Magellan Linux

Annotation of /trunk/mkinitrd-magellan/busybox/libbb/pw_encrypt_sha.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1000 - (hide annotations) (download)
Sun May 30 12:27:29 2010 UTC (13 years, 11 months ago) by niro
File MIME type: text/plain
File size: 9430 byte(s)
-added missing files
1 niro 1000 /* SHA256 and SHA512-based Unix crypt implementation.
2     * Released into the Public Domain by Ulrich Drepper <drepper@redhat.com>.
3     */
4    
5     /* Prefix for optional rounds specification. */
6     static const char str_rounds[] = "rounds=%u$";
7    
8     /* Maximum salt string length. */
9     #define SALT_LEN_MAX 16
10     /* Default number of rounds if not explicitly specified. */
11     #define ROUNDS_DEFAULT 5000
12     /* Minimum number of rounds. */
13     #define ROUNDS_MIN 1000
14     /* Maximum number of rounds. */
15     #define ROUNDS_MAX 999999999
16    
17     static char *
18     NOINLINE
19     sha_crypt(/*const*/ char *key_data, /*const*/ char *salt_data)
20     {
21     void (*sha_begin)(void *ctx) FAST_FUNC;
22     void (*sha_hash)(const void *buffer, size_t len, void *ctx) FAST_FUNC;
23     void (*sha_end)(void *resbuf, void *ctx) FAST_FUNC;
24     int _32or64;
25    
26     char *result, *resptr;
27    
28     /* btw, sha256 needs [32] and uint32_t only */
29     struct {
30     unsigned char alt_result[64];
31     unsigned char temp_result[64];
32     union {
33     sha256_ctx_t x;
34     sha512_ctx_t y;
35     } ctx;
36     union {
37     sha256_ctx_t x;
38     sha512_ctx_t y;
39     } alt_ctx;
40     } L __attribute__((__aligned__(__alignof__(uint64_t))));
41     #define alt_result (L.alt_result )
42     #define temp_result (L.temp_result)
43     #define ctx (L.ctx )
44     #define alt_ctx (L.alt_ctx )
45     unsigned salt_len;
46     unsigned key_len;
47     unsigned cnt;
48     unsigned rounds;
49     char *cp;
50     char is_sha512;
51    
52     /* Analyze salt, construct already known part of result */
53     cnt = strlen(salt_data) + 1 + 43 + 1;
54     is_sha512 = salt_data[1];
55     if (is_sha512 == '6')
56     cnt += 43;
57     result = resptr = xzalloc(cnt); /* will provide NUL terminator */
58     *resptr++ = '$';
59     *resptr++ = is_sha512;
60     *resptr++ = '$';
61     rounds = ROUNDS_DEFAULT;
62     salt_data += 3;
63     if (strncmp(salt_data, str_rounds, 7) == 0) {
64     /* 7 == strlen("rounds=") */
65     char *endp;
66     cnt = bb_strtou(salt_data + 7, &endp, 10);
67     if (*endp == '$') {
68     salt_data = endp + 1;
69     rounds = cnt;
70     if (rounds < ROUNDS_MIN)
71     rounds = ROUNDS_MIN;
72     if (rounds > ROUNDS_MAX)
73     rounds = ROUNDS_MAX;
74     /* add "rounds=NNNNN$" to result */
75     resptr += sprintf(resptr, str_rounds, rounds);
76     }
77     }
78     salt_len = strchrnul(salt_data, '$') - salt_data;
79     if (salt_len > SALT_LEN_MAX)
80     salt_len = SALT_LEN_MAX;
81     /* xstrdup assures suitable alignment; also we will use it
82     as a scratch space later. */
83     salt_data = xstrndup(salt_data, salt_len);
84     /* add "salt$" to result */
85     strcpy(resptr, salt_data);
86     resptr += salt_len;
87     *resptr++ = '$';
88     /* key data doesn't need much processing */
89     key_len = strlen(key_data);
90     key_data = xstrdup(key_data);
91    
92     /* Which flavor of SHAnnn ops to use? */
93     sha_begin = (void*)sha256_begin;
94     sha_hash = (void*)sha256_hash;
95     sha_end = (void*)sha256_end;
96     _32or64 = 32;
97     if (is_sha512 == '6') {
98     sha_begin = (void*)sha512_begin;
99     sha_hash = (void*)sha512_hash;
100     sha_end = (void*)sha512_end;
101     _32or64 = 64;
102     }
103    
104     /* Add KEY, SALT. */
105     sha_begin(&ctx);
106     sha_hash(key_data, key_len, &ctx);
107     sha_hash(salt_data, salt_len, &ctx);
108    
109     /* Compute alternate SHA sum with input KEY, SALT, and KEY.
