted)
98 {
99 unsigned int bits=0;
100
101 /* If we need to get more data from the byte buffer, do so. (Loop getting
102 one byte at a time to enforce endianness and avoid unaligned access.) */
103
104 while (bd->inbufBitCount<bits_wanted) {
105
106 /* If we need to read more data from file into byte buffer, do so */
107
108 if(bd->inbufPos==bd->inbufCount) {
109 if((bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)) <= 0)
110 longjmp(bd->jmpbuf,RETVAL_UNEXPECTED_INPUT_EOF);
111 bd->inbufPos=0;
112 }
113
114 /* Avoid 32-bit overflow (dump bit buffer to top of output) */
115
116 if(bd->inbufBitCount>=24) {
117 bits=bd->inbufBits&((1<<bd->inbufBitCount)-1);
118 bits_wanted-=bd->inbufBitCount;
119 bits<<=bits_wanted;
120 bd->inbufBitCount=0;
121 }
122
123 /* Grab next 8 bits of input from buffer. */
124
125 bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
126 bd->inbufBitCount+=8;
127 }
128
129 /* Calculate result */
130
131 bd->inbufBitCount-=bits_wanted;
132 bits|=(bd->inbufBits>>bd->inbufBitCount)&((1<<bits_wanted)-1);
133
134 return bits;
135 }
136
137 /* Unpacks the next block and sets up for the inverse burrows-wheeler step. */
138
139 static int get_next_block(bunzip_data *bd)
140 {
141 struct group_data *hufGroup;
142 int dbufCount,nextSym,dbufSize,groupCount,*base,*limit,selector,
143 i,j,k,t,runPos,symCount,symTotal,nSelectors,byteCount[256];
144 unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
145 unsigned int *dbuf,origPtr;
146
147 dbuf=bd->dbuf;
148 dbufSize=bd->dbufSize;
149 selectors=bd->selectors;
150
151 /* Reset longjmp I/O error handling */
152
153 i=setjmp(bd->jmpbuf);
154 if (i) return i;
155
156 /* Read in header signature and CRC, then validate signature.
157 (last block signature means CRC is for whole file, return now) */
158
159 i = get_bits(bd,24);
160 j = get_bits(bd,24);
161 bd->headerCRC=get_bits(bd,32);
162 if ((i == 0x177245) && (j == 0x385090)) return RETVAL_LAST_BLOCK;
163 if ((i != 0x314159) || (j != 0x265359)) return RETVAL_NOT_BZIP_DATA;
164
165 /* We can add support for blockRandomised if anybody complains. There was
166 some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
167 it didn't actually work. */
168
169 if (get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
170 if ((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR;
171
172 /* mapping table: if some byte values are never used (encoding things
173 like ascii text), the compression code removes the gaps to have fewer
174 symbols to deal with, and writes a sparse bitfield indicating which
175 values were present. We make a translation table to convert the symbols
176 back to the corresponding bytes. */
177
178 t=get_bits(bd, 16);
179 symTotal=0;
180 for (i=0;i<16;i++) {
181 if(t&(1<<(15-i))) {
182 k=get_bits(bd,16);
183 for (j=0;j<16;j++)
184 if(k&(1<<(15-j))) symToByte[symTotal++]=(16*i)+j;
185 }
186 }
187
188 /* How many different Huffman coding groups does this block use? */
189
190 groupCount=get_bits(bd,3);
191 if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
192
193 /* nSelectors: Every GROUP_SIZE many symbols we select a new Huffman coding
194 group. Read in the group selector list, which is stored as MTF encoded
195 bit runs. (MTF=Move To Front, as each value is used it's moved to the
196 start of the list.) */
197
198 if(!(nSelectors=get_bits(bd, 15))) return RETVAL_DATA_ERROR;
199 for (i=0; i<groupCount; i++) mtfSymbol[i] = i;
200 for (i=0; i<nSelectors; i++) {
201
202 /* Get next value */
203
204 for (j=0;get_bits(bd,1);j++) if (j>=groupCount) return RETVAL_DATA_ERROR;
205
206 /* Decode MTF to get the next selector */
207
208 uc = mtfSymbol[j];
209 for (;j;j--) mtfSymbol[j] = mtfSymbol[j-1];
210 mtfSymbol[0]=selectors[i]=uc;
211 }
212
213 /* Read the Huffman coding tables for each group, which code for symTotal
214 literal symbols, plus two run symbols (RUNA, RUNB) */
215
216 symCount=symTotal+2;
217 for (j=0; j<groupCount; j++) {
218 unsigned char length[MAX_SYMBOLS],temp[MAX_HUFCODE_BITS+1];
219 int minLen, maxLen, pp;
220
221 /* Read Huffman code lengths for each symbol. They're stored in
222 a way similar to mtf; record a starting value for the first symbol,
223 and an offset from the previous value for everys symbol after that.
