Magellan Linux

Contents of /trunk/mkinitrd-magellan/busybox/networking/ntpd.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 984 - (show annotations) (download)
Sun May 30 11:32:42 2010 UTC (13 years, 11 months ago) by niro
File MIME type: text/plain
File size: 71111 byte(s)
-updated to busybox-1.16.1 and enabled blkid/uuid support in default config
1 /*
2 * NTP client/server, based on OpenNTPD 3.9p1
3 *
4 * Author: Adam Tkac <vonsch@gmail.com>
5 *
6 * Licensed under GPLv2, see file LICENSE in this tarball for details.
7 *
8 * Parts of OpenNTPD clock syncronization code is replaced by
9 * code which is based on ntp-4.2.6, whuch carries the following
10 * copyright notice:
11 *
12 ***********************************************************************
13 * *
14 * Copyright (c) University of Delaware 1992-2009 *
15 * *
16 * Permission to use, copy, modify, and distribute this software and *
17 * its documentation for any purpose with or without fee is hereby *
18 * granted, provided that the above copyright notice appears in all *
19 * copies and that both the copyright notice and this permission *
20 * notice appear in supporting documentation, and that the name *
21 * University of Delaware not be used in advertising or publicity *
22 * pertaining to distribution of the software without specific, *
23 * written prior permission. The University of Delaware makes no *
24 * representations about the suitability this software for any *
25 * purpose. It is provided "as is" without express or implied *
26 * warranty. *
27 * *
28 ***********************************************************************
29 */
30 #include "libbb.h"
31 #include <math.h>
32 #include <netinet/ip.h> /* For IPTOS_LOWDELAY definition */
33 #include <sys/timex.h>
34 #ifndef IPTOS_LOWDELAY
35 # define IPTOS_LOWDELAY 0x10
36 #endif
37 #ifndef IP_PKTINFO
38 # error "Sorry, your kernel has to support IP_PKTINFO"
39 #endif
40
41
42 /* Verbosity control (max level of -dddd options accepted).
43 * max 5 is very talkative (and bloated). 2 is non-bloated,
44 * production level setting.
45 */
46 #define MAX_VERBOSE 2
47
48
49 /* High-level description of the algorithm:
50 *
51 * We start running with very small poll_exp, BURSTPOLL,
52 * in order to quickly accumulate INITIAL_SAMLPES datapoints
53 * for each peer. Then, time is stepped if the offset is larger
54 * than STEP_THRESHOLD, otherwise it isn't; anyway, we enlarge
55 * poll_exp to MINPOLL and enter frequency measurement step:
56 * we collect new datapoints but ignore them for WATCH_THRESHOLD
57 * seconds. After WATCH_THRESHOLD seconds we look at accumulated
58 * offset and estimate frequency drift.
59 *
60 * (frequency measurement step seems to not be strictly needed,
61 * it is conditionally disabled with USING_INITIAL_FREQ_ESTIMATION
62 * define set to 0)
63 *
64 * After this, we enter "steady state": we collect a datapoint,
65 * we select the best peer, if this datapoint is not a new one
66 * (IOW: if this datapoint isn't for selected peer), sleep
67 * and collect another one; otherwise, use its offset to update
68 * frequency drift, if offset is somewhat large, reduce poll_exp,
69 * otherwise increase poll_exp.
70 *
71 * If offset is larger than STEP_THRESHOLD, which shouldn't normally
72 * happen, we assume that something "bad" happened (computer
73 * was hibernated, someone set totally wrong date, etc),
74 * then the time is stepped, all datapoints are discarded,
75 * and we go back to steady state.
76 */
77
78 #define RETRY_INTERVAL 5 /* on error, retry in N secs */
79 #define RESPONSE_INTERVAL 15 /* wait for reply up to N secs */
80 #define INITIAL_SAMLPES 4 /* how many samples do we want for init */
81
82 /* Clock discipline parameters and constants */
83
84 /* Step threshold (sec). std ntpd uses 0.128.
85 * Using exact power of 2 (1/8) results in smaller code */
86 #define STEP_THRESHOLD 0.125
87 #define WATCH_THRESHOLD 128 /* stepout threshold (sec). std ntpd uses 900 (11 mins (!)) */
88 /* NB: set WATCH_THRESHOLD to ~60 when debugging to save time) */
89 //UNUSED: #define PANIC_THRESHOLD 1000 /* panic threshold (sec) */
90
91 #define FREQ_TOLERANCE 0.000015 /* frequency tolerance (15 PPM) */
92 #define BURSTPOLL 0 /* initial poll */
93 #define MINPOLL 5 /* minimum poll interval. std ntpd uses 6 (6: 64 sec) */
94 #define BIGPOLL 10 /* drop to lower poll at any trouble (10: 17 min) */
95 #define MAXPOLL 12 /* maximum poll interval (12: 1.1h, 17: 36.4h). std ntpd uses 17 */
96 /* Actively lower poll when we see such big offsets.
97 * With STEP_THRESHOLD = 0.125, it means we try to sync more aggressively
98 * if offset increases over 0.03 sec */
99 #define POLLDOWN_OFFSET (STEP_THRESHOLD / 4)
100 #define MINDISP 0.01 /* minimum dispersion (sec) */
101 #define MAXDISP 16 /* maximum dispersion (sec) */
102 #define MAXSTRAT 16 /* maximum stratum (infinity metric) */
103 #define MAXDIST 1 /* distance threshold (sec) */
104 #define MIN_SELECTED 1 /* minimum intersection survivors */
105 #define MIN_CLUSTERED 3 /* minimum cluster survivors */
106
107 #define MAXDRIFT 0.000500 /* frequency drift we can correct (500 PPM) */
108
109 /* Poll-adjust threshold.
110 * When we see that offset is small enough compared to discipline jitter,
111 * we grow a counter: += MINPOLL. When it goes over POLLADJ_LIMIT,
112 * we poll_exp++. If offset isn't small, counter -= poll_exp*2,
113 * and when it goes below -POLLADJ_LIMIT, we poll_exp--
114 * (bumped from 30 to 36 since otherwise I often see poll_exp going *2* steps down)
115 */
116 #define POLLADJ_LIMIT 36
117 /* If offset < POLLADJ_GATE * discipline_jitter, then we can increase
118 * poll interval (we think we can't improve timekeeping
119 * by staying at smaller poll).
120 */
121 #define POLLADJ_GATE 4
122 /* Compromise Allan intercept (sec). doc uses 1500, std ntpd uses 512 */
123 #define ALLAN 512
124 /* PLL loop gain */
125 #define PLL 65536
126 /* FLL loop gain [why it depends on MAXPOLL??] */
127 #define FLL (MAXPOLL + 1)
128 /* Parameter averaging constant */
129 #define AVG 4
130
131
132 enum {
133 NTP_VERSION = 4,
134 NTP_MAXSTRATUM = 15,
135
136 NTP_DIGESTSIZE = 16,
137 NTP_MSGSIZE_NOAUTH = 48,
138 NTP_MSGSIZE = (NTP_MSGSIZE_NOAUTH + 4 + NTP_DIGESTSIZE),
139
140 /* Status Masks */
141 MODE_MASK = (7 << 0),
142 VERSION_MASK = (7 << 3),
143 VERSION_SHIFT = 3,
144 LI_MASK = (3 << 6),
145
146 /* Leap Second Codes (high order two bits of m_status) */
147 LI_NOWARNING = (0 << 6), /* no warning */
148 LI_PLUSSEC = (1 << 6), /* add a second (61 seconds) */
149 LI_MINUSSEC = (2 << 6), /* minus a second (59 seconds) */
150 LI_ALARM = (3 << 6), /* alarm condition */
151
152 /* Mode values */
153 MODE_RES0 = 0, /* reserved */
154 MODE_SYM_ACT = 1, /* symmetric active */
155 MODE_SYM_PAS = 2, /* symmetric passive */
156 MODE_CLIENT = 3, /* client */
157 MODE_SERVER = 4, /* server */
158 MODE_BROADCAST = 5, /* broadcast */
159 MODE_RES1 = 6, /* reserved for NTP control message */
160 MODE_RES2 = 7, /* reserved for private use */
161 };
162
163 //TODO: better base selection
164 #define OFFSET_1900_1970 2208988800UL /* 1970 - 1900 in seconds */
165
166 #define NUM_DATAPOINTS 8
167
168 typedef struct {
169 uint32_t int_partl;
170 uint32_t fractionl;
171 } l_fixedpt_t;
172
173 typedef struct {
174 uint16_t int_parts;
175 uint16_t fractions;
176 } s_fixedpt_t;
177
178 typedef struct {
179 uint8_t m_status; /* status of local clock and leap info */
180 uint8_t m_stratum;
181 uint8_t m_ppoll; /* poll value */
182 int8_t m_precision_exp;
183 s_fixedpt_t m_rootdelay;
184 s_fixedpt_t m_rootdisp;
185 uint32_t m_refid;
186 l_fixedpt_t m_reftime;
187 l_fixedpt_t m_orgtime;
188 l_fixedpt_t m_rectime;
189 l_fixedpt_t m_xmttime;
190 uint32_t m_keyid;
191 uint8_t m_digest[NTP_DIGESTSIZE];
192 } msg_t;
193
194 typedef struct {
195 double d_recv_time;
196 double d_offset;
197 double d_dispersion;
198 } datapoint_t;
199
200 typedef struct {
201 len_and_sockaddr *p_lsa;
202 char *p_dotted;
203 /* when to send new query (if p_fd == -1)
204 * or when receive times out (if p_fd >= 0): */
205 int p_fd;
206 int datapoint_idx;
207 uint32_t lastpkt_refid;
208 uint8_t lastpkt_status;
209 uint8_t lastpkt_stratum;
210 uint8_t reachable_bits;
211 double next_action_time;
212 double p_xmttime;
213 double lastpkt_recv_time;
214 double lastpkt_delay;
215 double lastpkt_rootdelay;
216 double lastpkt_rootdisp;
217 /* produced by filter algorithm: */
218 double filter_offset;
219 double filter_dispersion;
220 double filter_jitter;
221 datapoint_t filter_datapoint[NUM_DATAPOINTS];
222 /* last sent packet: */
223 msg_t p_xmt_msg;
224 } peer_t;
225
226
227 #define USING_KERNEL_PLL_LOOP 1
228 #define USING_INITIAL_FREQ_ESTIMATION 0
229
230 enum {
231 OPT_n = (1 << 0),
232 OPT_q = (1 << 1),
233 OPT_N = (1 << 2),
234 OPT_x = (1 << 3),
235 /* Insert new options above this line. */
236 /* Non-compat options: */
237 OPT_w = (1 << 4),
238 OPT_p = (1 << 5),
239 OPT_S = (1 << 6),
240 OPT_l = (1 << 7) * ENABLE_FEATURE_NTPD_SERVER,
241 };
242
243 struct globals {
244 double cur_time;
245 /* total round trip delay to currently selected reference clock */
246 double rootdelay;
247 /* reference timestamp: time when the system clock was last set or corrected */
248 double reftime;
249 /* total dispersion to currently selected reference clock */
250 double rootdisp;
251
252 double last_script_run;
253 char *script_name;
254 llist_t *ntp_peers;
255 #if ENABLE_FEATURE_NTPD_SERVER
256 int listen_fd;
257 #endif
258 unsigned verbose;
259 unsigned peer_cnt;
260 /* refid: 32-bit code identifying the particular server or reference clock
261 * in stratum 0 packets this is a four-character ASCII string,
262 * called the kiss code, used for debugging and monitoring
263 * in stratum 1 packets this is a four-character ASCII string
264 * assigned to the reference clock by IANA. Example: "GPS "
265 * in stratum 2+ packets, it's IPv4 address or 4 first bytes of MD5 hash of IPv6
266 */
267 uint32_t refid;
268 uint8_t ntp_status;
269 /* precision is defined as the larger of the resolution and time to
270 * read the clock, in log2 units. For instance, the precision of a
271 * mains-frequency clock incrementing at 60 Hz is 16 ms, even when the
272 * system clock hardware representation is to the nanosecond.
