Magellan Linux

Contents of /trunk/mkinitrd-magellan/busybox/networking/zcip.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 532 - (show annotations) (download)
Sat Sep 1 22:45:15 2007 UTC (16 years, 8 months ago) by niro
File MIME type: text/plain
File size: 14215 byte(s)
-import if magellan mkinitrd; it is a fork of redhats mkinitrd-5.0.8 with all magellan patches and features; deprecates magellan-src/mkinitrd

1 /* vi: set sw=4 ts=4: */
2 /*
3 * RFC3927 ZeroConf IPv4 Link-Local addressing
4 * (see <http://www.zeroconf.org/>)
5 *
6 * Copyright (C) 2003 by Arthur van Hoff (avh@strangeberry.com)
7 * Copyright (C) 2004 by David Brownell
8 *
9 * Licensed under the GPL v2 or later, see the file LICENSE in this tarball.
10 */
11
12 /*
13 * ZCIP just manages the 169.254.*.* addresses. That network is not
14 * routed at the IP level, though various proxies or bridges can
15 * certainly be used. Its naming is built over multicast DNS.
16 */
17
18 //#define DEBUG
19
20 // TODO:
21 // - more real-world usage/testing, especially daemon mode
22 // - kernel packet filters to reduce scheduling noise
23 // - avoid silent script failures, especially under load...
24 // - link status monitoring (restart on link-up; stop on link-down)
25
26 #include "busybox.h"
27 #include <syslog.h>
28 #include <poll.h>
29 #include <sys/wait.h>
30 #include <netinet/ether.h>
31 #include <net/ethernet.h>
32 #include <net/if.h>
33 #include <net/if_arp.h>
34
35 #include <linux/if_packet.h>
36 #include <linux/sockios.h>
37
38
39 struct arp_packet {
40 struct ether_header hdr;
41 struct ether_arp arp;
42 } ATTRIBUTE_PACKED;
43
44 enum {
45 /* 169.254.0.0 */
46 LINKLOCAL_ADDR = 0xa9fe0000,
47
48 /* protocol timeout parameters, specified in seconds */
49 PROBE_WAIT = 1,
50 PROBE_MIN = 1,
51 PROBE_MAX = 2,
52 PROBE_NUM = 3,
53 MAX_CONFLICTS = 10,
54 RATE_LIMIT_INTERVAL = 60,
55 ANNOUNCE_WAIT = 2,
56 ANNOUNCE_NUM = 2,
57 ANNOUNCE_INTERVAL = 2,
58 DEFEND_INTERVAL = 10
59 };
60
61 /* States during the configuration process. */
62 enum {
63 PROBE = 0,
64 RATE_LIMIT_PROBE,
65 ANNOUNCE,
66 MONITOR,
67 DEFEND
68 };
69
70 #define VDBG(fmt,args...) \
71 do { } while (0)
72
73 static unsigned opts;
74 #define FOREGROUND (opts & 1)
75 #define QUIT (opts & 2)
76
77 /**
78 * Pick a random link local IP address on 169.254/16, except that
79 * the first and last 256 addresses are reserved.
80 */
81 static void pick(struct in_addr *ip)
82 {
83 unsigned tmp;
84
85 /* use cheaper math than lrand48() mod N */
86 do {
87 tmp = (lrand48() >> 16) & IN_CLASSB_HOST;
88 } while (tmp > (IN_CLASSB_HOST - 0x0200));
89 ip->s_addr = htonl((LINKLOCAL_ADDR + 0x0100) + tmp);
90 }
91
92 /* TODO: we need a flag to direct bb_[p]error_msg output to stderr. */
93
94 /**
95 * Broadcast an ARP packet.
