Magellan Linux

Contents of /trunk/mkinitrd-magellan/busybox/libbb/md5.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 816 - (show annotations) (download)
Fri Apr 24 18:33:46 2009 UTC (15 years, 1 month ago) by niro
File MIME type: text/plain
File size: 12570 byte(s)
-updated to busybox-1.13.4
1 /* vi: set sw=4 ts=4: */
2 /*
3 * md5.c - Compute MD5 checksum of strings according to the
4 * definition of MD5 in RFC 1321 from April 1992.
5 *
6 * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995.
7 *
8 * Copyright (C) 1995-1999 Free Software Foundation, Inc.
9 * Copyright (C) 2001 Manuel Novoa III
10 * Copyright (C) 2003 Glenn L. McGrath
11 * Copyright (C) 2003 Erik Andersen
12 *
13 * Licensed under the GPL v2 or later, see the file LICENSE in this tarball.
14 */
15
16 #include "libbb.h"
17
18 #if CONFIG_MD5_SIZE_VS_SPEED < 0 || CONFIG_MD5_SIZE_VS_SPEED > 3
19 # define MD5_SIZE_VS_SPEED 2
20 #else
21 # define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED
22 #endif
23
24 /* Initialize structure containing state of computation.
25 * (RFC 1321, 3.3: Step 3)
26 */
27 void FAST_FUNC md5_begin(md5_ctx_t *ctx)
28 {
29 ctx->A = 0x67452301;
30 ctx->B = 0xefcdab89;
31 ctx->C = 0x98badcfe;
32 ctx->D = 0x10325476;
33
34 ctx->total = 0;
35 ctx->buflen = 0;
36 }
37
38 /* These are the four functions used in the four steps of the MD5 algorithm
39 * and defined in the RFC 1321. The first function is a little bit optimized
40 * (as found in Colin Plumbs public domain implementation).
41 * #define FF(b, c, d) ((b & c) | (~b & d))
42 */
43 # define FF(b, c, d) (d ^ (b & (c ^ d)))
44 # define FG(b, c, d) FF (d, b, c)
45 # define FH(b, c, d) (b ^ c ^ d)
46 # define FI(b, c, d) (c ^ (b | ~d))
47
48 /* Hash a single block, 64 bytes long and 4-byte aligned. */
49 static void md5_hash_block(const void *buffer, md5_ctx_t *ctx)
50 {
51 uint32_t correct_words[16];
52 const uint32_t *words = buffer;
53
54 # if MD5_SIZE_VS_SPEED > 0
55 static const uint32_t C_array[] = {
56 /* round 1 */
57 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
58 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
59 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
60 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
61 /* round 2 */
62 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
63 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8,
64 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
65 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
66 /* round 3 */
67 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
68 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
69 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05,
70 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
71 /* round 4 */
72 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
73 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
74 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
75 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391
76 };
77
78 static const char P_array[] ALIGN1 = {
79 # if MD5_SIZE_VS_SPEED > 1
80 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */
81 # endif /* MD5_SIZE_VS_SPEED > 1 */
82 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */
83 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */
84 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */
85 };
86
87 # if MD5_SIZE_VS_SPEED > 1
88 static const char S_array[] ALIGN1 = {
89 7, 12, 17, 22,
90 5, 9, 14, 20,
91 4, 11, 16, 23,
92 6, 10, 15, 21
93 };
94 # endif /* MD5_SIZE_VS_SPEED > 1 */
95 # endif
96