224 (Subtracting 1 before the loop and then adding it back at the end is
225 an optimization that makes the test inside the loop simpler: symbol
226 length 0 becomes negative, so an unsigned inequality catches it.) */
227
228 t=get_bits(bd, 5)-1;
229 for (i = 0; i < symCount; i++) {
230 for (;;) {
231 if (((unsigned)t) > (MAX_HUFCODE_BITS-1))
232 return RETVAL_DATA_ERROR;
233
234 /* If first bit is 0, stop. Else second bit indicates whether
235 to increment or decrement the value. Optimization: grab 2
236 bits and unget the second if the first was 0. */
237
238 k = get_bits(bd,2);
239 if (k < 2) {
240 bd->inbufBitCount++;
241 break;
242 }
243
244 /* Add one if second bit 1, else subtract 1. Avoids if/else */
245
246 t+=(((k+1)&2)-1);
247 }
248
249 /* Correct for the initial -1, to get the final symbol length */
250
251 length[i]=t+1;
252 }
253
254 /* Find largest and smallest lengths in this group */
255
256 minLen=maxLen=length[0];
257 for (i = 1; i < symCount; i++) {
258 if(length[i] > maxLen) maxLen = length[i];
259 else if(length[i] < minLen) minLen = length[i];
260 }
261
262 /* Calculate permute[], base[], and limit[] tables from length[].
263 *
264 * permute[] is the lookup table for converting Huffman coded symbols
265 * into decoded symbols. base[] is the amount to subtract from the
266 * value of a Huffman symbol of a given length when using permute[].
267 *
268 * limit[] indicates the largest numerical value a symbol with a given
269 * number of bits can have. This is how the Huffman codes can vary in
270 * length: each code with a value>limit[length] needs another bit.
271 */
272
273 hufGroup=bd->groups+j;
274 hufGroup->minLen = minLen;
275 hufGroup->maxLen = maxLen;
276
277 /* Note that minLen can't be smaller than 1, so we adjust the base
278 and limit array pointers so we're not always wasting the first
279 entry. We do this again when using them (during symbol decoding).*/
280
281 base=hufGroup->base-1;
282 limit=hufGroup->limit-1;
283
284 /* Calculate permute[]. Concurently, initialize temp[] and limit[]. */
285
286 pp=0;
287 for (i=minLen;i<=maxLen;i++) {
288 temp[i]=limit[i]=0;
289 for (t=0;t<symCount;t++)
290 if(length[t]==i) hufGroup->permute[pp++] = t;
291 }
292
293 /* Count symbols coded for at each bit length */
294
295 for (i=0;i<symCount;i++) temp[length[i]]++;
296
297 /* Calculate limit[] (the largest symbol-coding value at each bit
298 * length, which is (previous limit<<1)+symbols at this level), and
299 * base[] (number of symbols to ignore at each bit length, which is
300 * limit minus the cumulative count of symbols coded for already). */
301
302 pp=t=0;
303 for (i=minLen; i<maxLen; i++) {
304 pp+=temp[i];
305
306 /* We read the largest possible symbol size and then unget bits
307 after determining how many we need, and those extra bits could
308 be set to anything. (They're noise from future symbols.) At
309 each level we're really only interested in the first few bits,
310 so here we set all the trailing to-be-ignored bits to 1 so they
311 don't affect the value>limit[length] comparison. */
312
313 limit[i]= (pp << (maxLen - i)) - 1;
314 pp<<=1;
315 base[i+1]=pp-(t+=temp[i]);
316 }
317 limit[maxLen+1] = INT_MAX; /* Sentinal value for reading next sym. */