96 */
97 static void arp(int fd, struct sockaddr *saddr, int op,
98 const struct ether_addr *source_addr, struct in_addr source_ip,
99 const struct ether_addr *target_addr, struct in_addr target_ip)
100 {
101 struct arp_packet p;
102 memset(&p, 0, sizeof(p));
103
104 // ether header
105 p.hdr.ether_type = htons(ETHERTYPE_ARP);
106 memcpy(p.hdr.ether_shost, source_addr, ETH_ALEN);
107 memset(p.hdr.ether_dhost, 0xff, ETH_ALEN);
108
109 // arp request
110 p.arp.arp_hrd = htons(ARPHRD_ETHER);
111 p.arp.arp_pro = htons(ETHERTYPE_IP);
112 p.arp.arp_hln = ETH_ALEN;
113 p.arp.arp_pln = 4;
114 p.arp.arp_op = htons(op);
115 memcpy(&p.arp.arp_sha, source_addr, ETH_ALEN);
116 memcpy(&p.arp.arp_spa, &source_ip, sizeof (p.arp.arp_spa));
117 memcpy(&p.arp.arp_tha, target_addr, ETH_ALEN);
118 memcpy(&p.arp.arp_tpa, &target_ip, sizeof (p.arp.arp_tpa));
119
120 // send it
121 if (sendto(fd, &p, sizeof (p), 0, saddr, sizeof (*saddr)) < 0) {
122 bb_perror_msg("sendto");
123 //return -errno;
124 }
125 // Currently all callers ignore errors, that's why returns are
126 // commented out...
127 //return 0;
128 }
129
130 /**
131 * Run a script.
132 */
133 static int run(char *script, char *arg, char *intf, struct in_addr *ip)
134 {
135 int pid, status;
136 char *why;
137
138 if(1) { //always true: if (script != NULL)
139 VDBG("%s run %s %s\n", intf, script, arg);
140 if (ip != NULL) {
141 char *addr = inet_ntoa(*ip);
142 setenv("ip", addr, 1);
143 bb_info_msg("%s %s %s", arg, intf, addr);
144 }
145
146 pid = vfork();
147 if (pid < 0) { // error
148 why = "vfork";
149 goto bad;
150 } else if (pid == 0) { // child
151 execl(script, script, arg, NULL);
152 bb_perror_msg("execl");
153 _exit(EXIT_FAILURE);
154 }
155
156 if (waitpid(pid, &status, 0) <= 0) {
157 why = "waitpid";
158 goto bad;
159 }
160 if (WEXITSTATUS(status) != 0) {
161 bb_error_msg("script %s failed, exit=%d",
162 script, WEXITSTATUS(status));
163 return -errno;
164 }
165 }
166 return 0;
167 bad:
168 status = -errno;
169 bb_perror_msg("%s %s, %s", arg, intf, why);
170 return status;
171 }
172
173
174 /**
175 * Return milliseconds of random delay, up to "secs" seconds.
176 */
177 static unsigned ATTRIBUTE_ALWAYS_INLINE ms_rdelay(unsigned secs)
178 {
179 return lrand48() % (secs * 1000);
180 }
181
182 /**
183 * main program
184 */
185
186 /* Used to be auto variables on main() stack, but
187 * most of them were zero-inited. Moving them to bss
188 * is more space-efficient.
189 */
190 static const struct in_addr null_ip; // = { 0 };
191 static const struct ether_addr null_addr; // = { {0, 0, 0, 0, 0, 0} };
192
193 static struct sockaddr saddr; // memset(0);
194 static struct in_addr ip; // = { 0 };
195 static struct ifreq ifr; //memset(0);
196
197 static char *intf; // = NULL;
198 static char *script; // = NULL;
199 static suseconds_t timeout; // = 0; // milliseconds
200 static unsigned conflicts; // = 0;
201 static unsigned nprobes; // = 0;
202 static unsigned nclaims; // = 0;
203 static int ready; // = 0;
204 static int verbose; // = 0;
205 static int state = PROBE;
206
207 int zcip_main(int argc, char *argv[])
208 {
209 struct ether_addr eth_addr;
210 char *why;
211 int fd;
212
213 // parse commandline: prog [options] ifname script
214 char *r_opt;
215 opt_complementary = "vv:vf"; // -v accumulates and implies -f
216 opts = getopt32(argc, argv, "fqr:v", &r_opt, &verbose);
217 if (!FOREGROUND) {
218 /* Do it early, before all bb_xx_msg calls */
219 logmode = LOGMODE_SYSLOG;
220 openlog(applet_name, 0, LOG_DAEMON);
221 }
222 if (opts & 4) { // -r n.n.n.n
223 if (inet_aton(r_opt, &ip) == 0
224 || (ntohl(ip.s_addr) & IN_CLASSB_NET) != LINKLOCAL_ADDR
225 ) {
226 bb_error_msg_and_die("invalid link address");
227 }
228 }
229 argc -= optind;
230 argv += optind;
231 if (argc != 2)
232 bb_show_usage();
233 intf = argv[0];
234 script = argv[1];
235 setenv("interface", intf, 1);
236
237 // initialize the interface (modprobe, ifup, etc)
238 if (run(script, "init", intf, NULL) < 0)
239 return EXIT_FAILURE;
240
241 // initialize saddr
242 //memset(&saddr, 0, sizeof (saddr));
243 safe_strncpy(saddr.sa_data, intf, sizeof (saddr.sa_data));
244
245 // open an ARP socket
246 fd = xsocket(PF_PACKET, SOCK_PACKET, htons(ETH_P_ARP));
247 // bind to the interface's ARP socket
248 xbind(fd, &saddr, sizeof (saddr));
249
250 // get the interface's ethernet address
251 //memset(&ifr, 0, sizeof (ifr));
252 strncpy(ifr.ifr_name, intf, sizeof (ifr.ifr_name));
253 if (ioctl(fd, SIOCGIFHWADDR, &ifr) < 0) {
254 bb_perror_msg_and_die("get ethernet address");
255 }
256 memcpy(&eth_addr, &ifr.ifr_hwaddr.sa_data, ETH_ALEN);
257
258 // start with some stable ip address, either a function of
259 // the hardware address or else the last address we used.