273 *
274 * Delays, jitters of various kinds are clamper down to precision.
275 *
276 * If precision_sec is too large, discipline_jitter gets clamped to it
277 * and if offset is much smaller than discipline_jitter, poll interval
278 * grows even though we really can benefit from staying at smaller one,
279 * collecting non-lagged datapoits and correcting the offset.
280 * (Lagged datapoits exist when poll_exp is large but we still have
281 * systematic offset error - the time distance between datapoints
282 * is significat and older datapoints have smaller offsets.
283 * This makes our offset estimation a bit smaller than reality)
284 * Due to this effect, setting G_precision_sec close to
285 * STEP_THRESHOLD isn't such a good idea - offsets may grow
286 * too big and we will step. I observed it with -6.
287 *
288 * OTOH, setting precision too small would result in futile attempts
289 * to syncronize to the unachievable precision.
290 *
291 * -6 is 1/64 sec, -7 is 1/128 sec and so on.
292 */
293 #define G_precision_exp -8
294 #define G_precision_sec (1.0 / (1 << (- G_precision_exp)))
295 uint8_t stratum;
296 /* Bool. After set to 1, never goes back to 0: */
297 smallint initial_poll_complete;
298
299 #define STATE_NSET 0 /* initial state, "nothing is set" */
300 //#define STATE_FSET 1 /* frequency set from file */
301 #define STATE_SPIK 2 /* spike detected */
302 //#define STATE_FREQ 3 /* initial frequency */
303 #define STATE_SYNC 4 /* clock synchronized (normal operation) */
304 uint8_t discipline_state; // doc calls it c.state
305 uint8_t poll_exp; // s.poll
306 int polladj_count; // c.count
307 long kernel_freq_drift;
308 peer_t *last_update_peer;
309 double last_update_offset; // c.last
310 double last_update_recv_time; // s.t
311 double discipline_jitter; // c.jitter
312 //double cluster_offset; // s.offset
313 //double cluster_jitter; // s.jitter
314 #if !USING_KERNEL_PLL_LOOP
315 double discipline_freq_drift; // c.freq
316 /* Maybe conditionally calculate wander? it's used only for logging */
317 double discipline_wander; // c.wander
318 #endif
319 };
320 #define G (*ptr_to_globals)
321
322 static const int const_IPTOS_LOWDELAY = IPTOS_LOWDELAY;
323
324
325 #define VERB1 if (MAX_VERBOSE && G.verbose)
326 #define VERB2 if (MAX_VERBOSE >= 2 && G.verbose >= 2)
327 #define VERB3 if (MAX_VERBOSE >= 3 && G.verbose >= 3)
328 #define VERB4 if (MAX_VERBOSE >= 4 && G.verbose >= 4)
329 #define VERB5 if (MAX_VERBOSE >= 5 && G.verbose >= 5)
330
331
332 static double LOG2D(int a)
333 {
334 if (a < 0)
335 return 1.0 / (1UL << -a);
336 return 1UL << a;
337 }
338 static ALWAYS_INLINE double SQUARE(double x)
339 {
340 return x * x;
341 }
342 static ALWAYS_INLINE double MAXD(double a, double b)
343 {
344 if (a > b)
345 return a;
346 return b;
347 }
348 static ALWAYS_INLINE double MIND(double a, double b)
349 {
350 if (a < b)
351 return a;
352 return b;
353 }
354 static NOINLINE double my_SQRT(double X)
355 {
356 union {
357 float f;
358 int32_t i;
359 } v;
360 double invsqrt;
361 double Xhalf = X * 0.5;
362
363 /* Fast and good approximation to 1/sqrt(X), black magic */
364 v.f = X;
365 /*v.i = 0x5f3759df - (v.i >> 1);*/
366 v.i = 0x5f375a86 - (v.i >> 1); /* - this constant is slightly better */
367 invsqrt = v.f; /* better than 0.2% accuracy */
368
369 /* Refining it using Newton's method: x1 = x0 - f(x0)/f'(x0)
370 * f(x) = 1/(x*x) - X (f==0 when x = 1/sqrt(X))
371 * f'(x) = -2/(x*x*x)
372 * f(x)/f'(x) = (X - 1/(x*x)) / (2/(x*x*x)) = X*x*x*x/2 - x/2
373 * x1 = x0 - (X*x0*x0*x0/2 - x0/2) = 1.5*x0 - X*x0*x0*x0/2 = x0*(1.5 - (X/2)*x0*x0)
374 */
375 invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); /* ~0.05% accuracy */
376 /* invsqrt = invsqrt * (1.5 - Xhalf * invsqrt * invsqrt); 2nd iter: ~0.0001% accuracy */
377 /* With 4 iterations, more than half results will be exact,
378 * at 6th iterations result stabilizes with about 72% results exact.
379 * We are well satisfied with 0.05% accuracy.
380 */
381
382 return X * invsqrt; /* X * 1/sqrt(X) ~= sqrt(X) */
383 }
384 static ALWAYS_INLINE double SQRT(double X)
385 {
386 /* If this arch doesn't use IEEE 754 floats, fall back to using libm */
387 if (sizeof(float) != 4)
388 return sqrt(X);
389
390 /* This avoids needing libm, saves about 0.5k on x86-32 */
391 return my_SQRT(X);
392 }
393
394 static double
395 gettime1900d(void)
396 {
397 struct timeval tv;
398 gettimeofday(&tv, NULL); /* never fails */
399 G.cur_time = tv.tv_sec + (1.0e-6 * tv.tv_usec) + OFFSET_1900_1970;
400 return G.cur_time;
401 }
402
403 static void
404 d_to_tv(double d, struct timeval *tv)
405 {
406 tv->tv_sec = (long)d;
407 tv->tv_usec = (d - tv->tv_sec) * 1000000;
408 }
409
410 static double
411 lfp_to_d(l_fixedpt_t lfp)
412 {
413 double ret;
414 lfp.int_partl = ntohl(lfp.int_partl);
415 lfp.fractionl = ntohl(lfp.fractionl);
416 ret = (double)lfp.int_partl + ((double)lfp.fractionl / UINT_MAX);
417 return ret;
418 }
419 static double
420 sfp_to_d(s_fixedpt_t sfp)
421 {
422 double ret;
423 sfp.int_parts = ntohs(sfp.int_parts);
424 sfp.fractions = ntohs(sfp.fractions);
425 ret = (double)sfp.int_parts + ((double)sfp.fractions / USHRT_MAX);
426 return ret;
427 }
428 #if ENABLE_FEATURE_NTPD_SERVER
429 static l_fixedpt_t
430 d_to_lfp(double d)
431 {
432 l_fixedpt_t lfp;
433 lfp.int_partl = (uint32_t)d;
434 lfp.fractionl = (uint32_t)((d - lfp.int_partl) * UINT_MAX);
435 lfp.int_partl = htonl(lfp.int_partl);
436 lfp.fractionl = htonl(lfp.fractionl);
437 return lfp;
438 }
439 static s_fixedpt_t
440 d_to_sfp(double d)
441 {
442 s_fixedpt_t sfp;
443 sfp.int_parts = (uint16_t)d;
444 sfp.fractions = (uint16_t)((d - sfp.int_parts) * USHRT_MAX);
445 sfp.int_parts = htons(sfp.int_parts);
446 sfp.fractions = htons(sfp.fractions);
447 return sfp;
448 }
449 #endif
450
451 static double
452 dispersion(const datapoint_t *dp)
453 {
454 return dp->d_dispersion + FREQ_TOLERANCE * (G.cur_time - dp->d_recv_time);
455 }
456
457 static double
458 root_distance(peer_t *p)
459 {
460 /* The root synchronization distance is the maximum error due to
461 * all causes of the local clock relative to the primary server.
462 * It is defined as half the total delay plus total dispersion
463 * plus peer jitter.
464 */
465 return MAXD(MINDISP, p->lastpkt_rootdelay + p->lastpkt_delay) / 2
466 + p->lastpkt_rootdisp
467 + p->filter_dispersion
468 + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time)
469 + p->filter_jitter;
470 }
471
472 static void
473 set_next(peer_t *p, unsigned t)
474 {
475 p->next_action_time = G.cur_time + t;
476 }
477
478 /*
479 * Peer clock filter and its helpers
480 */
481 static void
482 filter_datapoints(peer_t *p)
483 {
484 int i, idx;
485 int got_newest;
486 double minoff, maxoff, wavg, sum, w;
487 double x = x; /* for compiler */
488 double oldest_off = oldest_off;
489 double oldest_age = oldest_age;
490 double newest_off = newest_off;
491 double newest_age = newest_age;
492
493 minoff = maxoff = p->filter_datapoint[0].d_offset;
494 for (i = 1; i < NUM_DATAPOINTS; i++) {
495 if (minoff > p->filter_datapoint[i].d_offset)
496 minoff = p->filter_datapoint[i].d_offset;
497 if (maxoff < p->filter_datapoint[i].d_offset)
498 maxoff = p->filter_datapoint[i].d_offset;
499 }
500
501 idx = p->datapoint_idx; /* most recent datapoint */
502 /* Average offset:
503 * Drop two outliers and take weighted average of the rest:
504 * most_recent/2 + older1/4 + older2/8 ... + older5/32 + older6/32
505 * we use older6/32, not older6/64 since sum of weights should be 1:
506 * 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/32 = 1
507 */
508 wavg = 0;
509 w = 0.5;
510 /* n-1
511 * --- dispersion(i)
512 * filter_dispersion = \ -------------
513 * / (i+1)
514 * --- 2
515 * i=0
516 */
517 got_newest = 0;
518 sum = 0;
519 for (i = 0; i < NUM_DATAPOINTS; i++) {
520 VERB4 {
521 bb_error_msg("datapoint[%d]: off:%f disp:%f(%f) age:%f%s",
522 i,
523 p->filter_datapoint[idx].d_offset,
524 p->filter_datapoint[idx].d_dispersion, dispersion(&p->filter_datapoint[idx]),
525 G.cur_time - p->filter_datapoint[idx].d_recv_time,
526 (minoff == p->filter_datapoint[idx].d_offset || maxoff == p->filter_datapoint[idx].d_offset)
527 ? " (outlier by offset)" : ""
528 );
529 }
530
531 sum += dispersion(&p->filter_datapoint[idx]) / (2 << i);
532
533 if (minoff == p->filter_datapoint[idx].d_offset) {
534 minoff -= 1; /* so that we don't match it ever again */
535 } else
536 if (maxoff == p->filter_datapoint[idx].d_offset) {
537 maxoff += 1;
538 } else {
539 oldest_off = p->filter_datapoint[idx].d_offset;
540 oldest_age = G.cur_time - p->filter_datapoint[idx].d_recv_time;
541 if (!got_newest) {
542 got_newest = 1;
543 newest_off = oldest_off;
544 newest_age = oldest_age;
545 }
546 x = oldest_off * w;
547 wavg += x;
548 w /= 2;
549 }
550
551 idx = (idx - 1) & (NUM_DATAPOINTS - 1);
552 }
553 p->filter_dispersion = sum;
554 wavg += x; /* add another older6/64 to form older6/32 */
555 /* Fix systematic underestimation with large poll intervals.