97 uint32_t A = ctx->A;
98 uint32_t B = ctx->B;
99 uint32_t C = ctx->C;
100 uint32_t D = ctx->D;
101
102 /* Process all bytes in the buffer with 64 bytes in each round of
103 the loop. */
104 uint32_t *cwp = correct_words;
105 uint32_t A_save = A;
106 uint32_t B_save = B;
107 uint32_t C_save = C;
108 uint32_t D_save = D;
109
110 # if MD5_SIZE_VS_SPEED > 1
111 # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
112
113 const uint32_t *pc;
114 const char *pp;
115 const char *ps;
116 int i;
117 uint32_t temp;
118
119 for (i = 0; i < 16; i++) {
120 cwp[i] = SWAP_LE32(words[i]);
121 }
122 words += 16;
123
124 # if MD5_SIZE_VS_SPEED > 2
125 pc = C_array;
126 pp = P_array;
127 ps = S_array - 4;
128
129 for (i = 0; i < 64; i++) {
130 if ((i & 0x0f) == 0)
131 ps += 4;
132 temp = A;
133 switch (i >> 4) {
134 case 0:
135 temp += FF(B, C, D);
136 break;
137 case 1:
138 temp += FG(B, C, D);
139 break;
140 case 2:
141 temp += FH(B, C, D);
142 break;
143 case 3:
144 temp += FI(B, C, D);
145 }
146 temp += cwp[(int) (*pp++)] + *pc++;
147 CYCLIC(temp, ps[i & 3]);
148 temp += B;
149 A = D;
150 D = C;
151 C = B;
152 B = temp;
153 }
154 # else
155 pc = C_array;
156 pp = P_array;
157 ps = S_array;
158
159 for (i = 0; i < 16; i++) {
160 temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++;
161 CYCLIC(temp, ps[i & 3]);
162 temp += B;
163 A = D;
164 D = C;
165 C = B;
166 B = temp;
167 }
168
169 ps += 4;
170 for (i = 0; i < 16; i++) {
171 temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++;
172 CYCLIC(temp, ps[i & 3]);
173 temp += B;
174 A = D;
175 D = C;
176 C = B;
177 B = temp;
178 }
179 ps += 4;
180 for (i = 0; i < 16; i++) {
181 temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++;
182 CYCLIC(temp, ps[i & 3]);
183 temp += B;
184 A = D;
185 D = C;
186 C = B;
187 B = temp;
188 }
189 ps += 4;
190 for (i = 0; i < 16; i++) {
191 temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++;
192 CYCLIC(temp, ps[i & 3]);
193 temp += B;
194 A = D;
195 D = C;
196 C = B;
197 B = temp;
198 }
199
200 # endif /* MD5_SIZE_VS_SPEED > 2 */
201 # else
202 /* First round: using the given function, the context and a constant
203 the next context is computed. Because the algorithms processing
204 unit is a 32-bit word and it is determined to work on words in
205 little endian byte order we perhaps have to change the byte order
206 before the computation. To reduce the work for the next steps
207 we store the swapped words in the array CORRECT_WORDS. */
208
209 # define OP(a, b, c, d, s, T) \
210 do { \
211 a += FF (b, c, d) + (*cwp++ = SWAP_LE32(*words)) + T; \
212 ++words; \
213 CYCLIC (a, s); \
214 a += b; \
215 } while (0)
216
217 /* It is unfortunate that C does not provide an operator for
218 cyclic rotation. Hope the C compiler is smart enough. */
219 /* gcc 2.95.4 seems to be --aaronl */
220 # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s)))
221
222 /* Before we start, one word to the strange constants.
223 They are defined in RFC 1321 as
224
225 T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64
226 */
227
228 # if MD5_SIZE_VS_SPEED == 1
229 const uint32_t *pc;
230 const char *pp;
231 int i;
232 # endif /* MD5_SIZE_VS_SPEED */
233
234 /* Round 1. */
235 # if MD5_SIZE_VS_SPEED == 1
236 pc = C_array;
237 for (i = 0; i < 4; i++) {
238 OP(A, B, C, D, 7, *pc++);
239 OP(D, A, B, C, 12, *pc++);
240 OP(C, D, A, B, 17, *pc++);
241 OP(B, C, D, A, 22, *pc++);
242 }
243 # else
244 OP(A, B, C, D, 7, 0xd76aa478);
245 OP(D, A, B, C, 12, 0xe8c7b756);
246 OP(C, D, A, B, 17, 0x242070db);
247 OP(B, C, D, A, 22, 0xc1bdceee);