260 // NOTE: the sequence of addresses we try changes only
261 // depending on when we detect conflicts.
262 // (SVID 3 bogon: who says that "short" is always 16 bits?)
263 seed48( (unsigned short*)&ifr.ifr_hwaddr.sa_data );
264 if (ip.s_addr == 0)
265 pick(&ip);
266
267 // FIXME cases to handle:
268 // - zcip already running!
269 // - link already has local address... just defend/update
270
271 // daemonize now; don't delay system startup
272 if (!FOREGROUND) {
273 setsid();
274 bb_daemonize();
275 bb_info_msg("start, interface %s", intf);
276 }
277
278 // run the dynamic address negotiation protocol,
279 // restarting after address conflicts:
280 // - start with some address we want to try
281 // - short random delay
282 // - arp probes to see if another host else uses it
283 // - arp announcements that we're claiming it
284 // - use it
285 // - defend it, within limits
286 while (1) {
287 struct pollfd fds[1];
288 struct timeval tv1;
289 struct arp_packet p;
290
291 int source_ip_conflict = 0;
292 int target_ip_conflict = 0;
293
294 fds[0].fd = fd;
295 fds[0].events = POLLIN;
296 fds[0].revents = 0;
297
298 // poll, being ready to adjust current timeout
299 if (!timeout) {
300 timeout = ms_rdelay(PROBE_WAIT);
301 // FIXME setsockopt(fd, SO_ATTACH_FILTER, ...) to
302 // make the kernel filter out all packets except
303 // ones we'd care about.
304 }
305 // set tv1 to the point in time when we timeout
306 gettimeofday(&tv1, NULL);
307 tv1.tv_usec += (timeout % 1000) * 1000;
308 while (tv1.tv_usec > 1000000) {
309 tv1.tv_usec -= 1000000;
310 tv1.tv_sec++;
311 }
312 tv1.tv_sec += timeout / 1000;
313
314 VDBG("...wait %ld %s nprobes=%d, nclaims=%d\n",
315 timeout, intf, nprobes, nclaims);
316 switch (poll(fds, 1, timeout)) {
317
318 // timeout
319 case 0:
320 VDBG("state = %d\n", state);
321 switch (state) {
322 case PROBE:
323 // timeouts in the PROBE state mean no conflicting ARP packets
324 // have been received, so we can progress through the states
325 if (nprobes < PROBE_NUM) {
326 nprobes++;
327 VDBG("probe/%d %s@%s\n",
328 nprobes, intf, inet_ntoa(ip));
329 arp(fd, &saddr, ARPOP_REQUEST,
330 &eth_addr, null_ip,
331 &null_addr, ip);
332 timeout = PROBE_MIN * 1000;
333 timeout += ms_rdelay(PROBE_MAX
334 - PROBE_MIN);
335 }
336 else {
337 // Switch to announce state.