556 * Imagine that we still have a bit of uncorrected drift,
557 * and poll interval is big (say, 100 sec). Offsets form a progression:
558 * 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 - 0.7 is most recent.
559 * The algorithm above drops 0.0 and 0.7 as outliers,
560 * and then we have this estimation, ~25% off from 0.7:
561 * 0.1/32 + 0.2/32 + 0.3/16 + 0.4/8 + 0.5/4 + 0.6/2 = 0.503125
562 */
563 x = oldest_age - newest_age;
564 if (x != 0) {
565 x = newest_age / x; /* in above example, 100 / (600 - 100) */
566 if (x < 1) { /* paranoia check */
567 x = (newest_off - oldest_off) * x; /* 0.5 * 100/500 = 0.1 */
568 wavg += x;
569 }
570 }
571 p->filter_offset = wavg;
572
573 /* +----- -----+ ^ 1/2
574 * | n-1 |
575 * | --- |
576 * | 1 \ 2 |
577 * filter_jitter = | --- * / (avg-offset_j) |
578 * | n --- |
579 * | j=0 |
580 * +----- -----+
581 * where n is the number of valid datapoints in the filter (n > 1);
582 * if filter_jitter < precision then filter_jitter = precision
583 */
584 sum = 0;
585 for (i = 0; i < NUM_DATAPOINTS; i++) {
586 sum += SQUARE(wavg - p->filter_datapoint[i].d_offset);
587 }
588 sum = SQRT(sum / NUM_DATAPOINTS);
589 p->filter_jitter = sum > G_precision_sec ? sum : G_precision_sec;
590
591 VERB3 bb_error_msg("filter offset:%f(corr:%e) disp:%f jitter:%f",
592 p->filter_offset, x,
593 p->filter_dispersion,
594 p->filter_jitter);
595
596 }
597
598 static void
599 reset_peer_stats(peer_t *p, double offset)
600 {
601 int i;
602 bool small_ofs = fabs(offset) < 16 * STEP_THRESHOLD;
603
604 for (i = 0; i < NUM_DATAPOINTS; i++) {
605 if (small_ofs) {
606 p->filter_datapoint[i].d_recv_time -= offset;
607 if (p->filter_datapoint[i].d_offset != 0) {
608 p->filter_datapoint[i].d_offset -= offset;
609 }
610 } else {
611 p->filter_datapoint[i].d_recv_time = G.cur_time;
612 p->filter_datapoint[i].d_offset = 0;
613 p->filter_datapoint[i].d_dispersion = MAXDISP;
614 }
615 }
616 if (small_ofs) {
617 p->lastpkt_recv_time -= offset;
618 } else {
619 p->reachable_bits = 0;
620 p->lastpkt_recv_time = G.cur_time;
621 }
622 filter_datapoints(p); /* recalc p->filter_xxx */
623 p->next_action_time -= offset;
624 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
625 }
626
627 static void
628 add_peers(char *s)
629 {
630 peer_t *p;
631
632 p = xzalloc(sizeof(*p));
633 p->p_lsa = xhost2sockaddr(s, 123);
634 p->p_dotted = xmalloc_sockaddr2dotted_noport(&p->p_lsa->u.sa);
635 p->p_fd = -1;
636 p->p_xmt_msg.m_status = MODE_CLIENT | (NTP_VERSION << 3);
637 p->next_action_time = G.cur_time; /* = set_next(p, 0); */
638 reset_peer_stats(p, 16 * STEP_THRESHOLD);
639
640 llist_add_to(&G.ntp_peers, p);
641 G.peer_cnt++;
642 }
643
644 static int
645 do_sendto(int fd,
646 const struct sockaddr *from, const struct sockaddr *to, socklen_t addrlen,
647 msg_t *msg, ssize_t len)
648 {
649 ssize_t ret;
650
651 errno = 0;
652 if (!from) {
653 ret = sendto(fd, msg, len, MSG_DONTWAIT, to, addrlen);
654 } else {
655 ret = send_to_from(fd, msg, len, MSG_DONTWAIT, to, from, addrlen);
656 }
657 if (ret != len) {
658 bb_perror_msg("send failed");
659 return -1;
660 }
661 return 0;
662 }
663
664 static void
665 send_query_to_peer(peer_t *p)
666 {
667 /* Why do we need to bind()?
668 * See what happens when we don't bind:
669 *
670 * socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 3
671 * setsockopt(3, SOL_IP, IP_TOS, [16], 4) = 0
672 * gettimeofday({1259071266, 327885}, NULL) = 0
673 * sendto(3, "xxx", 48, MSG_DONTWAIT, {sa_family=AF_INET, sin_port=htons(123), sin_addr=inet_addr("10.34.32.125")}, 16) = 48
674 * ^^^ we sent it from some source port picked by kernel.
675 * time(NULL) = 1259071266
676 * write(2, "ntpd: entering poll 15 secs\n", 28) = 28
677 * poll([{fd=3, events=POLLIN}], 1, 15000) = 1 ([{fd=3, revents=POLLIN}])
678 * recv(3, "yyy", 68, MSG_DONTWAIT) = 48
679 * ^^^ this recv will receive packets to any local port!
680 *
681 * Uncomment this and use strace to see it in action:
682 */
683 #define PROBE_LOCAL_ADDR /* { len_and_sockaddr lsa; lsa.len = LSA_SIZEOF_SA; getsockname(p->query.fd, &lsa.u.sa, &lsa.len); } */
684
685 if (p->p_fd == -1) {
686 int fd, family;
687 len_and_sockaddr *local_lsa;
688
689 family = p->p_lsa->u.sa.sa_family;
690 p->p_fd = fd = xsocket_type(&local_lsa, family, SOCK_DGRAM);
691 /* local_lsa has "null" address and port 0 now.
692 * bind() ensures we have a *particular port* selected by kernel
693 * and remembered in p->p_fd, thus later recv(p->p_fd)
694 * receives only packets sent to this port.
695 */
696 PROBE_LOCAL_ADDR
697 xbind(fd, &local_lsa->u.sa, local_lsa->len);
698 PROBE_LOCAL_ADDR
699 #if ENABLE_FEATURE_IPV6
700 if (family == AF_INET)
701 #endif
702 setsockopt(fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
703 free(local_lsa);
704 }
705
706 /*
707 * Send out a random 64-bit number as our transmit time. The NTP
708 * server will copy said number into the originate field on the
709 * response that it sends us. This is totally legal per the SNTP spec.
710 *
711 * The impact of this is two fold: we no longer send out the current
712 * system time for the world to see (which may aid an attacker), and
713 * it gives us a (not very secure) way of knowing that we're not
714 * getting spoofed by an attacker that can't capture our traffic
715 * but can spoof packets from the NTP server we're communicating with.
716 *
717 * Save the real transmit timestamp locally.
718 */
719 p->p_xmt_msg.m_xmttime.int_partl = random();
720 p->p_xmt_msg.m_xmttime.fractionl = random();
721 p->p_xmttime = gettime1900d();
722
723 if (do_sendto(p->p_fd, /*from:*/ NULL, /*to:*/ &p->p_lsa->u.sa, /*addrlen:*/ p->p_lsa->len,
724 &p->p_xmt_msg, NTP_MSGSIZE_NOAUTH) == -1
725 ) {
726 close(p->p_fd);
727 p->p_fd = -1;
728 set_next(p, RETRY_INTERVAL);
729 return;
730 }
731
732 p->reachable_bits <<= 1;
733 VERB1 bb_error_msg("sent query to %s", p->p_dotted);
734 set_next(p, RESPONSE_INTERVAL);
735 }
736
737
738 /* Note that there is no provision to prevent several run_scripts
739 * to be done in quick succession. In fact, it happens rather often
740 * if initial syncronization results in a step.
741 * You will see "step" and then "stratum" script runs, sometimes
742 * as close as only 0.002 seconds apart.
743 * Script should be ready to deal with this.
744 */
745 static void run_script(const char *action, double offset)
746 {
747 char *argv[3];
748 char *env1, *env2, *env3, *env4;
749
750 if (!G.script_name)
751 return;
752
753 argv[0] = (char*) G.script_name;
754 argv[1] = (char*) action;
755 argv[2] = NULL;
756
757 VERB1 bb_error_msg("executing '%s %s'", G.script_name, action);
758
759 env1 = xasprintf("%s=%u", "stratum", G.stratum);
760 putenv(env1);
761 env2 = xasprintf("%s=%ld", "freq_drift_ppm", G.kernel_freq_drift);
762 putenv(env2);
763 env3 = xasprintf("%s=%u", "poll_interval", 1 << G.poll_exp);
764 putenv(env3);
765 env4 = xasprintf("%s=%f", "offset", offset);
766 putenv(env4);
767 /* Other items of potential interest: selected peer,
768 * rootdelay, reftime, rootdisp, refid, ntp_status,
769 * last_update_offset, last_update_recv_time, discipline_jitter,
770 * how many peers have reachable_bits = 0?