110     The final result will be added to the first context. */
111     sha_begin(&alt_ctx);
112     sha_hash(key_data, key_len, &alt_ctx);
113     sha_hash(salt_data, salt_len, &alt_ctx);
114     sha_hash(key_data, key_len, &alt_ctx);
115     sha_end(alt_result, &alt_ctx);
116    
117     /* Add result of this to the other context. */
118     /* Add for any character in the key one byte of the alternate sum. */
119     for (cnt = key_len; cnt > _32or64; cnt -= _32or64)
120     sha_hash(alt_result, _32or64, &ctx);
121     sha_hash(alt_result, cnt, &ctx);
122    
123     /* Take the binary representation of the length of the key and for every
124     1 add the alternate sum, for every 0 the key. */
125     for (cnt = key_len; cnt != 0; cnt >>= 1)
126     if ((cnt & 1) != 0)
127     sha_hash(alt_result, _32or64, &ctx);
128     else
129     sha_hash(key_data, key_len, &ctx);
130    
131     /* Create intermediate result. */
132     sha_end(alt_result, &ctx);
133    
134     /* Start computation of P byte sequence. */
135     /* For every character in the password add the entire password. */
136     sha_begin(&alt_ctx);
137     for (cnt = 0; cnt < key_len; ++cnt)
138     sha_hash(key_data, key_len, &alt_ctx);
139     sha_end(temp_result, &alt_ctx);
140    
141     /* NB: past this point, raw key_data is not used anymore */
142    
143     /* Create byte sequence P. */
144     #define p_bytes key_data /* reuse the buffer as it is of the key_len size */
145     cp = p_bytes; /* was: ... = alloca(key_len); */
146     for (cnt = key_len; cnt >= _32or64; cnt -= _32or64) {
147     cp = memcpy(cp, temp_result, _32or64);
148     cp += _32or64;
149     }
150     memcpy(cp, temp_result, cnt);
151    
152     /* Start computation of S byte sequence. */
153     /* For every character in the password add the entire password. */
154     sha_begin(&alt_ctx);
155     for (cnt = 0; cnt < 16 + alt_result[0]; ++cnt)
156     sha_hash(salt_data, salt_len, &alt_ctx);
157     sha_end(temp_result, &alt_ctx);
158    
159     /* NB: past this point, raw salt_data is not used anymore */
160    
161     /* Create byte sequence S. */
162     #define s_bytes salt_data /* reuse the buffer as it is of the salt_len size */
163     cp = s_bytes; /* was: ... = alloca(salt_len); */
164     for (cnt = salt_len; cnt >= _32or64; cnt -= _32or64) {
165     cp = memcpy(cp, temp_result, _32or64);
166     cp += _32or64;
167     }
168     memcpy(cp, temp_result, cnt);
169    
170     /* Repeatedly run the collected hash value through SHA to burn
171     CPU cycles. */
172     for (cnt = 0; cnt < rounds; ++cnt) {
173     sha_begin(&ctx);
174    
175     /* Add key or last result. */
176     if ((cnt & 1) != 0)
177     sha_hash(p_bytes, key_len, &ctx);
178     else
179     sha_hash(alt_result, _32or64, &ctx);
180     /* Add salt for numbers not divisible by 3. */
181     if (cnt % 3 != 0)
182     sha_hash(s_bytes, salt_len, &ctx);
183     /* Add key for numbers not divisible by 7. */
184     if (cnt % 7 != 0)
185     sha_hash(p_bytes, key_len, &ctx);
186     /* Add key or last result. */
187     if ((cnt & 1) != 0)
188     sha_hash(alt_result, _32or64, &ctx);
189     else
190     sha_hash(p_bytes, key_len, &ctx);
191    
192     sha_end(alt_result, &ctx);
193     }
194    
195     /* Append encrypted password to result buffer */
196     //TODO: replace with something like
197     // bb_uuencode(cp, src, length, bb_uuenc_tbl_XXXbase64);
198     #define b64_from_24bit(B2, B1, B0, N) \
199     do { \
200     unsigned w = ((B2) << 16) | ((B1) << 8) | (B0); \
201     resptr = to64(resptr, w, N); \
202     } while (0)
203     if (is_sha512 == '5') {
204     unsigned i = 0;
205     while (1) {
206     unsigned j = i + 10;
207     unsigned k = i + 20;