318 limit[maxLen]=pp+temp[maxLen]-1;
319 base[minLen]=0;
320 }
321
322 /* We've finished reading and digesting the block header. Now read this
323 block's Huffman coded symbols from the file and undo the Huffman coding
324 and run length encoding, saving the result into dbuf[dbufCount++]=uc */
325
326 /* Initialize symbol occurrence counters and symbol Move To Front table */
327
328 for (i=0;i<256;i++) {
329 byteCount[i] = 0;
330 mtfSymbol[i]=(unsigned char)i;
331 }
332
333 /* Loop through compressed symbols. */
334
335 runPos=dbufCount=selector=0;
336 for (;;) {
337
338 /* fetch next Huffman coding group from list. */
339
340 symCount=GROUP_SIZE-1;
341 if(selector>=nSelectors) return RETVAL_DATA_ERROR;
342 hufGroup=bd->groups+selectors[selector++];
343 base=hufGroup->base-1;
344 limit=hufGroup->limit-1;
345 continue_this_group:
346
347 /* Read next Huffman-coded symbol. */
348
349 /* Note: It is far cheaper to read maxLen bits and back up than it is
350 to read minLen bits and then an additional bit at a time, testing
351 as we go. Because there is a trailing last block (with file CRC),
352 there is no danger of the overread causing an unexpected EOF for a
353 valid compressed file. As a further optimization, we do the read
354 inline (falling back to a call to get_bits if the buffer runs
355 dry). The following (up to got_huff_bits:) is equivalent to
356 j=get_bits(bd,hufGroup->maxLen);
357 */
358
359 while (bd->inbufBitCount<hufGroup->maxLen) {
360 if(bd->inbufPos==bd->inbufCount) {
361 j = get_bits(bd,hufGroup->maxLen);
362 goto got_huff_bits;
363 }
364 bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
365 bd->inbufBitCount+=8;
366 };
367 bd->inbufBitCount-=hufGroup->maxLen;
368 j = (bd->inbufBits>>bd->inbufBitCount)&((1<<hufGroup->maxLen)-1);
369
370 got_huff_bits:
371
372 /* Figure how how many bits are in next symbol and unget extras */
373
374 i=hufGroup->minLen;
375 while (j>limit[i]) ++i;
376 bd->inbufBitCount += (hufGroup->maxLen - i);
377
378 /* Huffman decode value to get nextSym (with bounds checking) */
379
380 if ((i > hufGroup->maxLen)
381 || (((unsigned)(j=(j>>(hufGroup->maxLen-i))-base[i]))
382 >= MAX_SYMBOLS))
383 return RETVAL_DATA_ERROR;
384 nextSym = hufGroup->permute[j];
385
386 /* We have now decoded the symbol, which indicates either a new literal
387 byte, or a repeated run of the most recent literal byte. First,
388 check if nextSym indicates a repeated run, and if so loop collecting
389 how many times to repeat the last literal. */
390
391 if (((unsigned)nextSym) <= SYMBOL_RUNB) { /* RUNA or RUNB */
392
393 /* If this is the start of a new run, zero out counter */
394
395 if(!runPos) {
396 runPos = 1;
397 t = 0;
398 }
399
400 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
401 each bit position, add 1 or 2 instead. For example,
402 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
403 You can make any bit pattern that way using 1 less symbol than
404 the basic or 0/1 method (except all bits 0, which would use no
405 symbols, but a run of length 0 doesn't mean anything in this
406 context). Thus space is saved. */
407
408 t += (runPos << nextSym); /* +runPos if RUNA; +2*runPos if RUNB */