771 */
772
773 /* Don't want to wait: it may run hwclock --systohc, and that
774 * may take some time (seconds): */
775 /*wait4pid(spawn(argv));*/
776 spawn(argv);
777
778 unsetenv("stratum");
779 unsetenv("freq_drift_ppm");
780 unsetenv("poll_interval");
781 unsetenv("offset");
782 free(env1);
783 free(env2);
784 free(env3);
785 free(env4);
786
787 G.last_script_run = G.cur_time;
788 }
789
790 static NOINLINE void
791 step_time(double offset)
792 {
793 llist_t *item;
794 double dtime;
795 struct timeval tv;
796 char buf[80];
797 time_t tval;
798
799 gettimeofday(&tv, NULL); /* never fails */
800 dtime = offset + tv.tv_sec;
801 dtime += 1.0e-6 * tv.tv_usec;
802 d_to_tv(dtime, &tv);
803
804 if (settimeofday(&tv, NULL) == -1)
805 bb_perror_msg_and_die("settimeofday");
806
807 tval = tv.tv_sec;
808 strftime(buf, sizeof(buf), "%a %b %e %H:%M:%S %Z %Y", localtime(&tval));
809
810 bb_error_msg("setting clock to %s (offset %fs)", buf, offset);
811
812 /* Correct various fields which contain time-relative values: */
813
814 /* p->lastpkt_recv_time, p->next_action_time and such: */
815 for (item = G.ntp_peers; item != NULL; item = item->link) {
816 peer_t *pp = (peer_t *) item->data;
817 reset_peer_stats(pp, offset);
818 }
819 /* Globals: */
820 G.cur_time -= offset;
821 G.last_update_recv_time -= offset;
822 G.last_script_run -= offset;
823 }
824
825
826 /*
827 * Selection and clustering, and their helpers
828 */
829 typedef struct {
830 peer_t *p;
831 int type;
832 double edge;
833 double opt_rd; /* optimization */
834 } point_t;
835 static int
836 compare_point_edge(const void *aa, const void *bb)
837 {
838 const point_t *a = aa;
839 const point_t *b = bb;
840 if (a->edge < b->edge) {
841 return -1;
842 }
843 return (a->edge > b->edge);
844 }
845 typedef struct {
846 peer_t *p;
847 double metric;
848 } survivor_t;
849 static int
850 compare_survivor_metric(const void *aa, const void *bb)
851 {
852 const survivor_t *a = aa;
853 const survivor_t *b = bb;
854 if (a->metric < b->metric) {
855 return -1;
856 }
857 return (a->metric > b->metric);
858 }
859 static int
860 fit(peer_t *p, double rd)
861 {
862 if ((p->reachable_bits & (p->reachable_bits-1)) == 0) {
863 /* One or zero bits in reachable_bits */
864 VERB3 bb_error_msg("peer %s unfit for selection: unreachable", p->p_dotted);
865 return 0;
866 }
867 #if 0 /* we filter out such packets earlier */
868 if ((p->lastpkt_status & LI_ALARM) == LI_ALARM
869 || p->lastpkt_stratum >= MAXSTRAT
870 ) {
871 VERB3 bb_error_msg("peer %s unfit for selection: bad status/stratum", p->p_dotted);
872 return 0;
873 }
874 #endif
875 /* rd is root_distance(p) */
876 if (rd > MAXDIST + FREQ_TOLERANCE * (1 << G.poll_exp)) {
877 VERB3 bb_error_msg("peer %s unfit for selection: root distance too high", p->p_dotted);
878 return 0;
879 }
880 //TODO
881 // /* Do we have a loop? */
882 // if (p->refid == p->dstaddr || p->refid == s.refid)
883 // return 0;
884 return 1;
885 }
886 static peer_t*
887 select_and_cluster(void)
888 {
889 peer_t *p;
890 llist_t *item;
891 int i, j;
892 int size = 3 * G.peer_cnt;
893 /* for selection algorithm */
894 point_t point[size];
895 unsigned num_points, num_candidates;
896 double low, high;
897 unsigned num_falsetickers;
898 /* for cluster algorithm */
899 survivor_t survivor[size];
900 unsigned num_survivors;
901
902 /* Selection */
903
904 num_points = 0;
905 item = G.ntp_peers;
906 if (G.initial_poll_complete) while (item != NULL) {
907 double rd, offset;
908
909 p = (peer_t *) item->data;
910 rd = root_distance(p);
911 offset = p->filter_offset;
912 if (!fit(p, rd)) {
913 item = item->link;
914 continue;
915 }
916
917 VERB4 bb_error_msg("interval: [%f %f %f] %s",
918 offset - rd,
919 offset,
920 offset + rd,
921 p->p_dotted
922 );
923 point[num_points].p = p;
924 point[num_points].type = -1;
925 point[num_points].edge = offset - rd;
926 point[num_points].opt_rd = rd;
927 num_points++;
928 point[num_points].p = p;
929 point[num_points].type = 0;
930 point[num_points].edge = offset;
931 point[num_points].opt_rd = rd;
932 num_points++;
933 point[num_points].p = p;
934 point[num_points].type = 1;
935 point[num_points].edge = offset + rd;
936 point[num_points].opt_rd = rd;
937 num_points++;
938 item = item->link;
939 }
940 num_candidates = num_points / 3;
941 if (num_candidates == 0) {
942 VERB3 bb_error_msg("no valid datapoints, no peer selected");
943 return NULL;
944 }
945 //TODO: sorting does not seem to be done in reference code
946 qsort(point, num_points, sizeof(point[0]), compare_point_edge);
947
948 /* Start with the assumption that there are no falsetickers.
949 * Attempt to find a nonempty intersection interval containing
950 * the midpoints of all truechimers.
951 * If a nonempty interval cannot be found, increase the number
952 * of assumed falsetickers by one and try again.
953 * If a nonempty interval is found and the number of falsetickers
954 * is less than the number of truechimers, a majority has been found
955 * and the midpoint of each truechimer represents
956 * the candidates available to the cluster algorithm.
957 */
958 num_falsetickers = 0;
959 while (1) {
960 int c;
961 unsigned num_midpoints = 0;
962
963 low = 1 << 9;
964 high = - (1 << 9);
965 c = 0;
966 for (i = 0; i < num_points; i++) {
967 /* We want to do:
968 * if (point[i].type == -1) c++;
969 * if (point[i].type == 1) c--;
970 * and it's simpler to do it this way:
971 */
972 c -= point[i].type;
973 if (c >= num_candidates - num_falsetickers) {
974 /* If it was c++ and it got big enough... */
975 low = point[i].edge;
976 break;
977 }
978 if (point[i].type == 0)
979 num_midpoints++;
980 }
981 c = 0;
982 for (i = num_points-1; i >= 0; i--) {
983 c += point[i].type;
984 if (c >= num_candidates - num_falsetickers) {
985 high = point[i].edge;
986 break;
987 }
988 if (point[i].type == 0)
989 num_midpoints++;
990 }
991 /* If the number of midpoints is greater than the number
992 * of allowed falsetickers, the intersection contains at
993 * least one truechimer with no midpoint - bad.
994 * Also, interval should be nonempty.
995 */
996 if (num_midpoints <= num_falsetickers && low < high)
997 break;
998 num_falsetickers++;
999 if (num_falsetickers * 2 >= num_candidates) {
1000 VERB3 bb_error_msg("too many falsetickers:%d (candidates:%d), no peer selected",
1001 num_falsetickers, num_candidates);
1002 return NULL;
1003 }
1004 }
1005 VERB3 bb_error_msg("selected interval: [%f, %f]; candidates:%d falsetickers:%d",
1006 low, high, num_candidates, num_falsetickers);
1007
1008 /* Clustering */
1009
1010 /* Construct a list of survivors (p, metric)
1011 * from the chime list, where metric is dominated
1012 * first by stratum and then by root distance.
1013 * All other things being equal, this is the order of preference.
1014 */
1015 num_survivors = 0;
1016 for (i = 0; i < num_points; i++) {
1017 if (point[i].edge < low || point[i].edge > high)
1018 continue;
1019 p = point[i].p;
1020 survivor[num_survivors].p = p;
1021 /* x.opt_rd == root_distance(p); */
1022 survivor[num_survivors].metric = MAXDIST * p->lastpkt_stratum + point[i].opt_rd;
1023 VERB4 bb_error_msg("survivor[%d] metric:%f peer:%s",
1024 num_survivors, survivor[num_survivors].metric, p->p_dotted);
1025 num_survivors++;
1026 }
1027 /* There must be at least MIN_SELECTED survivors to satisfy the
1028 * correctness assertions. Ordinarily, the Byzantine criteria
1029 * require four survivors, but for the demonstration here, one
1030 * is acceptable.
1031 */
1032 if (num_survivors < MIN_SELECTED) {
1033 VERB3 bb_error_msg("num_survivors %d < %d, no peer selected",
1034 num_survivors, MIN_SELECTED);
1035 return NULL;
1036 }
1037
1038 //looks like this is ONLY used by the fact that later we pick survivor[0].
1039 //we can avoid sorting then, just find the minimum once!
1040 qsort(survivor, num_survivors, sizeof(survivor[0]), compare_survivor_metric);
1041
1042 /* For each association p in turn, calculate the selection
1043 * jitter p->sjitter as the square root of the sum of squares
1044 * (p->offset - q->offset) over all q associations. The idea is
1045 * to repeatedly discard the survivor with maximum selection
1046 * jitter until a termination condition is met.
1047 */
1048 while (1) {
1049 unsigned max_idx = max_idx;
1050 double max_selection_jitter = max_selection_jitter;
1051 double min_jitter = min_jitter;
1052
1053 if (num_survivors <= MIN_CLUSTERED) {
1054 VERB3 bb_error_msg("num_survivors %d <= %d, not discarding more",
1055 num_survivors, MIN_CLUSTERED);
1056 break;
1057 }
1058
1059 /* To make sure a few survivors are left
1060 * for the clustering algorithm to chew on,
1061 * we stop if the number of survivors
1062 * is less than or equal to MIN_CLUSTERED (3).
1063 */
1064 for (i = 0; i < num_survivors; i++) {
1065 double selection_jitter_sq;
1066
1067 p = survivor[i].p;
1068 if (i == 0 || p->filter_jitter < min_jitter)
1069 min_jitter = p->filter_jitter;
1070
1071 selection_jitter_sq = 0;
1072 for (j = 0; j < num_survivors; j++) {
1073 peer_t *q = survivor[j].p;
1074 selection_jitter_sq += SQUARE(p->filter_offset - q->filter_offset);
1075 }
1076 if (i == 0 || selection_jitter_sq > max_selection_jitter) {
1077 max_selection_jitter = selection_jitter_sq;
1078 max_idx = i;
1079 }
1080 VERB5 bb_error_msg("survivor %d selection_jitter^2:%f",
1081 i, selection_jitter_sq);
1082 }
1083 max_selection_jitter = SQRT(max_selection_jitter / num_survivors);
1084 VERB4 bb_error_msg("max_selection_jitter (at %d):%f min_jitter:%f",
1085 max_idx, max_selection_jitter, min_jitter);
1086
1087 /* If the maximum selection jitter is less than the
1088 * minimum peer jitter, then tossing out more survivors
1089 * will not lower the minimum peer jitter, so we might
1090 * as well stop.
1091 */
1092 if (max_selection_jitter < min_jitter) {
1093 VERB3 bb_error_msg("max_selection_jitter:%f < min_jitter:%f, num_survivors:%d, not discarding more",
1094 max_selection_jitter, min_jitter, num_survivors);
1095 break;
1096 }
1097
1098 /* Delete survivor[max_idx] from the list
1099 * and go around again.
1100 */
1101 VERB5 bb_error_msg("dropping survivor %d", max_idx);
1102 num_survivors--;
1103 while (max_idx < num_survivors) {
1104 survivor[max_idx] = survivor[max_idx + 1];
1105 max_idx++;
1106 }
1107 }
1108
1109 if (0) {
1110 /* Combine the offsets of the clustering algorithm survivors
1111 * using a weighted average with weight determined by the root
1112 * distance. Compute the selection jitter as the weighted RMS
1113 * difference between the first survivor and the remaining
1114 * survivors. In some cases the inherent clock jitter can be
1115 * reduced by not using this algorithm, especially when frequent
1116 * clockhopping is involved. bbox: thus we don't do it.
1117 */
1118 double x, y, z, w;
1119 y = z = w = 0;
1120 for (i = 0; i < num_survivors; i++) {
1121 p = survivor[i].p;
1122 x = root_distance(p);
1123 y += 1 / x;
1124 z += p->filter_offset / x;
1125 w += SQUARE(p->filter_offset - survivor[0].p->filter_offset) / x;
1126 }
1127 //G.cluster_offset = z / y;
1128 //G.cluster_jitter = SQRT(w / y);
1129 }
1130
1131 /* Pick the best clock. If the old system peer is on the list
1132 * and at the same stratum as the first survivor on the list,
1133 * then don't do a clock hop. Otherwise, select the first
1134 * survivor on the list as the new system peer.
1135 */
1136 p = survivor[0].p;
1137 if (G.last_update_peer
1138 && G.last_update_peer->lastpkt_stratum <= p->lastpkt_stratum
1139 ) {
1140 /* Starting from 1 is ok here */
1141 for (i = 1; i < num_survivors; i++) {
1142 if (G.last_update_peer == survivor[i].p) {
1143 VERB4 bb_error_msg("keeping old synced peer");
1144 p = G.last_update_peer;
1145 goto keep_old;
1146 }
1147 }
1148 }
1149 G.last_update_peer = p;
1150 keep_old:
1151 VERB3 bb_error_msg("selected peer %s filter_offset:%f age:%f",
1152 p->p_dotted,
1153 p->filter_offset,
1154 G.cur_time - p->lastpkt_recv_time
1155 );
1156 return p;
1157 }
1158
1159
1160 /*
1161 * Local clock discipline and its helpers
1162 */
1163 static void
1164 set_new_values(int disc_state, double offset, double recv_time)
1165 {
1166 /* Enter new state and set state variables. Note we use the time
1167 * of the last clock filter sample, which must be earlier than
1168 * the current time.
