Magellan Linux

Contents of /trunk/mkinitrd-magellan/busybox/libbb/sha1.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 532 - (show annotations) (download)
Sat Sep 1 22:45:15 2007 UTC (16 years, 9 months ago) by niro
File MIME type: text/plain
File size: 5308 byte(s)
-import if magellan mkinitrd; it is a fork of redhats mkinitrd-5.0.8 with all magellan patches and features; deprecates magellan-src/mkinitrd

1 /* vi: set sw=4 ts=4: */
2 /*
3 * Based on shasum from http://www.netsw.org/crypto/hash/
4 * Majorly hacked up to use Dr Brian Gladman's sha1 code
5 *
6 * Copyright (C) 2002 Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
7 * Copyright (C) 2003 Glenn L. McGrath
8 * Copyright (C) 2003 Erik Andersen
9 *
10 * Licensed under GPLv2 or later, see file LICENSE in this tarball for details.
11 *
12 * ---------------------------------------------------------------------------
13 * Issue Date: 10/11/2002
14 *
15 * This is a byte oriented version of SHA1 that operates on arrays of bytes
16 * stored in memory. It runs at 22 cycles per byte on a Pentium P4 processor
17 */
18
19 #include <fcntl.h>
20 #include <limits.h>
21 #include <stdio.h>
22 #include <stdint.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26
27 #include "libbb.h"
28
29 #define SHA1_BLOCK_SIZE 64
30 #define SHA1_DIGEST_SIZE 20
31 #define SHA1_HASH_SIZE SHA1_DIGEST_SIZE
32 #define SHA2_GOOD 0
33 #define SHA2_BAD 1
34
35 #define rotl32(x,n) (((x) << n) | ((x) >> (32 - n)))
36
37 #define SHA1_MASK (SHA1_BLOCK_SIZE - 1)
38
39 /* reverse byte order in 32-bit words */
40 #define ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
41 #define parity(x,y,z) ((x) ^ (y) ^ (z))
42 #define maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
43
44 /* A normal version as set out in the FIPS. This version uses */
45 /* partial loop unrolling and is optimised for the Pentium 4 */
46 #define rnd(f,k) \
47 do { \
48 t = a; a = rotl32(a,5) + f(b,c,d) + e + k + w[i]; \
49 e = d; d = c; c = rotl32(b, 30); b = t; \
50 } while (0)
51
52 static void sha1_compile(sha1_ctx_t *ctx)
53 {
54 uint32_t w[80], i, a, b, c, d, e, t;
55
56 /* note that words are compiled from the buffer into 32-bit */
57 /* words in big-endian order so an order reversal is needed */
58 /* here on little endian machines */
59 for (i = 0; i < SHA1_BLOCK_SIZE / 4; ++i)
60 w[i] = htonl(ctx->wbuf[i]);
61
62 for (i = SHA1_BLOCK_SIZE / 4; i < 80; ++i)
63 w[i] = rotl32(w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16], 1);
64
65 a = ctx->hash[0];
66 b = ctx->hash[1];
67 c = ctx->hash[2];
68 d = ctx->hash[3];
69 e = ctx->hash[4];
70
71 for (i = 0; i < 20; ++i) {
72 rnd(ch, 0x5a827999);
73 }
74
75 for (i = 20; i < 40; ++i) {
76 rnd(parity, 0x6ed9eba1);
77 }
78
79 for (i = 40; i < 60; ++i) {
80 rnd(maj, 0x8f1bbcdc);
81 }
82
83 for (i = 60; i < 80; ++i) {
84 rnd(parity, 0xca62c1d6);
85 }
86
87 ctx->hash[0] += a;
88 ctx->hash[1] += b;
89 ctx->hash[2] += c;
90 ctx->hash[3] += d;
91 ctx->hash[4] += e;