409 if(runPos < dbufSize) runPos <<= 1;
410 goto end_of_huffman_loop;
411 }
412
413 /* When we hit the first non-run symbol after a run, we now know
414 how many times to repeat the last literal, so append that many
415 copies to our buffer of decoded symbols (dbuf) now. (The last
416 literal used is the one at the head of the mtfSymbol array.) */
417
418 if(runPos) {
419 runPos=0;
420 if(dbufCount+t>=dbufSize) return RETVAL_DATA_ERROR;
421
422 uc = symToByte[mtfSymbol[0]];
423 byteCount[uc] += t;
424 while (t--) dbuf[dbufCount++]=uc;
425 }
426
427 /* Is this the terminating symbol? */
428
429 if(nextSym>symTotal) break;
430
431 /* At this point, nextSym indicates a new literal character. Subtract
432 one to get the position in the MTF array at which this literal is
433 currently to be found. (Note that the result can't be -1 or 0,
434 because 0 and 1 are RUNA and RUNB. But another instance of the
435 first symbol in the mtf array, position 0, would have been handled
436 as part of a run above. Therefore 1 unused mtf position minus
437 2 non-literal nextSym values equals -1.) */
438
439 if(dbufCount>=dbufSize) return RETVAL_DATA_ERROR;
440 i = nextSym - 1;
441 uc = mtfSymbol[i];
442
443 /* Adjust the MTF array. Since we typically expect to move only a
444 * small number of symbols, and are bound by 256 in any case, using
445 * memmove here would typically be bigger and slower due to function
446 * call overhead and other assorted setup costs. */
447
448 do {
449 mtfSymbol[i] = mtfSymbol[i-1];
450 } while (--i);
451 mtfSymbol[0] = uc;
452 uc=symToByte[uc];
453
454 /* We have our literal byte. Save it into dbuf. */
455
456 byteCount[uc]++;
457 dbuf[dbufCount++] = (unsigned int)uc;
458
459 /* Skip group initialization if we're not done with this group. Done
460 * this way to avoid compiler warning. */
461
462 end_of_huffman_loop:
463 if(symCount--) goto continue_this_group;
464 }
465
466 /* At this point, we've read all the Huffman-coded symbols (and repeated
467 runs) for this block from the input stream, and decoded them into the
468 intermediate buffer. There are dbufCount many decoded bytes in dbuf[].
469 Now undo the Burrows-Wheeler transform on dbuf.
470 See http://dogma.net/markn/articles/bwt/bwt.htm
471 */
472
473 /* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
474
475 j=0;
476 for (i=0;i<256;i++) {
477 k=j+byteCount[i];
478 byteCount[i] = j;
479 j=k;
480 }
481
482 /* Figure out what order dbuf would be in if we sorted it. */
483
484 for (i=0;i<dbufCount;i++) {
485 uc=(unsigned char)(dbuf[i] & 0xff);
486 dbuf[byteCount[uc]] |= (i << 8);
487 byteCount[uc]++;
488 }
489
490 /* Decode first byte by hand to initialize "previous" byte. Note that it
491 doesn't get output, and if the first three characters are identical
492 it doesn't qualify as a run (hence writeRunCountdown=5). */
493
494 if(dbufCount) {
495 if(origPtr>=dbufCount) return RETVAL_DATA_ERROR;
496 bd->writePos=dbuf[origPtr];
497 bd->writeCurrent=(unsigned char)(bd->writePos&0xff);
498 bd->writePos>>=8;
499 bd->writeRunCountdown=5;
500 }
501 bd->writeCount=dbufCount;
502
503 return RETVAL_OK;
504 }
505
506 /* Undo burrows-wheeler transform on intermediate buffer to produce output.
