Magellan Linux

Annotation of /trunk/mkinitrd-magellan/busybox/archival/libunarchive/decompress_unlzma.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 532 - (hide annotations) (download)
Sat Sep 1 22:45:15 2007 UTC (16 years, 9 months ago) by niro
File MIME type: text/plain
File size: 12810 byte(s)
-import if magellan mkinitrd; it is a fork of redhats mkinitrd-5.0.8 with all magellan patches and features; deprecates magellan-src/mkinitrd

1 niro 532 /* vi: set sw=4 ts=4: */
2     /*
3     * Small lzma deflate implementation.
4     * Copyright (C) 2006 Aurelien Jacobs <aurel@gnuage.org>
5     *
6     * Based on LzmaDecode.c from the LZMA SDK 4.22 (http://www.7-zip.org/)
7     * Copyright (C) 1999-2005 Igor Pavlov
8     *
9     * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
10     */
11    
12     #include "libbb.h"
13     #include "unarchive.h"
14    
15     #ifdef CONFIG_FEATURE_LZMA_FAST
16     # define speed_inline ATTRIBUTE_ALWAYS_INLINE
17     #else
18     # define speed_inline
19     #endif
20    
21    
22     typedef struct {
23     int fd;
24     uint8_t *ptr;
25    
26     /* Was keeping rc on stack in unlzma and separately allocating buffer,
27     * but with "buffer 'attached to' allocated rc" code is smaller: */
28     /* uint8_t *buffer; */
29     #define RC_BUFFER ((uint8_t*)(rc+1))
30    
31     uint8_t *buffer_end;
32    
33     /* Had provisions for variable buffer, but we don't need it here */
34     /* int buffer_size; */
35     #define RC_BUFFER_SIZE 0x10000
36    
37     uint32_t code;
38     uint32_t range;
39     uint32_t bound;
40     } rc_t;
41    
42     #define RC_TOP_BITS 24
43     #define RC_MOVE_BITS 5
44     #define RC_MODEL_TOTAL_BITS 11
45    
46    
47     /* Called twice: once at startup and once in rc_normalize() */
48     static void rc_read(rc_t * rc)
49     {
50     int buffer_size = safe_read(rc->fd, RC_BUFFER, RC_BUFFER_SIZE);
51     if (buffer_size <= 0)
52     bb_error_msg_and_die("unexpected EOF");
53     rc->ptr = RC_BUFFER;
54     rc->buffer_end = RC_BUFFER + buffer_size;
55     }
56    
57     /* Called once */
58     static rc_t* rc_init(int fd) /*, int buffer_size) */
59     {
60     int i;
61     rc_t* rc;
62    
63     rc = xmalloc(sizeof(rc_t) + RC_BUFFER_SIZE);
64    
65     rc->fd = fd;
66     /* rc->buffer_size = buffer_size; */
67     rc->buffer_end = RC_BUFFER + RC_BUFFER_SIZE;
68     rc->ptr = rc->buffer_end;
69    
70     rc->code = 0;
71     rc->range = 0xFFFFFFFF;
72     for (i = 0; i < 5; i++) {
73     if (rc->ptr >= rc->buffer_end)
74     rc_read(rc);
75     rc->code = (rc->code << 8) | *rc->ptr++;
76     }
77     return rc;
78     }
79    
80     /* Called once */
81     static ATTRIBUTE_ALWAYS_INLINE void rc_free(rc_t * rc)
82     {
83     if (ENABLE_FEATURE_CLEAN_UP)
84     free(rc);
85     }
86    
87     /* Called twice, but one callsite is in speed_inline'd rc_is_bit_0_helper() */
88     static void rc_do_normalize(rc_t * rc)
89     {
90     if (rc->ptr >= rc->buffer_end)
91     rc_read(rc);
92     rc->range <<= 8;
93     rc->code = (rc->code << 8) | *rc->ptr++;
94     }
95     static ATTRIBUTE_ALWAYS_INLINE void rc_normalize(rc_t * rc)
96     {
97     if (rc->range < (1 << RC_TOP_BITS)) {
98     rc_do_normalize(rc);
99     }
100     }
101    
102     /* Called 9 times */
103     /* Why rc_is_bit_0_helper exists?