92 }
93
94 void sha1_begin(sha1_ctx_t *ctx)
95 {
96 ctx->count[0] = ctx->count[1] = 0;
97 ctx->hash[0] = 0x67452301;
98 ctx->hash[1] = 0xefcdab89;
99 ctx->hash[2] = 0x98badcfe;
100 ctx->hash[3] = 0x10325476;
101 ctx->hash[4] = 0xc3d2e1f0;
102 }
103
104 /* SHA1 hash data in an array of bytes into hash buffer and call the */
105 /* hash_compile function as required. */
106 void sha1_hash(const void *data, size_t length, sha1_ctx_t *ctx)
107 {
108 uint32_t pos = (uint32_t) (ctx->count[0] & SHA1_MASK);
109 uint32_t freeb = SHA1_BLOCK_SIZE - pos;
110 const unsigned char *sp = data;
111
112 if ((ctx->count[0] += length) < length)
113 ++(ctx->count[1]);
114
115 while (length >= freeb) { /* tranfer whole blocks while possible */
116 memcpy(((unsigned char *) ctx->wbuf) + pos, sp, freeb);
117 sp += freeb;
118 length -= freeb;
119 freeb = SHA1_BLOCK_SIZE;
120 pos = 0;
121 sha1_compile(ctx);
122 }
123
124 memcpy(((unsigned char *) ctx->wbuf) + pos, sp, length);
125 }
126
127 void *sha1_end(void *resbuf, sha1_ctx_t *ctx)
128 {
129 /* SHA1 Final padding and digest calculation */
130 #if BB_BIG_ENDIAN
131 static uint32_t mask[4] = { 0x00000000, 0xff000000, 0xffff0000, 0xffffff00 };
132 static uint32_t bits[4] = { 0x80000000, 0x00800000, 0x00008000, 0x00000080 };
133 #else
134 static uint32_t mask[4] = { 0x00000000, 0x000000ff, 0x0000ffff, 0x00ffffff };
135 static uint32_t bits[4] = { 0x00000080, 0x00008000, 0x00800000, 0x80000000 };
136 #endif
137
138 uint8_t *hval = resbuf;
139 uint32_t i, cnt = (uint32_t) (ctx->count[0] & SHA1_MASK);
140
141 /* mask out the rest of any partial 32-bit word and then set */
142 /* the next byte to 0x80. On big-endian machines any bytes in */
143 /* the buffer will be at the top end of 32 bit words, on little */
144 /* endian machines they will be at the bottom. Hence the AND */
145 /* and OR masks above are reversed for little endian systems */
146 ctx->wbuf[cnt >> 2] =
147 (ctx->wbuf[cnt >> 2] & mask[cnt & 3]) | bits[cnt & 3];
148
149 /* we need 9 or more empty positions, one for the padding byte */
150 /* (above) and eight for the length count. If there is not */
151 /* enough space pad and empty the buffer */
152 if (cnt > SHA1_BLOCK_SIZE - 9) {
153 if (cnt < 60)
154 ctx->wbuf[15] = 0;
155 sha1_compile(ctx);
156 cnt = 0;
157 } else /* compute a word index for the empty buffer positions */
158 cnt = (cnt >> 2) + 1;
159
160 while (cnt < 14) /* and zero pad all but last two positions */
161 ctx->wbuf[cnt++] = 0;
162
163 /* assemble the eight byte counter in the buffer in big-endian */
164 /* format */
165
166 ctx->wbuf[14] = htonl((ctx->count[1] << 3) | (ctx->count[0] >> 29));
167 ctx->wbuf[15] = htonl(ctx->count[0] << 3);
168
169 sha1_compile(ctx);
170
171 /* extract the hash value as bytes in case the hash buffer is */
172 /* misaligned for 32-bit words */
173
174 for (i = 0; i < SHA1_DIGEST_SIZE; ++i)
175 hval[i] = (unsigned char) (ctx->hash[i >> 2] >> 8 * (~i & 3));
176
177 return resbuf;
178 }