248 OP(A, B, C, D, 7, 0xf57c0faf);
249 OP(D, A, B, C, 12, 0x4787c62a);
250 OP(C, D, A, B, 17, 0xa8304613);
251 OP(B, C, D, A, 22, 0xfd469501);
252 OP(A, B, C, D, 7, 0x698098d8);
253 OP(D, A, B, C, 12, 0x8b44f7af);
254 OP(C, D, A, B, 17, 0xffff5bb1);
255 OP(B, C, D, A, 22, 0x895cd7be);
256 OP(A, B, C, D, 7, 0x6b901122);
257 OP(D, A, B, C, 12, 0xfd987193);
258 OP(C, D, A, B, 17, 0xa679438e);
259 OP(B, C, D, A, 22, 0x49b40821);
260 # endif /* MD5_SIZE_VS_SPEED == 1 */
261
262 /* For the second to fourth round we have the possibly swapped words
263 in CORRECT_WORDS. Redefine the macro to take an additional first
264 argument specifying the function to use. */
265 # undef OP
266 # define OP(f, a, b, c, d, k, s, T) \
267 do { \
268 a += f (b, c, d) + correct_words[k] + T; \
269 CYCLIC (a, s); \
270 a += b; \
271 } while (0)
272
273 /* Round 2. */
274 # if MD5_SIZE_VS_SPEED == 1
275 pp = P_array;
276 for (i = 0; i < 4; i++) {
277 OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++);
278 OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++);
279 OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++);
280 OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++);
281 }
282 # else
283 OP(FG, A, B, C, D, 1, 5, 0xf61e2562);
284 OP(FG, D, A, B, C, 6, 9, 0xc040b340);
285 OP(FG, C, D, A, B, 11, 14, 0x265e5a51);
286 OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa);
287 OP(FG, A, B, C, D, 5, 5, 0xd62f105d);
288 OP(FG, D, A, B, C, 10, 9, 0x02441453);
289 OP(FG, C, D, A, B, 15, 14, 0xd8a1e681);
290 OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8);
291 OP(FG, A, B, C, D, 9, 5, 0x21e1cde6);
292 OP(FG, D, A, B, C, 14, 9, 0xc33707d6);
293 OP(FG, C, D, A, B, 3, 14, 0xf4d50d87);
294 OP(FG, B, C, D, A, 8, 20, 0x455a14ed);
295 OP(FG, A, B, C, D, 13, 5, 0xa9e3e905);
296 OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8);
297 OP(FG, C, D, A, B, 7, 14, 0x676f02d9);
298 OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a);
299 # endif /* MD5_SIZE_VS_SPEED == 1 */
300
301 /* Round 3. */
302 # if MD5_SIZE_VS_SPEED == 1
303 for (i = 0; i < 4; i++) {
304 OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++);
305 OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++);
306 OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++);
307 OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++);
308 }
309 # else
310 OP(FH, A, B, C, D, 5, 4, 0xfffa3942);
311 OP(FH, D, A, B, C, 8, 11, 0x8771f681);
312 OP(FH, C, D, A, B, 11, 16, 0x6d9d6122);
313 OP(FH, B, C, D, A, 14, 23, 0xfde5380c);
314 OP(FH, A, B, C, D, 1, 4, 0xa4beea44);
315 OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9);
316 OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60);
317 OP(FH, B, C, D, A, 10, 23, 0xbebfbc70);
318 OP(FH, A, B, C, D, 13, 4, 0x289b7ec6);
319 OP(FH, D, A, B, C, 0, 11, 0xeaa127fa);
320 OP(FH, C, D, A, B, 3, 16, 0xd4ef3085);
321 OP(FH, B, C, D, A, 6, 23, 0x04881d05);
322 OP(FH, A, B, C, D, 9, 4, 0xd9d4d039);
323 OP(FH, D, A, B, C, 12, 11, 0xe6db99e5);
324 OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8);
325 OP(FH, B, C, D, A, 2, 23, 0xc4ac5665);
326 # endif /* MD5_SIZE_VS_SPEED == 1 */
327
328 /* Round 4. */
329 # if MD5_SIZE_VS_SPEED == 1
330 for (i = 0; i < 4; i++) {
331 OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++);
332 OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++);
333 OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++);
334 OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++);
335 }
336 # else
337 OP(FI, A, B, C, D, 0, 6, 0xf4292244);