1169 */
1170 VERB3 bb_error_msg("disc_state=%d last update offset=%f recv_time=%f",
1171 disc_state, offset, recv_time);
1172 G.discipline_state = disc_state;
1173 G.last_update_offset = offset;
1174 G.last_update_recv_time = recv_time;
1175 }
1176 /* Return: -1: decrease poll interval, 0: leave as is, 1: increase */
1177 static NOINLINE int
1178 update_local_clock(peer_t *p)
1179 {
1180 int rc;
1181 struct timex tmx;
1182 /* Note: can use G.cluster_offset instead: */
1183 double offset = p->filter_offset;
1184 double recv_time = p->lastpkt_recv_time;
1185 double abs_offset;
1186 #if !USING_KERNEL_PLL_LOOP
1187 double freq_drift;
1188 #endif
1189 double since_last_update;
1190 double etemp, dtemp;
1191
1192 abs_offset = fabs(offset);
1193
1194 #if 0
1195 /* If needed, -S script can do it by looking at $offset
1196 * env var and killing parent */
1197 /* If the offset is too large, give up and go home */
1198 if (abs_offset > PANIC_THRESHOLD) {
1199 bb_error_msg_and_die("offset %f far too big, exiting", offset);
1200 }
1201 #endif
1202
1203 /* If this is an old update, for instance as the result
1204 * of a system peer change, avoid it. We never use
1205 * an old sample or the same sample twice.
1206 */
1207 if (recv_time <= G.last_update_recv_time) {
1208 VERB3 bb_error_msg("same or older datapoint: %f >= %f, not using it",
1209 G.last_update_recv_time, recv_time);
1210 return 0; /* "leave poll interval as is" */
1211 }
1212
1213 /* Clock state machine transition function. This is where the
1214 * action is and defines how the system reacts to large time
1215 * and frequency errors.
1216 */
1217 since_last_update = recv_time - G.reftime;
1218 #if !USING_KERNEL_PLL_LOOP
1219 freq_drift = 0;
1220 #endif
1221 #if USING_INITIAL_FREQ_ESTIMATION
1222 if (G.discipline_state == STATE_FREQ) {
1223 /* Ignore updates until the stepout threshold */
1224 if (since_last_update < WATCH_THRESHOLD) {
1225 VERB3 bb_error_msg("measuring drift, datapoint ignored, %f sec remains",
1226 WATCH_THRESHOLD - since_last_update);
1227 return 0; /* "leave poll interval as is" */
1228 }
1229 # if !USING_KERNEL_PLL_LOOP
1230 freq_drift = (offset - G.last_update_offset) / since_last_update;
1231 # endif
1232 }
1233 #endif
1234
1235 /* There are two main regimes: when the
1236 * offset exceeds the step threshold and when it does not.
1237 */
1238 if (abs_offset > STEP_THRESHOLD) {
1239 switch (G.discipline_state) {
1240 case STATE_SYNC:
1241 /* The first outlyer: ignore it, switch to SPIK state */
1242 VERB3 bb_error_msg("offset:%f - spike detected", offset);
1243 G.discipline_state = STATE_SPIK;
1244 return -1; /* "decrease poll interval" */
1245
1246 case STATE_SPIK:
1247 /* Ignore succeeding outlyers until either an inlyer
1248 * is found or the stepout threshold is exceeded.
1249 */
1250 if (since_last_update < WATCH_THRESHOLD) {
1251 VERB3 bb_error_msg("spike detected, datapoint ignored, %f sec remains",
1252 WATCH_THRESHOLD - since_last_update);
1253 return -1; /* "decrease poll interval" */
1254 }
1255 /* fall through: we need to step */
1256 } /* switch */
1257
1258 /* Step the time and clamp down the poll interval.
1259 *
1260 * In NSET state an initial frequency correction is
1261 * not available, usually because the frequency file has
1262 * not yet been written. Since the time is outside the
1263 * capture range, the clock is stepped. The frequency
1264 * will be set directly following the stepout interval.
1265 *
1266 * In FSET state the initial frequency has been set
1267 * from the frequency file. Since the time is outside
1268 * the capture range, the clock is stepped immediately,
1269 * rather than after the stepout interval. Guys get
1270 * nervous if it takes 17 minutes to set the clock for
1271 * the first time.
1272 *
1273 * In SPIK state the stepout threshold has expired and
1274 * the phase is still above the step threshold. Note
1275 * that a single spike greater than the step threshold
1276 * is always suppressed, even at the longer poll
1277 * intervals.
1278 */
1279 VERB3 bb_error_msg("stepping time by %f; poll_exp=MINPOLL", offset);
1280 step_time(offset);
1281 if (option_mask32 & OPT_q) {
1282 /* We were only asked to set time once. Done. */
1283 exit(0);
1284 }
1285
1286 G.polladj_count = 0;
1287 G.poll_exp = MINPOLL;
1288 G.stratum = MAXSTRAT;
1289
1290 run_script("step", offset);
1291
1292 #if USING_INITIAL_FREQ_ESTIMATION
1293 if (G.discipline_state == STATE_NSET) {
1294 set_new_values(STATE_FREQ, /*offset:*/ 0, recv_time);
1295 return 1; /* "ok to increase poll interval" */
1296 }
1297 #endif
1298 set_new_values(STATE_SYNC, /*offset:*/ 0, recv_time);
1299
1300 } else { /* abs_offset <= STEP_THRESHOLD */
1301
1302 if (G.poll_exp < MINPOLL && G.initial_poll_complete) {
1303 VERB3 bb_error_msg("small offset:%f, disabling burst mode", offset);
1304 G.polladj_count = 0;
1305 G.poll_exp = MINPOLL;
1306 }
1307
1308 /* Compute the clock jitter as the RMS of exponentially
1309 * weighted offset differences. Used by the poll adjust code.
1310 */
1311 etemp = SQUARE(G.discipline_jitter);
1312 dtemp = SQUARE(MAXD(fabs(offset - G.last_update_offset), G_precision_sec));
1313 G.discipline_jitter = SQRT(etemp + (dtemp - etemp) / AVG);
1314 VERB3 bb_error_msg("discipline jitter=%f", G.discipline_jitter);
1315
1316 switch (G.discipline_state) {
1317 case STATE_NSET:
1318 if (option_mask32 & OPT_q) {
1319 /* We were only asked to set time once.
1320 * The clock is precise enough, no need to step.
1321 */
1322 exit(0);
1323 }
1324 #if USING_INITIAL_FREQ_ESTIMATION
1325 /* This is the first update received and the frequency
1326 * has not been initialized. The first thing to do
1327 * is directly measure the oscillator frequency.
1328 */
1329 set_new_values(STATE_FREQ, offset, recv_time);
1330 #else
1331 set_new_values(STATE_SYNC, offset, recv_time);
1332 #endif
1333 VERB3 bb_error_msg("transitioning to FREQ, datapoint ignored");
1334 return 0; /* "leave poll interval as is" */
1335
1336 #if 0 /* this is dead code for now */
1337 case STATE_FSET:
1338 /* This is the first update and the frequency
1339 * has been initialized. Adjust the phase, but
1340 * don't adjust the frequency until the next update.
1341 */
1342 set_new_values(STATE_SYNC, offset, recv_time);
1343 /* freq_drift remains 0 */
1344 break;
1345 #endif
1346
1347 #if USING_INITIAL_FREQ_ESTIMATION
1348 case STATE_FREQ:
1349 /* since_last_update >= WATCH_THRESHOLD, we waited enough.
1350 * Correct the phase and frequency and switch to SYNC state.
1351 * freq_drift was already estimated (see code above)
1352 */
1353 set_new_values(STATE_SYNC, offset, recv_time);
1354 break;
1355 #endif
1356
1357 default:
1358 #if !USING_KERNEL_PLL_LOOP
1359 /* Compute freq_drift due to PLL and FLL contributions.
1360 *
1361 * The FLL and PLL frequency gain constants
1362 * depend on the poll interval and Allan
1363 * intercept. The FLL is not used below one-half
1364 * the Allan intercept. Above that the loop gain
1365 * increases in steps to 1 / AVG.
1366 */
1367 if ((1 << G.poll_exp) > ALLAN / 2) {
1368 etemp = FLL - G.poll_exp;
1369 if (etemp < AVG)
1370 etemp = AVG;
1371 freq_drift += (offset - G.last_update_offset) / (MAXD(since_last_update, ALLAN) * etemp);
1372 }
1373 /* For the PLL the integration interval
1374 * (numerator) is the minimum of the update
1375 * interval and poll interval. This allows
1376 * oversampling, but not undersampling.
1377 */
1378 etemp = MIND(since_last_update, (1 << G.poll_exp));
1379 dtemp = (4 * PLL) << G.poll_exp;
1380 freq_drift += offset * etemp / SQUARE(dtemp);
1381 #endif
1382 set_new_values(STATE_SYNC, offset, recv_time);
1383 break;
1384 }
1385 if (G.stratum != p->lastpkt_stratum + 1) {
1386 G.stratum = p->lastpkt_stratum + 1;
1387 run_script("stratum", offset);
1388 }
1389 }
1390
1391 G.reftime = G.cur_time;
1392 G.ntp_status = p->lastpkt_status;
1393 G.refid = p->lastpkt_refid;
1394 G.rootdelay = p->lastpkt_rootdelay + p->lastpkt_delay;
1395 dtemp = p->filter_jitter; // SQRT(SQUARE(p->filter_jitter) + SQUARE(G.cluster_jitter));
1396 dtemp += MAXD(p->filter_dispersion + FREQ_TOLERANCE * (G.cur_time - p->lastpkt_recv_time) + abs_offset, MINDISP);
1397 G.rootdisp = p->lastpkt_rootdisp + dtemp;
1398 VERB3 bb_error_msg("updating leap/refid/reftime/rootdisp from peer %s", p->p_dotted);
1399
1400 /* We are in STATE_SYNC now, but did not do adjtimex yet.
1401 * (Any other state does not reach this, they all return earlier)
1402 * By this time, freq_drift and G.last_update_offset are set
1403 * to values suitable for adjtimex.
1404 */
1405 #if !USING_KERNEL_PLL_LOOP
1406 /* Calculate the new frequency drift and frequency stability (wander).
1407 * Compute the clock wander as the RMS of exponentially weighted
1408 * frequency differences. This is not used directly, but can,
1409 * along with the jitter, be a highly useful monitoring and
1410 * debugging tool.