507 If start_bunzip was initialized with out_fd=-1, then up to len bytes of
508 data are written to outbuf. Return value is number of bytes written or
509 error (all errors are negative numbers). If out_fd!=-1, outbuf and len
510 are ignored, data is written to out_fd and return is RETVAL_OK or error.
511 */
512
513 static int read_bunzip(bunzip_data *bd, char *outbuf, int len)
514 {
515 const unsigned int *dbuf;
516 int pos,current,previous,gotcount;
517
518 /* If last read was short due to end of file, return last block now */
519 if(bd->writeCount<0) return bd->writeCount;
520
521 gotcount = 0;
522 dbuf=bd->dbuf;
523 pos=bd->writePos;
524 current=bd->writeCurrent;
525
526 /* We will always have pending decoded data to write into the output
527 buffer unless this is the very first call (in which case we haven't
528 Huffman-decoded a block into the intermediate buffer yet). */
529
530 if (bd->writeCopies) {
531
532 /* Inside the loop, writeCopies means extra copies (beyond 1) */
533
534 --bd->writeCopies;
535
536 /* Loop outputting bytes */
537
538 for (;;) {
539
540 /* If the output buffer is full, snapshot state and return */
541
542 if(gotcount >= len) {
543 bd->writePos=pos;
544 bd->writeCurrent=current;
545 bd->writeCopies++;
546 return len;
547 }
548
549 /* Write next byte into output buffer, updating CRC */
550
551 outbuf[gotcount++] = current;
552 bd->writeCRC=(((bd->writeCRC)<<8)
553 ^bd->crc32Table[((bd->writeCRC)>>24)^current]);
554
555 /* Loop now if we're outputting multiple copies of this byte */
556
557 if (bd->writeCopies) {
558 --bd->writeCopies;
559 continue;
560 }
561 decode_next_byte:
562 if (!bd->writeCount--) break;
563 /* Follow sequence vector to undo Burrows-Wheeler transform */
564 previous=current;
565 pos=dbuf[pos];
566 current=pos&0xff;
567 pos>>=8;
568
569 /* After 3 consecutive copies of the same byte, the 4th is a repeat
570 count. We count down from 4 instead
571 * of counting up because testing for non-zero is faster */
572
573 if(--bd->writeRunCountdown) {
574 if(current!=previous) bd->writeRunCountdown=4;
575 } else {
576
577 /* We have a repeated run, this byte indicates the count */
578
579 bd->writeCopies=current;
580 current=previous;
581 bd->writeRunCountdown=5;
582
583 /* Sometimes there are just 3 bytes (run length 0) */
584
585 if(!bd->writeCopies) goto decode_next_byte;
586
587 /* Subtract the 1 copy we'd output anyway to get extras */
588
589 --bd->writeCopies;
590 }
591 }
592
593 /* Decompression of this block completed successfully */
594
595 bd->writeCRC=~bd->writeCRC;
596 bd->totalCRC=((bd->totalCRC<<1) | (bd->totalCRC>>31)) ^ bd->writeCRC;
597
598 /* If this block had a CRC error, force file level CRC error. */
599
600 if(bd->writeCRC!=bd->headerCRC) {
601 bd->totalCRC=bd->headerCRC+1;
602 return RETVAL_LAST_BLOCK;
603 }
604 }
605
606 /* Refill the intermediate buffer by Huffman-decoding next block of input */
607 /* (previous is just a convenient unused temp variable here) */
608
609 previous=get_next_block(bd);
610 if(previous) {
611 bd->writeCount=previous;
612 return (previous!=RETVAL_LAST_BLOCK) ? previous : gotcount;
613 }
614 bd->writeCRC=~0;
615 pos=bd->writePos;