104     * Because we want to always expose (rc->code < rc->bound) to optimizer
105     */
106     static speed_inline uint32_t rc_is_bit_0_helper(rc_t * rc, uint16_t * p)
107     {
108     rc_normalize(rc);
109     rc->bound = *p * (rc->range >> RC_MODEL_TOTAL_BITS);
110     return rc->bound;
111     }
112     static ATTRIBUTE_ALWAYS_INLINE int rc_is_bit_0(rc_t * rc, uint16_t * p)
113     {
114     uint32_t t = rc_is_bit_0_helper(rc, p);
115     return rc->code < t;
116     }
117    
118     /* Called ~10 times, but very small, thus inlined */
119     static speed_inline void rc_update_bit_0(rc_t * rc, uint16_t * p)
120     {
121     rc->range = rc->bound;
122     *p += ((1 << RC_MODEL_TOTAL_BITS) - *p) >> RC_MOVE_BITS;
123     }
124     static speed_inline void rc_update_bit_1(rc_t * rc, uint16_t * p)
125     {
126     rc->range -= rc->bound;
127     rc->code -= rc->bound;
128     *p -= *p >> RC_MOVE_BITS;
129     }
130    
131     /* Called 4 times in unlzma loop */
132     static int rc_get_bit(rc_t * rc, uint16_t * p, int *symbol)
133     {
134     if (rc_is_bit_0(rc, p)) {
135     rc_update_bit_0(rc, p);
136     *symbol *= 2;
137     return 0;
138     } else {
139     rc_update_bit_1(rc, p);
140     *symbol = *symbol * 2 + 1;
141     return 1;
142     }
143     }
144    
145     /* Called once */
146     static ATTRIBUTE_ALWAYS_INLINE int rc_direct_bit(rc_t * rc)
147     {
148     rc_normalize(rc);
149     rc->range >>= 1;
150     if (rc->code >= rc->range) {
151     rc->code -= rc->range;
152     return 1;
153     }
154     return 0;
155     }
156    
157     /* Called twice */
158     static speed_inline void
159     rc_bit_tree_decode(rc_t * rc, uint16_t * p, int num_levels, int *symbol)
160     {
161     int i = num_levels;
162    
163     *symbol = 1;
164     while (i--)
165     rc_get_bit(rc, p + *symbol, symbol);
166     *symbol -= 1 << num_levels;
167     }
168    
169    
170     typedef struct {
171     uint8_t pos;
172     uint32_t dict_size;
173     uint64_t dst_size;
174     } __attribute__ ((packed)) lzma_header_t;
175    
176    
177     /* #defines will force compiler to compute/optimize each one with each usage.
178     * Have heart and use enum instead. */
179     enum {
180     LZMA_BASE_SIZE = 1846,
181     LZMA_LIT_SIZE = 768,
182    
183     LZMA_NUM_POS_BITS_MAX = 4,
184    
185     LZMA_LEN_NUM_LOW_BITS = 3,
186     LZMA_LEN_NUM_MID_BITS = 3,
187     LZMA_LEN_NUM_HIGH_BITS = 8,
188    
189     LZMA_LEN_CHOICE = 0,
190     LZMA_LEN_CHOICE_2 = (LZMA_LEN_CHOICE + 1),
191     LZMA_LEN_LOW = (LZMA_LEN_CHOICE_2 + 1),
192     LZMA_LEN_MID = (LZMA_LEN_LOW \
193     + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_LOW_BITS))),
194     LZMA_LEN_HIGH = (LZMA_LEN_MID \
195     + (1 << (LZMA_NUM_POS_BITS_MAX + LZMA_LEN_NUM_MID_BITS))),
196     LZMA_NUM_LEN_PROBS = (LZMA_LEN_HIGH + (1 << LZMA_LEN_NUM_HIGH_BITS)),
197    
198     LZMA_NUM_STATES = 12,
199     LZMA_NUM_LIT_STATES = 7,
200    
201     LZMA_START_POS_MODEL_INDEX = 4,
202     LZMA_END_POS_MODEL_INDEX = 14,
203     LZMA_NUM_FULL_DISTANCES = (1 << (LZMA_END_POS_MODEL_INDEX >> 1)),