1411 */
1412 dtemp = G.discipline_freq_drift + freq_drift;
1413 G.discipline_freq_drift = MAXD(MIND(MAXDRIFT, dtemp), -MAXDRIFT);
1414 etemp = SQUARE(G.discipline_wander);
1415 dtemp = SQUARE(dtemp);
1416 G.discipline_wander = SQRT(etemp + (dtemp - etemp) / AVG);
1417
1418 VERB3 bb_error_msg("discipline freq_drift=%.9f(int:%ld corr:%e) wander=%f",
1419 G.discipline_freq_drift,
1420 (long)(G.discipline_freq_drift * 65536e6),
1421 freq_drift,
1422 G.discipline_wander);
1423 #endif
1424 VERB3 {
1425 memset(&tmx, 0, sizeof(tmx));
1426 if (adjtimex(&tmx) < 0)
1427 bb_perror_msg_and_die("adjtimex");
1428 VERB3 bb_error_msg("p adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1429 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1430 }
1431
1432 memset(&tmx, 0, sizeof(tmx));
1433 #if 0
1434 //doesn't work, offset remains 0 (!) in kernel:
1435 //ntpd: set adjtimex freq:1786097 tmx.offset:77487
1436 //ntpd: prev adjtimex freq:1786097 tmx.offset:0
1437 //ntpd: cur adjtimex freq:1786097 tmx.offset:0
1438 tmx.modes = ADJ_FREQUENCY | ADJ_OFFSET;
1439 /* 65536 is one ppm */
1440 tmx.freq = G.discipline_freq_drift * 65536e6;
1441 tmx.offset = G.last_update_offset * 1000000; /* usec */
1442 #endif
1443 tmx.modes = ADJ_OFFSET | ADJ_STATUS | ADJ_TIMECONST;// | ADJ_MAXERROR | ADJ_ESTERROR;
1444 tmx.offset = (G.last_update_offset * 1000000); /* usec */
1445 /* + (G.last_update_offset < 0 ? -0.5 : 0.5) - too small to bother */
1446 tmx.status = STA_PLL;
1447 if (G.ntp_status & LI_PLUSSEC)
1448 tmx.status |= STA_INS;
1449 if (G.ntp_status & LI_MINUSSEC)
1450 tmx.status |= STA_DEL;
1451 tmx.constant = G.poll_exp - 4;
1452 //tmx.esterror = (u_int32)(clock_jitter * 1e6);
1453 //tmx.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
1454 rc = adjtimex(&tmx);
1455 if (rc < 0)
1456 bb_perror_msg_and_die("adjtimex");
1457 /* NB: here kernel returns constant == G.poll_exp, not == G.poll_exp - 4.
1458 * Not sure why. Perhaps it is normal.
1459 */
1460 VERB3 bb_error_msg("adjtimex:%d freq:%ld offset:%ld constant:%ld status:0x%x",
1461 rc, tmx.freq, tmx.offset, tmx.constant, tmx.status);
1462 #if 0
1463 VERB3 {
1464 /* always gives the same output as above msg */
1465 memset(&tmx, 0, sizeof(tmx));
1466 if (adjtimex(&tmx) < 0)
1467 bb_perror_msg_and_die("adjtimex");
1468 VERB3 bb_error_msg("c adjtimex freq:%ld offset:%ld constant:%ld status:0x%x",
1469 tmx.freq, tmx.offset, tmx.constant, tmx.status);
1470 }
1471 #endif
1472 G.kernel_freq_drift = tmx.freq / 65536;
1473 VERB2 bb_error_msg("update peer:%s, offset:%f, clock drift:%ld ppm",
1474 p->p_dotted, G.last_update_offset, G.kernel_freq_drift);
1475
1476 return 1; /* "ok to increase poll interval" */
1477 }
1478
1479
1480 /*
1481 * We've got a new reply packet from a peer, process it
1482 * (helpers first)
1483 */
1484 static unsigned
1485 retry_interval(void)
1486 {
1487 /* Local problem, want to retry soon */
1488 unsigned interval, r;
1489 interval = RETRY_INTERVAL;
1490 r = random();
1491 interval += r % (unsigned)(RETRY_INTERVAL / 4);
1492 VERB3 bb_error_msg("chose retry interval:%u", interval);
1493 return interval;
1494 }
1495 static unsigned
1496 poll_interval(int exponent)
1497 {
1498 unsigned interval, r;
1499 exponent = G.poll_exp + exponent;
1500 if (exponent < 0)
1501 exponent = 0;
1502 interval = 1 << exponent;
1503 r = random();
1504 interval += ((r & (interval-1)) >> 4) + ((r >> 8) & 1); /* + 1/16 of interval, max */
1505 VERB3 bb_error_msg("chose poll interval:%u (poll_exp:%d exp:%d)", interval, G.poll_exp, exponent);
1506 return interval;
1507 }
1508 static NOINLINE void
1509 recv_and_process_peer_pkt(peer_t *p)
1510 {
1511 int rc;
1512 ssize_t size;
1513 msg_t msg;
1514 double T1, T2, T3, T4;
1515 unsigned interval;
1516 datapoint_t *datapoint;
1517 peer_t *q;
1518
1519 /* We can recvfrom here and check from.IP, but some multihomed
1520 * ntp servers reply from their *other IP*.
1521 * TODO: maybe we should check at least what we can: from.port == 123?
1522 */
1523 size = recv(p->p_fd, &msg, sizeof(msg), MSG_DONTWAIT);
1524 if (size == -1) {
1525 bb_perror_msg("recv(%s) error", p->p_dotted);
1526 if (errno == EHOSTUNREACH || errno == EHOSTDOWN
1527 || errno == ENETUNREACH || errno == ENETDOWN
1528 || errno == ECONNREFUSED || errno == EADDRNOTAVAIL
1529 || errno == EAGAIN
1530 ) {
1531 //TODO: always do this?
1532 interval = retry_interval();
1533 goto set_next_and_close_sock;
1534 }
1535 xfunc_die();
1536 }
1537
1538 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1539 bb_error_msg("malformed packet received from %s", p->p_dotted);
1540 goto bail;
1541 }
1542
1543 if (msg.m_orgtime.int_partl != p->p_xmt_msg.m_xmttime.int_partl
1544 || msg.m_orgtime.fractionl != p->p_xmt_msg.m_xmttime.fractionl
1545 ) {
1546 goto bail;
1547 }
1548
1549 if ((msg.m_status & LI_ALARM) == LI_ALARM
1550 || msg.m_stratum == 0
1551 || msg.m_stratum > NTP_MAXSTRATUM
1552 ) {
1553 // TODO: stratum 0 responses may have commands in 32-bit m_refid field:
1554 // "DENY", "RSTR" - peer does not like us at all
1555 // "RATE" - peer is overloaded, reduce polling freq
1556 interval = poll_interval(0);
1557 bb_error_msg("reply from %s: not synced, next query in %us", p->p_dotted, interval);
1558 goto set_next_and_close_sock;
1559 }
1560
1561 // /* Verify valid root distance */
1562 // if (msg.m_rootdelay / 2 + msg.m_rootdisp >= MAXDISP || p->lastpkt_reftime > msg.m_xmt)
1563 // return; /* invalid header values */
1564
1565 p->lastpkt_status = msg.m_status;
1566 p->lastpkt_stratum = msg.m_stratum;
1567 p->lastpkt_rootdelay = sfp_to_d(msg.m_rootdelay);
1568 p->lastpkt_rootdisp = sfp_to_d(msg.m_rootdisp);
1569 p->lastpkt_refid = msg.m_refid;
1570
1571 /*
1572 * From RFC 2030 (with a correction to the delay math):
1573 *
1574 * Timestamp Name ID When Generated
1575 * ------------------------------------------------------------
1576 * Originate Timestamp T1 time request sent by client
1577 * Receive Timestamp T2 time request received by server
1578 * Transmit Timestamp T3 time reply sent by server
1579 * Destination Timestamp T4 time reply received by client
1580 *
1581 * The roundtrip delay and local clock offset are defined as
1582 *
1583 * delay = (T4 - T1) - (T3 - T2); offset = ((T2 - T1) + (T3 - T4)) / 2
1584 */
1585 T1 = p->p_xmttime;
1586 T2 = lfp_to_d(msg.m_rectime);
1587 T3 = lfp_to_d(msg.m_xmttime);
1588 T4 = G.cur_time;
1589
1590 p->lastpkt_recv_time = T4;
1591
1592 VERB5 bb_error_msg("%s->lastpkt_recv_time=%f", p->p_dotted, p->lastpkt_recv_time);
1593 p->datapoint_idx = p->reachable_bits ? (p->datapoint_idx + 1) % NUM_DATAPOINTS : 0;
1594 datapoint = &p->filter_datapoint[p->datapoint_idx];
1595 datapoint->d_recv_time = T4;
1596 datapoint->d_offset = ((T2 - T1) + (T3 - T4)) / 2;
1597 /* The delay calculation is a special case. In cases where the
1598 * server and client clocks are running at different rates and
1599 * with very fast networks, the delay can appear negative. In
1600 * order to avoid violating the Principle of Least Astonishment,
1601 * the delay is clamped not less than the system precision.
1602 */
1603 p->lastpkt_delay = (T4 - T1) - (T3 - T2);
1604 if (p->lastpkt_delay < G_precision_sec)
1605 p->lastpkt_delay = G_precision_sec;
1606 datapoint->d_dispersion = LOG2D(msg.m_precision_exp) + G_precision_sec;
1607 if (!p->reachable_bits) {
1608 /* 1st datapoint ever - replicate offset in every element */
1609 int i;
1610 for (i = 1; i < NUM_DATAPOINTS; i++) {
1611 p->filter_datapoint[i].d_offset = datapoint->d_offset;
1612 }
1613 }
1614
1615 p->reachable_bits |= 1;
1616 if ((MAX_VERBOSE && G.verbose) || (option_mask32 & OPT_w)) {
1617 bb_error_msg("reply from %s: reach 0x%02x offset %f delay %f status 0x%02x strat %d refid 0x%08x rootdelay %f",
1618 p->p_dotted,
1619 p->reachable_bits,
1620 datapoint->d_offset,
1621 p->lastpkt_delay,
1622 p->lastpkt_status,
1623 p->lastpkt_stratum,
1624 p->lastpkt_refid,
1625 p->lastpkt_rootdelay
1626 /* not shown: m_ppoll, m_precision_exp, m_rootdisp,
1627 * m_reftime, m_orgtime, m_rectime, m_xmttime
1628 */
1629 );
1630 }
1631
1632 /* Muck with statictics and update the clock */
1633 filter_datapoints(p);
1634 q = select_and_cluster();
1635 rc = -1;
1636 if (q) {
1637 rc = 0;
1638 if (!(option_mask32 & OPT_w)) {
1639 rc = update_local_clock(q);
1640 /* If drift is dangerously large, immediately
1641 * drop poll interval one step down.
1642 */
1643 if (fabs(q->filter_offset) >= POLLDOWN_OFFSET) {
1644 VERB3 bb_error_msg("offset:%f > POLLDOWN_OFFSET", q->filter_offset);
1645 goto poll_down;
1646 }
1647 }
1648 }
1649 /* else: no peer selected, rc = -1: we want to poll more often */
1650
1651 if (rc != 0) {
1652 /* Adjust the poll interval by comparing the current offset
1653 * with the clock jitter. If the offset is less than
1654 * the clock jitter times a constant, then the averaging interval
1655 * is increased, otherwise it is decreased. A bit of hysteresis
1656 * helps calm the dance. Works best using burst mode.
1657 */
1658 VERB4 if (rc > 0) {
1659 bb_error_msg("offset:%f POLLADJ_GATE*discipline_jitter:%f poll:%s",
1660 q->filter_offset, POLLADJ_GATE * G.discipline_jitter,
1661 fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter
1662 ? "grows" : "falls"
1663 );
1664 }
1665 if (rc > 0 && fabs(q->filter_offset) < POLLADJ_GATE * G.discipline_jitter) {
1666 /* was += G.poll_exp but it is a bit
1667 * too optimistic for my taste at high poll_exp's */
1668 G.polladj_count += MINPOLL;
1669 if (G.polladj_count > POLLADJ_LIMIT) {
1670 G.polladj_count = 0;
1671 if (G.poll_exp < MAXPOLL) {
1672 G.poll_exp++;
1673 VERB3 bb_error_msg("polladj: discipline_jitter:%f ++poll_exp=%d",
1674 G.discipline_jitter, G.poll_exp);
1675 }
1676 } else {
1677 VERB3 bb_error_msg("polladj: incr:%d", G.polladj_count);
1678 }
1679 } else {
1680 G.polladj_count -= G.poll_exp * 2;
1681 if (G.polladj_count < -POLLADJ_LIMIT || G.poll_exp >= BIGPOLL) {
1682 poll_down:
1683 G.polladj_count = 0;
1684 if (G.poll_exp > MINPOLL) {
1685 llist_t *item;
1686
1687 G.poll_exp--;
1688 /* Correct p->next_action_time in each peer
1689 * which waits for sending, so that they send earlier.