616 current=bd->writeCurrent;
617 goto decode_next_byte;
618 }
619
620 /* Allocate the structure, read file header. If in_fd==-1, inbuf must contain
621 a complete bunzip file (len bytes long). If in_fd!=-1, inbuf and len are
622 ignored, and data is read from file handle into temporary buffer. */
623
624 static int start_bunzip(bunzip_data **bdp, int in_fd, unsigned char *inbuf,
625 int len)
626 {
627 bunzip_data *bd;
628 unsigned int i;
629 const unsigned int BZh0=(((unsigned int)'B')<<24)+(((unsigned int)'Z')<<16)
630 +(((unsigned int)'h')<<8)+(unsigned int)'0';
631
632 /* Figure out how much data to allocate */
633
634 i=sizeof(bunzip_data);
635 if(in_fd!=-1) i+=IOBUF_SIZE;
636
637 /* Allocate bunzip_data. Most fields initialize to zero. */
638
639 bd=*bdp=xzalloc(i);
640
641 /* Setup input buffer */
642
643 if(-1==(bd->in_fd=in_fd)) {
644 bd->inbuf=inbuf;
645 bd->inbufCount=len;
646 } else bd->inbuf=(unsigned char *)(bd+1);
647
648 /* Init the CRC32 table (big endian) */
649
650 bd->crc32Table = crc32_filltable(1);
651
652 /* Setup for I/O error handling via longjmp */
653
654 i=setjmp(bd->jmpbuf);
655 if(i) return i;
656
657 /* Ensure that file starts with "BZh['1'-'9']." */
658
659 i = get_bits(bd,32);
660 if (((unsigned int)(i-BZh0-1)) >= 9) return RETVAL_NOT_BZIP_DATA;
661
662 /* Fourth byte (ascii '1'-'9'), indicates block size in units of 100k of
663 uncompressed data. Allocate intermediate buffer for block. */
664
665 bd->dbufSize=100000*(i-BZh0);
666
667 bd->dbuf=xmalloc(bd->dbufSize * sizeof(int));
668 return RETVAL_OK;
669 }
670
671 /* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
672 not end of file.) */
673
674 USE_DESKTOP(long long) int
675 uncompressStream(int src_fd, int dst_fd)
676 {
677 USE_DESKTOP(long long total_written = 0;)
678 char *outbuf;
679 bunzip_data *bd;
680 int i;
681
682 outbuf=xmalloc(IOBUF_SIZE);
683 i=start_bunzip(&bd,src_fd,0,0);
684 if(!i) {
685 for (;;) {
686 if((i=read_bunzip(bd,outbuf,IOBUF_SIZE)) <= 0) break;
687 if(i!=write(dst_fd,outbuf,i)) {
688 i=RETVAL_UNEXPECTED_OUTPUT_EOF;
689 break;
690 }
691 USE_DESKTOP(total_written += i;)
692 }
693 }
694
695 /* Check CRC and release memory */
696
697 if(i==RETVAL_LAST_BLOCK) {
698 if (bd->headerCRC!=bd->totalCRC) {
699 bb_error_msg("data integrity error when decompressing");
700 } else {
701 i=RETVAL_OK;
702 }
703 } else if (i==RETVAL_UNEXPECTED_OUTPUT_EOF) {
704 bb_error_msg("compressed file ends unexpectedly");
705 } else {
706 bb_error_msg("decompression failed");
707 }
708 free(bd->dbuf);
709 free(bd);
710 free(outbuf);
711
712 return i ? i : USE_DESKTOP(total_written) + 0;
713 }
714
715 #ifdef TESTING
716
717 static char * const bunzip_errors[]={NULL,"Bad file checksum","Not bzip data",
718 "Unexpected input EOF","Unexpected output EOF","Data error",
719 "Out of memory","Obsolete (pre 0.9.5) bzip format not supported."};
720
721 /* Dumb little test thing, decompress stdin to stdout */
722 int main(int argc, char *argv[])
723 {
724 int i=uncompressStream(0,1);
725 char c;
726
727 if(i<0) fprintf(stderr,"%s\n", bunzip_errors[-i]);
728 else if(read(0,&c,1)) fprintf(stderr,"Trailing garbage ignored\n");
729 return -i;
730 }
731 #endif