208     if (j >= 30) j -= 30;
209     if (k >= 30) k -= 30;
210     b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
211     if (k == 29)
212     break;
213     i = k + 1;
214     }
215     b64_from_24bit(0, alt_result[31], alt_result[30], 3);
216     /* was:
217     b64_from_24bit(alt_result[0], alt_result[10], alt_result[20], 4);
218     b64_from_24bit(alt_result[21], alt_result[1], alt_result[11], 4);
219     b64_from_24bit(alt_result[12], alt_result[22], alt_result[2], 4);
220     b64_from_24bit(alt_result[3], alt_result[13], alt_result[23], 4);
221     b64_from_24bit(alt_result[24], alt_result[4], alt_result[14], 4);
222     b64_from_24bit(alt_result[15], alt_result[25], alt_result[5], 4);
223     b64_from_24bit(alt_result[6], alt_result[16], alt_result[26], 4);
224     b64_from_24bit(alt_result[27], alt_result[7], alt_result[17], 4);
225     b64_from_24bit(alt_result[18], alt_result[28], alt_result[8], 4);
226     b64_from_24bit(alt_result[9], alt_result[19], alt_result[29], 4);
227     b64_from_24bit(0, alt_result[31], alt_result[30], 3);
228     */
229     } else {
230     unsigned i = 0;
231     while (1) {
232     unsigned j = i + 21;
233     unsigned k = i + 42;
234     if (j >= 63) j -= 63;
235     if (k >= 63) k -= 63;
236     b64_from_24bit(alt_result[i], alt_result[j], alt_result[k], 4);
237     if (j == 20)
238     break;
239     i = j + 1;
240     }
241     b64_from_24bit(0, 0, alt_result[63], 2);
242     /* was:
243     b64_from_24bit(alt_result[0], alt_result[21], alt_result[42], 4);
244     b64_from_24bit(alt_result[22], alt_result[43], alt_result[1], 4);
245     b64_from_24bit(alt_result[44], alt_result[2], alt_result[23], 4);
246     b64_from_24bit(alt_result[3], alt_result[24], alt_result[45], 4);
247     b64_from_24bit(alt_result[25], alt_result[46], alt_result[4], 4);
248     b64_from_24bit(alt_result[47], alt_result[5], alt_result[26], 4);
249     b64_from_24bit(alt_result[6], alt_result[27], alt_result[48], 4);
250     b64_from_24bit(alt_result[28], alt_result[49], alt_result[7], 4);
251     b64_from_24bit(alt_result[50], alt_result[8], alt_result[29], 4);
252     b64_from_24bit(alt_result[9], alt_result[30], alt_result[51], 4);
253     b64_from_24bit(alt_result[31], alt_result[52], alt_result[10], 4);
254     b64_from_24bit(alt_result[53], alt_result[11], alt_result[32], 4);
255     b64_from_24bit(alt_result[12], alt_result[33], alt_result[54], 4);
256     b64_from_24bit(alt_result[34], alt_result[55], alt_result[13], 4);
257     b64_from_24bit(alt_result[56], alt_result[14], alt_result[35], 4);
258     b64_from_24bit(alt_result[15], alt_result[36], alt_result[57], 4);
259     b64_from_24bit(alt_result[37], alt_result[58], alt_result[16], 4);
260     b64_from_24bit(alt_result[59], alt_result[17], alt_result[38], 4);
261     b64_from_24bit(alt_result[18], alt_result[39], alt_result[60], 4);
262     b64_from_24bit(alt_result[40], alt_result[61], alt_result[19], 4);
263     b64_from_24bit(alt_result[62], alt_result[20], alt_result[41], 4);
264     b64_from_24bit(0, 0, alt_result[63], 2);
265     */
266     }
267     /* *resptr = '\0'; - xzalloc did it */
268     #undef b64_from_24bit
269    
270     /* Clear the buffer for the intermediate result so that people
271     attaching to processes or reading core dumps cannot get any
272     information. */
273     memset(&L, 0, sizeof(L)); /* [alt]_ctx and XXX_result buffers */
274     memset(key_data, 0, key_len); /* also p_bytes */
275     memset(salt_data, 0, salt_len); /* also s_bytes */
276     free(key_data);
277     free(salt_data);
278     #undef p_bytes
279     #undef s_bytes
280    
281     return result;
282     #undef alt_result
283     #undef temp_result
284     #undef ctx
285     #undef alt_ctx
286     }