1690 * Old pp->next_action_time are on the order
1691 * of t + (1 << old_poll_exp) + small_random,
1692 * we simply need to subtract ~half of that.
1693 */
1694 for (item = G.ntp_peers; item != NULL; item = item->link) {
1695 peer_t *pp = (peer_t *) item->data;
1696 if (pp->p_fd < 0)
1697 pp->next_action_time -= (1 << G.poll_exp);
1698 }
1699 VERB3 bb_error_msg("polladj: discipline_jitter:%f --poll_exp=%d",
1700 G.discipline_jitter, G.poll_exp);
1701 }
1702 } else {
1703 VERB3 bb_error_msg("polladj: decr:%d", G.polladj_count);
1704 }
1705 }
1706 }
1707
1708 /* Decide when to send new query for this peer */
1709 interval = poll_interval(0);
1710
1711 set_next_and_close_sock:
1712 set_next(p, interval);
1713 /* We do not expect any more packets from this peer for now.
1714 * Closing the socket informs kernel about it.
1715 * We open a new socket when we send a new query.
1716 */
1717 close(p->p_fd);
1718 p->p_fd = -1;
1719 bail:
1720 return;
1721 }
1722
1723 #if ENABLE_FEATURE_NTPD_SERVER
1724 static NOINLINE void
1725 recv_and_process_client_pkt(void /*int fd*/)
1726 {
1727 ssize_t size;
1728 uint8_t version;
1729 len_and_sockaddr *to;
1730 struct sockaddr *from;
1731 msg_t msg;
1732 uint8_t query_status;
1733 l_fixedpt_t query_xmttime;
1734
1735 to = get_sock_lsa(G.listen_fd);
1736 from = xzalloc(to->len);
1737
1738 size = recv_from_to(G.listen_fd, &msg, sizeof(msg), MSG_DONTWAIT, from, &to->u.sa, to->len);
1739 if (size != NTP_MSGSIZE_NOAUTH && size != NTP_MSGSIZE) {
1740 char *addr;
1741 if (size < 0) {
1742 if (errno == EAGAIN)
1743 goto bail;
1744 bb_perror_msg_and_die("recv");
1745 }
1746 addr = xmalloc_sockaddr2dotted_noport(from);
1747 bb_error_msg("malformed packet received from %s: size %u", addr, (int)size);
1748 free(addr);
1749 goto bail;
1750 }
1751
1752 query_status = msg.m_status;
1753 query_xmttime = msg.m_xmttime;
1754
1755 /* Build a reply packet */
1756 memset(&msg, 0, sizeof(msg));
1757 msg.m_status = G.stratum < MAXSTRAT ? G.ntp_status : LI_ALARM;
1758 msg.m_status |= (query_status & VERSION_MASK);
1759 msg.m_status |= ((query_status & MODE_MASK) == MODE_CLIENT) ?
1760 MODE_SERVER : MODE_SYM_PAS;
1761 msg.m_stratum = G.stratum;
1762 msg.m_ppoll = G.poll_exp;
1763 msg.m_precision_exp = G_precision_exp;
1764 /* this time was obtained between poll() and recv() */
1765 msg.m_rectime = d_to_lfp(G.cur_time);
1766 msg.m_xmttime = d_to_lfp(gettime1900d()); /* this instant */
1767 msg.m_reftime = d_to_lfp(G.reftime);
1768 msg.m_orgtime = query_xmttime;
1769 msg.m_rootdelay = d_to_sfp(G.rootdelay);
1770 //simple code does not do this, fix simple code!
1771 msg.m_rootdisp = d_to_sfp(G.rootdisp);
1772 version = (query_status & VERSION_MASK); /* ... >> VERSION_SHIFT - done below instead */
1773 msg.m_refid = G.refid; // (version > (3 << VERSION_SHIFT)) ? G.refid : G.refid3;
1774
1775 /* We reply from the local address packet was sent to,
1776 * this makes to/from look swapped here: */
1777 do_sendto(G.listen_fd,
1778 /*from:*/ &to->u.sa, /*to:*/ from, /*addrlen:*/ to->len,
1779 &msg, size);
1780
1781 bail:
1782 free(to);
1783 free(from);
1784 }
1785 #endif
1786
1787 /* Upstream ntpd's options:
1788 *
1789 * -4 Force DNS resolution of host names to the IPv4 namespace.
1790 * -6 Force DNS resolution of host names to the IPv6 namespace.
1791 * -a Require cryptographic authentication for broadcast client,
1792 * multicast client and symmetric passive associations.
1793 * This is the default.
1794 * -A Do not require cryptographic authentication for broadcast client,
1795 * multicast client and symmetric passive associations.
1796 * This is almost never a good idea.
1797 * -b Enable the client to synchronize to broadcast servers.
1798 * -c conffile
1799 * Specify the name and path of the configuration file,
1800 * default /etc/ntp.conf
1801 * -d Specify debugging mode. This option may occur more than once,
1802 * with each occurrence indicating greater detail of display.
1803 * -D level
1804 * Specify debugging level directly.
1805 * -f driftfile
1806 * Specify the name and path of the frequency file.
1807 * This is the same operation as the "driftfile FILE"
1808 * configuration command.
1809 * -g Normally, ntpd exits with a message to the system log
1810 * if the offset exceeds the panic threshold, which is 1000 s
1811 * by default. This option allows the time to be set to any value
1812 * without restriction; however, this can happen only once.
1813 * If the threshold is exceeded after that, ntpd will exit
1814 * with a message to the system log. This option can be used
1815 * with the -q and -x options. See the tinker command for other options.
1816 * -i jaildir
1817 * Chroot the server to the directory jaildir. This option also implies
1818 * that the server attempts to drop root privileges at startup
1819 * (otherwise, chroot gives very little additional security).
1820 * You may need to also specify a -u option.
1821 * -k keyfile
1822 * Specify the name and path of the symmetric key file,
1823 * default /etc/ntp/keys. This is the same operation
1824 * as the "keys FILE" configuration command.
1825 * -l logfile
1826 * Specify the name and path of the log file. The default
1827 * is the system log file. This is the same operation as
1828 * the "logfile FILE" configuration command.
1829 * -L Do not listen to virtual IPs. The default is to listen.
1830 * -n Don't fork.
1831 * -N To the extent permitted by the operating system,
1832 * run the ntpd at the highest priority.
1833 * -p pidfile
1834 * Specify the name and path of the file used to record the ntpd
1835 * process ID. This is the same operation as the "pidfile FILE"
1836 * configuration command.
1837 * -P priority
1838 * To the extent permitted by the operating system,
1839 * run the ntpd at the specified priority.
1840 * -q Exit the ntpd just after the first time the clock is set.
1841 * This behavior mimics that of the ntpdate program, which is
1842 * to be retired. The -g and -x options can be used with this option.
1843 * Note: The kernel time discipline is disabled with this option.
1844 * -r broadcastdelay
1845 * Specify the default propagation delay from the broadcast/multicast
1846 * server to this client. This is necessary only if the delay
1847 * cannot be computed automatically by the protocol.
1848 * -s statsdir
1849 * Specify the directory path for files created by the statistics
1850 * facility. This is the same operation as the "statsdir DIR"
1851 * configuration command.
1852 * -t key
1853 * Add a key number to the trusted key list. This option can occur
1854 * more than once.
1855 * -u user[:group]
1856 * Specify a user, and optionally a group, to switch to.
1857 * -v variable
1858 * -V variable
1859 * Add a system variable listed by default.
1860 * -x Normally, the time is slewed if the offset is less than the step
1861 * threshold, which is 128 ms by default, and stepped if above
1862 * the threshold. This option sets the threshold to 600 s, which is
1863 * well within the accuracy window to set the clock manually.
1864 * Note: since the slew rate of typical Unix kernels is limited
1865 * to 0.5 ms/s, each second of adjustment requires an amortization
1866 * interval of 2000 s. Thus, an adjustment as much as 600 s
1867 * will take almost 14 days to complete. This option can be used
1868 * with the -g and -q options. See the tinker command for other options.
1869 * Note: The kernel time discipline is disabled with this option.
1870 */
1871
1872 /* By doing init in a separate function we decrease stack usage
1873 * in main loop.
1874 */
1875 static NOINLINE void ntp_init(char **argv)
1876 {
1877 unsigned opts;
1878 llist_t *peers;
1879
1880 srandom(getpid());
1881
1882 if (getuid())
1883 bb_error_msg_and_die(bb_msg_you_must_be_root);
1884
1885 /* Set some globals */
1886 G.stratum = MAXSTRAT;
1887 if (BURSTPOLL != 0)
1888 G.poll_exp = BURSTPOLL; /* speeds up initial sync */
1889 G.last_script_run = G.reftime = G.last_update_recv_time = gettime1900d(); /* sets G.cur_time too */
1890
1891 /* Parse options */
1892 peers = NULL;
1893 opt_complementary = "dd:p::wn"; /* d: counter; p: list; -w implies -n */
1894 opts = getopt32(argv,
1895 "nqNx" /* compat */
1896 "wp:S:"IF_FEATURE_NTPD_SERVER("l") /* NOT compat */
1897 "d" /* compat */
1898 "46aAbgL", /* compat, ignored */
1899 &peers, &G.script_name, &G.verbose);
1900 if (!(opts & (OPT_p|OPT_l)))
1901 bb_show_usage();
1902 // if (opts & OPT_x) /* disable stepping, only slew is allowed */
1903 // G.time_was_stepped = 1;
1904 while (peers)
1905 add_peers(llist_pop(&peers));
1906 if (!(opts & OPT_n)) {
1907 bb_daemonize_or_rexec(DAEMON_DEVNULL_STDIO, argv);
1908 logmode = LOGMODE_NONE;
1909 }
1910 #if ENABLE_FEATURE_NTPD_SERVER
1911 G.listen_fd = -1;
1912 if (opts & OPT_l) {
1913 G.listen_fd = create_and_bind_dgram_or_die(NULL, 123);
1914 socket_want_pktinfo(G.listen_fd);
1915 setsockopt(G.listen_fd, IPPROTO_IP, IP_TOS, &const_IPTOS_LOWDELAY, sizeof(const_IPTOS_LOWDELAY));
1916 }
1917 #endif
1918 /* I hesitate to set -20 prio. -15 should be high enough for timekeeping */
1919 if (opts & OPT_N)
1920 setpriority(PRIO_PROCESS, 0, -15);
1921
1922 bb_signals((1 << SIGTERM) | (1 << SIGINT), record_signo);
1923 /* Removed SIGHUP here: */
1924 bb_signals((1 << SIGPIPE) | (1 << SIGCHLD), SIG_IGN);
1925 }
1926
1927 int ntpd_main(int argc UNUSED_PARAM, char **argv) MAIN_EXTERNALLY_VISIBLE;
1928 int ntpd_main(int argc UNUSED_PARAM, char **argv)
1929 {
1930 #undef G
1931 struct globals G;
1932 struct pollfd *pfd;
1933 peer_t **idx2peer;
1934 unsigned cnt;
1935
1936 memset(&G, 0, sizeof(G));
1937 SET_PTR_TO_GLOBALS(&G);
1938
1939 ntp_init(argv);
1940
1941 /* If ENABLE_FEATURE_NTPD_SERVER, + 1 for listen_fd: */
1942 cnt = G.peer_cnt + ENABLE_FEATURE_NTPD_SERVER;
1943 idx2peer = xzalloc(sizeof(idx2peer[0]) * cnt);
1944 pfd = xzalloc(sizeof(pfd[0]) * cnt);
1945
1946 /* Countdown: we never sync before we sent INITIAL_SAMLPES+1
1947 * packets to each peer.