338 OP(FI, D, A, B, C, 7, 10, 0x432aff97);
339 OP(FI, C, D, A, B, 14, 15, 0xab9423a7);
340 OP(FI, B, C, D, A, 5, 21, 0xfc93a039);
341 OP(FI, A, B, C, D, 12, 6, 0x655b59c3);
342 OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92);
343 OP(FI, C, D, A, B, 10, 15, 0xffeff47d);
344 OP(FI, B, C, D, A, 1, 21, 0x85845dd1);
345 OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f);
346 OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0);
347 OP(FI, C, D, A, B, 6, 15, 0xa3014314);
348 OP(FI, B, C, D, A, 13, 21, 0x4e0811a1);
349 OP(FI, A, B, C, D, 4, 6, 0xf7537e82);
350 OP(FI, D, A, B, C, 11, 10, 0xbd3af235);
351 OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb);
352 OP(FI, B, C, D, A, 9, 21, 0xeb86d391);
353 # endif /* MD5_SIZE_VS_SPEED == 1 */
354 # endif /* MD5_SIZE_VS_SPEED > 1 */
355
356 /* Add the starting values of the context. */
357 A += A_save;
358 B += B_save;
359 C += C_save;
360 D += D_save;
361
362 /* Put checksum in context given as argument. */
363 ctx->A = A;
364 ctx->B = B;
365 ctx->C = C;
366 ctx->D = D;
367 }
368
369 /* Feed data through a temporary buffer to call md5_hash_aligned_block()
370 * with chunks of data that are 4-byte aligned and a multiple of 64 bytes.
371 * This function's internal buffer remembers previous data until it has 64
372 * bytes worth to pass on. Call md5_end() to flush this buffer. */
373
374 void FAST_FUNC md5_hash(const void *buffer, size_t len, md5_ctx_t *ctx)
375 {
376 char *buf=(char *)buffer;
377
378 /* RFC 1321 specifies the possible length of the file up to 2^64 bits,
379 * Here we only track the number of bytes. */
380
381 ctx->total += len;
382
383 // Process all input.
384
385 while (len) {
386 unsigned i = 64 - ctx->buflen;
387
388 // Copy data into aligned buffer.
389
390 if (i > len) i = len;
391 memcpy(ctx->buffer + ctx->buflen, buf, i);
392 len -= i;
393 ctx->buflen += i;
394 buf += i;
395
396 // When buffer fills up, process it.
397
398 if (ctx->buflen == 64) {
399 md5_hash_block(ctx->buffer, ctx);
400 ctx->buflen = 0;
401 }
402 }
403 }
404
405 /* Process the remaining bytes in the buffer and put result from CTX
406 * in first 16 bytes following RESBUF. The result is always in little
407 * endian byte order, so that a byte-wise output yields to the wanted
408 * ASCII representation of the message digest.
409 *
410 * IMPORTANT: On some systems it is required that RESBUF is correctly
411 * aligned for a 32 bits value.
412 */
413 void* FAST_FUNC md5_end(void *resbuf, md5_ctx_t *ctx)
414 {
415 char *buf = ctx->buffer;
416 int i;
417
418 /* Pad data to block size. */
419
420 buf[ctx->buflen++] = 0x80;
421 memset(buf + ctx->buflen, 0, 128 - ctx->buflen);
422
423 /* Put the 64-bit file length in *bits* at the end of the buffer. */
424 ctx->total <<= 3;
425 if (ctx->buflen > 56) buf += 64;
426 for (i = 0; i < 8; i++) buf[56 + i] = ctx->total >> (i*8);
427
428 /* Process last bytes. */
429 if (buf != ctx->buffer) md5_hash_block(ctx->buffer, ctx);
430 md5_hash_block(buf, ctx);
431
432 /* Put result from CTX in first 16 bytes following RESBUF. The result is
433 * always in little endian byte order, so that a byte-wise output yields
434 * to the wanted ASCII representation of the message digest.
435 *
436 * IMPORTANT: On some systems it is required that RESBUF is correctly
437 * aligned for a 32 bits value.
438 */
439 ((uint32_t *) resbuf)[0] = SWAP_LE32(ctx->A);
440 ((uint32_t *) resbuf)[1] = SWAP_LE32(ctx->B);
441 ((uint32_t *) resbuf)[2] = SWAP_LE32(ctx->C);
442 ((uint32_t *) resbuf)[3] = SWAP_LE32(ctx->D);
443
444 return resbuf;
445 }
446