204    
205     LZMA_NUM_POS_SLOT_BITS = 6,
206     LZMA_NUM_LEN_TO_POS_STATES = 4,
207    
208     LZMA_NUM_ALIGN_BITS = 4,
209    
210     LZMA_MATCH_MIN_LEN = 2,
211    
212     LZMA_IS_MATCH = 0,
213     LZMA_IS_REP = (LZMA_IS_MATCH + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)),
214     LZMA_IS_REP_G0 = (LZMA_IS_REP + LZMA_NUM_STATES),
215     LZMA_IS_REP_G1 = (LZMA_IS_REP_G0 + LZMA_NUM_STATES),
216     LZMA_IS_REP_G2 = (LZMA_IS_REP_G1 + LZMA_NUM_STATES),
217     LZMA_IS_REP_0_LONG = (LZMA_IS_REP_G2 + LZMA_NUM_STATES),
218     LZMA_POS_SLOT = (LZMA_IS_REP_0_LONG \
219     + (LZMA_NUM_STATES << LZMA_NUM_POS_BITS_MAX)),
220     LZMA_SPEC_POS = (LZMA_POS_SLOT \
221     + (LZMA_NUM_LEN_TO_POS_STATES << LZMA_NUM_POS_SLOT_BITS)),
222     LZMA_ALIGN = (LZMA_SPEC_POS \
223     + LZMA_NUM_FULL_DISTANCES - LZMA_END_POS_MODEL_INDEX),
224     LZMA_LEN_CODER = (LZMA_ALIGN + (1 << LZMA_NUM_ALIGN_BITS)),
225     LZMA_REP_LEN_CODER = (LZMA_LEN_CODER + LZMA_NUM_LEN_PROBS),
226     LZMA_LITERAL = (LZMA_REP_LEN_CODER + LZMA_NUM_LEN_PROBS),
227     };
228    
229    
230     USE_DESKTOP(long long) int
231     unlzma(int src_fd, int dst_fd)
232     {
233     USE_DESKTOP(long long total_written = 0;)
234     lzma_header_t header;
235     int lc, pb, lp;
236     uint32_t pos_state_mask;
237     uint32_t literal_pos_mask;
238     uint32_t pos;
239     uint16_t *p;
240     uint16_t *prob;
241     uint16_t *prob_lit;
242     int num_bits;
243     int num_probs;
244     rc_t *rc;
245     int i, mi;
246     uint8_t *buffer;
247     uint8_t previous_byte = 0;
248     size_t buffer_pos = 0, global_pos = 0;
249     int len = 0;
250     int state = 0;
251     uint32_t rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
252    
253     xread(src_fd, &header, sizeof(header));
254    
255     if (header.pos >= (9 * 5 * 5))
256     bb_error_msg_and_die("bad header");
257     mi = header.pos / 9;
258     lc = header.pos % 9;
259     pb = mi / 5;
260     lp = mi % 5;
261     pos_state_mask = (1 << pb) - 1;
262     literal_pos_mask = (1 << lp) - 1;
263    
264     header.dict_size = SWAP_LE32(header.dict_size);
265     header.dst_size = SWAP_LE64(header.dst_size);
266    
267     if (header.dict_size == 0)
268     header.dict_size = 1;
269    
270     buffer = xmalloc(MIN(header.dst_size, header.dict_size));
271    
272     num_probs = LZMA_BASE_SIZE + (LZMA_LIT_SIZE << (lc + lp));
273     p = xmalloc(num_probs * sizeof(*p));
274     num_probs = LZMA_LITERAL + (LZMA_LIT_SIZE << (lc + lp));
275     for (i = 0; i < num_probs; i++)
276     p[i] = (1 << RC_MODEL_TOTAL_BITS) >> 1;
277    
278     rc = rc_init(src_fd); /*, RC_BUFFER_SIZE); */
279    
280     while (global_pos + buffer_pos < header.dst_size) {
281     int pos_state = (buffer_pos + global_pos) & pos_state_mask;
282    
283     prob =
284     p + LZMA_IS_MATCH + (state << LZMA_NUM_POS_BITS_MAX) + pos_state;
285     if (rc_is_bit_0(rc, prob)) {
286     mi = 1;
287     rc_update_bit_0(rc, prob);
288     prob = (p + LZMA_LITERAL + (LZMA_LIT_SIZE
289     * ((((buffer_pos + global_pos) & literal_pos_mask) << lc)