1948 * NB: if some peer is not responding, we may end up sending
1949 * fewer packets to it and more to other peers.
1950 * NB2: sync usually happens using INITIAL_SAMLPES packets,
1951 * since last reply does not come back instantaneously.
1952 */
1953 cnt = G.peer_cnt * (INITIAL_SAMLPES + 1);
1954
1955 while (!bb_got_signal) {
1956 llist_t *item;
1957 unsigned i, j;
1958 int nfds, timeout;
1959 double nextaction;
1960
1961 /* Nothing between here and poll() blocks for any significant time */
1962
1963 nextaction = G.cur_time + 3600;
1964
1965 i = 0;
1966 #if ENABLE_FEATURE_NTPD_SERVER
1967 if (G.listen_fd != -1) {
1968 pfd[0].fd = G.listen_fd;
1969 pfd[0].events = POLLIN;
1970 i++;
1971 }
1972 #endif
1973 /* Pass over peer list, send requests, time out on receives */
1974 for (item = G.ntp_peers; item != NULL; item = item->link) {
1975 peer_t *p = (peer_t *) item->data;
1976
1977 if (p->next_action_time <= G.cur_time) {
1978 if (p->p_fd == -1) {
1979 /* Time to send new req */
1980 if (--cnt == 0) {
1981 G.initial_poll_complete = 1;
1982 }
1983 send_query_to_peer(p);
1984 } else {
1985 /* Timed out waiting for reply */
1986 close(p->p_fd);
1987 p->p_fd = -1;
1988 timeout = poll_interval(-2); /* -2: try a bit sooner */
1989 bb_error_msg("timed out waiting for %s, reach 0x%02x, next query in %us",
1990 p->p_dotted, p->reachable_bits, timeout);
1991 set_next(p, timeout);
1992 }
1993 }
1994
1995 if (p->next_action_time < nextaction)
1996 nextaction = p->next_action_time;
1997
1998 if (p->p_fd >= 0) {
1999 /* Wait for reply from this peer */
2000 pfd[i].fd = p->p_fd;
2001 pfd[i].events = POLLIN;
2002 idx2peer[i] = p;
2003 i++;
2004 }
2005 }
2006
2007 timeout = nextaction - G.cur_time;
2008 if (timeout < 0)
2009 timeout = 0;
2010 timeout++; /* (nextaction - G.cur_time) rounds down, compensating */
2011
2012 /* Here we may block */
2013 VERB2 bb_error_msg("poll %us, sockets:%u, poll interval:%us", timeout, i, 1 << G.poll_exp);
2014 nfds = poll(pfd, i, timeout * 1000);
2015 gettime1900d(); /* sets G.cur_time */
2016 if (nfds <= 0) {
2017 if (G.script_name && G.cur_time - G.last_script_run > 11*60) {
2018 /* Useful for updating battery-backed RTC and such */
2019 run_script("periodic", G.last_update_offset);
2020 gettime1900d(); /* sets G.cur_time */
2021 }
2022 continue;
2023 }
2024
2025 /* Process any received packets */
2026 j = 0;
2027 #if ENABLE_FEATURE_NTPD_SERVER
2028 if (G.listen_fd != -1) {
2029 if (pfd[0].revents /* & (POLLIN|POLLERR)*/) {
2030 nfds--;
2031 recv_and_process_client_pkt(/*G.listen_fd*/);
2032 gettime1900d(); /* sets G.cur_time */
2033 }
2034 j = 1;
2035 }
2036 #endif
2037 for (; nfds != 0 && j < i; j++) {
2038 if (pfd[j].revents /* & (POLLIN|POLLERR)*/) {
2039 nfds--;
2040 recv_and_process_peer_pkt(idx2peer[j]);
2041 gettime1900d(); /* sets G.cur_time */
2042 }
2043 }
2044 } /* while (!bb_got_signal) */
2045
2046 kill_myself_with_sig(bb_got_signal);
2047 }
2048
2049
2050
2051
2052
2053
2054 /*** openntpd-4.6 uses only adjtime, not adjtimex ***/
2055
2056 /*** ntp-4.2.6/ntpd/ntp_loopfilter.c - adjtimex usage ***/
2057
2058 #if 0
2059 static double
2060 direct_freq(double fp_offset)
2061 {
2062
2063 #ifdef KERNEL_PLL
2064 /*
2065 * If the kernel is enabled, we need the residual offset to
2066 * calculate the frequency correction.
2067 */
2068 if (pll_control && kern_enable) {
2069 memset(&ntv, 0, sizeof(ntv));
2070 ntp_adjtime(&ntv);
2071 #ifdef STA_NANO
2072 clock_offset = ntv.offset / 1e9;
2073 #else /* STA_NANO */
2074 clock_offset = ntv.offset / 1e6;
2075 #endif /* STA_NANO */
2076 drift_comp = FREQTOD(ntv.freq);
2077 }
2078 #endif /* KERNEL_PLL */
2079 set_freq((fp_offset - clock_offset) / (current_time - clock_epoch) + drift_comp);
2080 wander_resid = 0;
2081 return drift_comp;
2082 }
2083
2084 static void
2085 set_freq(double freq) /* frequency update */
2086 {
2087 char tbuf[80];
2088
2089 drift_comp = freq;
2090
2091 #ifdef KERNEL_PLL
2092 /*
2093 * If the kernel is enabled, update the kernel frequency.
2094 */
2095 if (pll_control && kern_enable) {
2096 memset(&ntv, 0, sizeof(ntv));
2097 ntv.modes = MOD_FREQUENCY;
2098 ntv.freq = DTOFREQ(drift_comp);
2099 ntp_adjtime(&ntv);
2100 snprintf(tbuf, sizeof(tbuf), "kernel %.3f PPM", drift_comp * 1e6);
2101 report_event(EVNT_FSET, NULL, tbuf);
2102 } else {
2103 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2104 report_event(EVNT_FSET, NULL, tbuf);
2105 }
2106 #else /* KERNEL_PLL */
2107 snprintf(tbuf, sizeof(tbuf), "ntpd %.3f PPM", drift_comp * 1e6);
2108 report_event(EVNT_FSET, NULL, tbuf);
2109 #endif /* KERNEL_PLL */
2110 }
2111
2112 ...
2113 ...
2114 ...
2115
2116 #ifdef KERNEL_PLL
2117 /*
2118 * This code segment works when clock adjustments are made using
2119 * precision time kernel support and the ntp_adjtime() system
2120 * call. This support is available in Solaris 2.6 and later,
2121 * Digital Unix 4.0 and later, FreeBSD, Linux and specially
2122 * modified kernels for HP-UX 9 and Ultrix 4. In the case of the
2123 * DECstation 5000/240 and Alpha AXP, additional kernel
2124 * modifications provide a true microsecond clock and nanosecond
2125 * clock, respectively.
2126 *
2127 * Important note: The kernel discipline is used only if the
2128 * step threshold is less than 0.5 s, as anything higher can
2129 * lead to overflow problems. This might occur if some misguided
2130 * lad set the step threshold to something ridiculous.
2131 */
2132 if (pll_control && kern_enable) {
2133
2134 #define MOD_BITS (MOD_OFFSET | MOD_MAXERROR | MOD_ESTERROR | MOD_STATUS | MOD_TIMECONST)
2135
2136 /*
2137 * We initialize the structure for the ntp_adjtime()
2138 * system call. We have to convert everything to
2139 * microseconds or nanoseconds first. Do not update the
2140 * system variables if the ext_enable flag is set. In
2141 * this case, the external clock driver will update the
2142 * variables, which will be read later by the local
2143 * clock driver. Afterwards, remember the time and
2144 * frequency offsets for jitter and stability values and
2145 * to update the frequency file.
2146 */
2147 memset(&ntv, 0, sizeof(ntv));
2148 if (ext_enable) {
2149 ntv.modes = MOD_STATUS;
2150 } else {
2151 #ifdef STA_NANO
2152 ntv.modes = MOD_BITS | MOD_NANO;
2153 #else /* STA_NANO */
2154 ntv.modes = MOD_BITS;
2155 #endif /* STA_NANO */
2156 if (clock_offset < 0)
2157 dtemp = -.5;
2158 else
2159 dtemp = .5;
2160 #ifdef STA_NANO
2161 ntv.offset = (int32)(clock_offset * 1e9 + dtemp);
2162 ntv.constant = sys_poll;
2163 #else /* STA_NANO */
2164 ntv.offset = (int32)(clock_offset * 1e6 + dtemp);
2165 ntv.constant = sys_poll - 4;
2166 #endif /* STA_NANO */
2167 ntv.esterror = (u_int32)(clock_jitter * 1e6);
2168 ntv.maxerror = (u_int32)((sys_rootdelay / 2 + sys_rootdisp) * 1e6);
2169 ntv.status = STA_PLL;
2170
2171 /*
2172 * Enable/disable the PPS if requested.
2173 */
2174 if (pps_enable) {
2175 if (!(pll_status & STA_PPSTIME))
2176 report_event(EVNT_KERN,
2177 NULL, "PPS enabled");
2178 ntv.status |= STA_PPSTIME | STA_PPSFREQ;
2179 } else {
2180 if (pll_status & STA_PPSTIME)
2181 report_event(EVNT_KERN,
2182 NULL, "PPS disabled");
2183 ntv.status &= ~(STA_PPSTIME |
2184 STA_PPSFREQ);
2185 }
2186 if (sys_leap == LEAP_ADDSECOND)
2187 ntv.status |= STA_INS;
2188 else if (sys_leap == LEAP_DELSECOND)
2189 ntv.status |= STA_DEL;
2190 }
2191
2192 /*
2193 * Pass the stuff to the kernel. If it squeals, turn off
2194 * the pps. In any case, fetch the kernel offset,
2195 * frequency and jitter.
2196 */
2197 if (ntp_adjtime(&ntv) == TIME_ERROR) {
2198 if (!(ntv.status & STA_PPSSIGNAL))
2199 report_event(EVNT_KERN, NULL,
2200 "PPS no signal");
2201 }
2202 pll_status = ntv.status;
2203 #ifdef STA_NANO
2204 clock_offset = ntv.offset / 1e9;
2205 #else /* STA_NANO */
2206 clock_offset = ntv.offset / 1e6;
2207 #endif /* STA_NANO */
2208 clock_frequency = FREQTOD(ntv.freq);
2209
2210 /*
2211 * If the kernel PPS is lit, monitor its performance.
2212 */
2213 if (ntv.status & STA_PPSTIME) {
2214 #ifdef STA_NANO
2215 clock_jitter = ntv.jitter / 1e9;
2216 #else /* STA_NANO */
2217 clock_jitter = ntv.jitter / 1e6;
2218 #endif /* STA_NANO */
2219 }
2220
2221 #if defined(STA_NANO) && NTP_API == 4
2222 /*
2223 * If the TAI changes, update the kernel TAI.
2224 */
2225 if (loop_tai != sys_tai) {
2226 loop_tai = sys_tai;
2227 ntv.modes = MOD_TAI;
2228 ntv.constant = sys_tai;
2229 ntp_adjtime(&ntv);
2230 }
2231 #endif /* STA_NANO */
2232 }
2233 #endif /* KERNEL_PLL */
2234 #endif