290     + (previous_byte >> (8 - lc)))));
291    
292     if (state >= LZMA_NUM_LIT_STATES) {
293     int match_byte;
294    
295     pos = buffer_pos - rep0;
296     while (pos >= header.dict_size)
297     pos += header.dict_size;
298     match_byte = buffer[pos];
299     do {
300     int bit;
301    
302     match_byte <<= 1;
303     bit = match_byte & 0x100;
304     prob_lit = prob + 0x100 + bit + mi;
305     if (rc_get_bit(rc, prob_lit, &mi)) {
306     if (!bit)
307     break;
308     } else {
309     if (bit)
310     break;
311     }
312     } while (mi < 0x100);
313     }
314     while (mi < 0x100) {
315     prob_lit = prob + mi;
316     rc_get_bit(rc, prob_lit, &mi);
317     }
318     previous_byte = (uint8_t) mi;
319    
320     buffer[buffer_pos++] = previous_byte;
321     if (buffer_pos == header.dict_size) {
322     buffer_pos = 0;
323     global_pos += header.dict_size;
324     if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size)
325     goto bad;
326     USE_DESKTOP(total_written += header.dict_size;)
327     }
328     if (state < 4)
329     state = 0;
330     else if (state < 10)
331     state -= 3;
332     else
333     state -= 6;
334     } else {
335     int offset;
336     uint16_t *prob_len;
337    
338     rc_update_bit_1(rc, prob);
339     prob = p + LZMA_IS_REP + state;
340     if (rc_is_bit_0(rc, prob)) {
341     rc_update_bit_0(rc, prob);
342     rep3 = rep2;
343     rep2 = rep1;
344     rep1 = rep0;
345     state = state < LZMA_NUM_LIT_STATES ? 0 : 3;
346     prob = p + LZMA_LEN_CODER;
347     } else {
348     rc_update_bit_1(rc, prob);
349     prob = p + LZMA_IS_REP_G0 + state;
350     if (rc_is_bit_0(rc, prob)) {
351     rc_update_bit_0(rc, prob);
352     prob = (p + LZMA_IS_REP_0_LONG
353     + (state << LZMA_NUM_POS_BITS_MAX) + pos_state);
354     if (rc_is_bit_0(rc, prob)) {
355     rc_update_bit_0(rc, prob);
356    
357     state = state < LZMA_NUM_LIT_STATES ? 9 : 11;
358     pos = buffer_pos - rep0;
359     while (pos >= header.dict_size)
360     pos += header.dict_size;
361     previous_byte = buffer[pos];
362     buffer[buffer_pos++] = previous_byte;
363     if (buffer_pos == header.dict_size) {
364     buffer_pos = 0;
365     global_pos += header.dict_size;
366     if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size)
367     goto bad;
368     USE_DESKTOP(total_written += header.dict_size;)
369     }
370     continue;
371     } else {
372     rc_update_bit_1(rc, prob);
373     }
374     } else {
375     uint32_t distance;
376    
377     rc_update_bit_1(rc, prob);
378     prob = p + LZMA_IS_REP_G1 + state;
379     if (rc_is_bit_0(rc, prob)) {
380     rc_update_bit_0(rc, prob);
381     distance = rep1;
382     } else {
383     rc_update_bit_1(rc, prob);
384     prob = p + LZMA_IS_REP_G2 + state;
385     if (rc_is_bit_0(rc, prob)) {
386     rc_update_bit_0(rc, prob);
387     distance = rep2;
388     } else {
389     rc_update_bit_1(rc, prob);
390     distance = rep3;
391     rep3 = rep2;
392     }
393     rep2 = rep1;
394     }
395     rep1 = rep0;
396     rep0 = distance;
397     }
398     state = state < LZMA_NUM_LIT_STATES ? 8 : 11;
399     prob = p + LZMA_REP_LEN_CODER;
400     }
401    
402     prob_len = prob + LZMA_LEN_CHOICE;
403     if (rc_is_bit_0(rc, prob_len)) {
404     rc_update_bit_0(rc, prob_len);
405     prob_len = (prob + LZMA_LEN_LOW
406     + (pos_state << LZMA_LEN_NUM_LOW_BITS));
407     offset = 0;
408     num_bits = LZMA_LEN_NUM_LOW_BITS;
409     } else {
410     rc_update_bit_1(rc, prob_len);
411     prob_len = prob + LZMA_LEN_CHOICE_2;
412     if (rc_is_bit_0(rc, prob_len)) {
413     rc_update_bit_0(rc, prob_len);
414     prob_len = (prob + LZMA_LEN_MID
415     + (pos_state << LZMA_LEN_NUM_MID_BITS));
416     offset = 1 << LZMA_LEN_NUM_LOW_BITS;
417     num_bits = LZMA_LEN_NUM_MID_BITS;
418     } else {
419     rc_update_bit_1(rc, prob_len);
420     prob_len = prob + LZMA_LEN_HIGH;
421     offset = ((1 << LZMA_LEN_NUM_LOW_BITS)
422     + (1 << LZMA_LEN_NUM_MID_BITS));
423     num_bits = LZMA_LEN_NUM_HIGH_BITS;
424     }
425     }
426     rc_bit_tree_decode(rc, prob_len, num_bits, &len);
427     len += offset;
428    
429     if (state < 4) {
430     int pos_slot;
431    
432     state += LZMA_NUM_LIT_STATES;
433     prob =
434     p + LZMA_POS_SLOT +
435     ((len <
436     LZMA_NUM_LEN_TO_POS_STATES ? len :
437     LZMA_NUM_LEN_TO_POS_STATES - 1)
438     << LZMA_NUM_POS_SLOT_BITS);
439     rc_bit_tree_decode(rc, prob, LZMA_NUM_POS_SLOT_BITS,
440     &pos_slot);
441     if (pos_slot >= LZMA_START_POS_MODEL_INDEX) {
442     num_bits = (pos_slot >> 1) - 1;
443     rep0 = 2 | (pos_slot & 1);
444     if (pos_slot < LZMA_END_POS_MODEL_INDEX) {
445     rep0 <<= num_bits;
446     prob = p + LZMA_SPEC_POS + rep0 - pos_slot - 1;
447     } else {
448     num_bits -= LZMA_NUM_ALIGN_BITS;
449     while (num_bits--)
450     rep0 = (rep0 << 1) | rc_direct_bit(rc);
451     prob = p + LZMA_ALIGN;
452     rep0 <<= LZMA_NUM_ALIGN_BITS;
453     num_bits = LZMA_NUM_ALIGN_BITS;
454     }
455     i = 1;
456     mi = 1;
457     while (num_bits--) {
458     if (rc_get_bit(rc, prob + mi, &mi))
459     rep0 |= i;
460     i <<= 1;
461     }
462     } else
463     rep0 = pos_slot;
464     if (++rep0 == 0)
465     break;
466     }
467    
468     len += LZMA_MATCH_MIN_LEN;
469    
470     do {
471     pos = buffer_pos - rep0;
472     while (pos >= header.dict_size)
473     pos += header.dict_size;
474     previous_byte = buffer[pos];
475     buffer[buffer_pos++] = previous_byte;
476     if (buffer_pos == header.dict_size) {
477     buffer_pos = 0;
478     global_pos += header.dict_size;
479     if (full_write(dst_fd, buffer, header.dict_size) != header.dict_size)
480     goto bad;
481     USE_DESKTOP(total_written += header.dict_size;)
482     }
483     len--;
484     } while (len != 0 && buffer_pos < header.dst_size);
485     }
486     }
487    
488    
489     if (full_write(dst_fd, buffer, buffer_pos) != buffer_pos) {
490     bad:
491     rc_free(rc);
492     return -1;
493     }
494     rc_free(rc);
495     USE_DESKTOP(total_written += buffer_pos;)
496     return USE_DESKTOP(total_written) + 0;
497     }