338 state = ANNOUNCE;
339 nclaims = 0;
340 VDBG("announce/%d %s@%s\n",
341 nclaims, intf, inet_ntoa(ip));
342 arp(fd, &saddr, ARPOP_REQUEST,
343 &eth_addr, ip,
344 &eth_addr, ip);
345 timeout = ANNOUNCE_INTERVAL * 1000;
346 }
347 break;
348 case RATE_LIMIT_PROBE:
349 // timeouts in the RATE_LIMIT_PROBE state mean no conflicting ARP packets
350 // have been received, so we can move immediately to the announce state
351 state = ANNOUNCE;
352 nclaims = 0;
353 VDBG("announce/%d %s@%s\n",
354 nclaims, intf, inet_ntoa(ip));
355 arp(fd, &saddr, ARPOP_REQUEST,
356 &eth_addr, ip,
357 &eth_addr, ip);
358 timeout = ANNOUNCE_INTERVAL * 1000;
359 break;
360 case ANNOUNCE:
361 // timeouts in the ANNOUNCE state mean no conflicting ARP packets
362 // have been received, so we can progress through the states
363 if (nclaims < ANNOUNCE_NUM) {
364 nclaims++;
365 VDBG("announce/%d %s@%s\n",
366 nclaims, intf, inet_ntoa(ip));
367 arp(fd, &saddr, ARPOP_REQUEST,
368 &eth_addr, ip,
369 &eth_addr, ip);
370 timeout = ANNOUNCE_INTERVAL * 1000;
371 }
372 else {
373 // Switch to monitor state.
374 state = MONITOR;
375 // link is ok to use earlier
376 // FIXME update filters
377 run(script, "config", intf, &ip);
378 ready = 1;
379 conflicts = 0;
380 timeout = -1; // Never timeout in the monitor state.
381
382 // NOTE: all other exit paths
383 // should deconfig ...
384 if (QUIT)
385 return EXIT_SUCCESS;
386 }
387 break;
388 case DEFEND:
389 // We won! No ARP replies, so just go back to monitor.
390 state = MONITOR;
391 timeout = -1;
392 conflicts = 0;
393 break;
394 default:
395 // Invalid, should never happen. Restart the whole protocol.
396 state = PROBE;
397 pick(&ip);
398 timeout = 0;
399 nprobes = 0;
400 nclaims = 0;
401 break;
402 } // switch (state)
403 break; // case 0 (timeout)
404 // packets arriving
405 case 1:
406 // We need to adjust the timeout in case we didn't receive
407 // a conflicting packet.
408 if (timeout > 0) {
409 struct timeval tv2;
410
411 gettimeofday(&tv2, NULL);
412 if (timercmp(&tv1, &tv2, <)) {
413 // Current time is greater than the expected timeout time.
414 // Should never happen.
415 VDBG("missed an expected timeout\n");
416 timeout = 0;
417 } else {
418 VDBG("adjusting timeout\n");
419 timersub(&tv1, &tv2, &tv1);
420 timeout = 1000 * tv1.tv_sec
421 + tv1.tv_usec / 1000;
422 }
423 }
424
425 if ((fds[0].revents & POLLIN) == 0) {
426 if (fds[0].revents & POLLERR) {
427 // FIXME: links routinely go down;
428 // this shouldn't necessarily exit.
429 bb_error_msg("%s: poll error", intf);
430 if (ready) {
431 run(script, "deconfig",
432 intf, &ip);
433 }
434 return EXIT_FAILURE;
435 }
436 continue;
437 }
438
439 // read ARP packet
440 if (recv(fd, &p, sizeof (p), 0) < 0) {
441 why = "recv";
442 goto bad;
443 }
444 if (p.hdr.ether_type != htons(ETHERTYPE_ARP))
445 continue;
446
447 #ifdef DEBUG
448 {
449 struct ether_addr * sha = (struct ether_addr *) p.arp.arp_sha;
450 struct ether_addr * tha = (struct ether_addr *) p.arp.arp_tha;
451 struct in_addr * spa = (struct in_addr *) p.arp.arp_spa;
452 struct in_addr * tpa = (struct in_addr *) p.arp.arp_tpa;
453 VDBG("%s recv arp type=%d, op=%d,\n",
454 intf, ntohs(p.hdr.ether_type),
455 ntohs(p.arp.arp_op));
456 VDBG("\tsource=%s %s\n",
457 ether_ntoa(sha),
458 inet_ntoa(*spa));
459 VDBG("\ttarget=%s %s\n",
460 ether_ntoa(tha),
461 inet_ntoa(*tpa));
462 }
463 #endif
464 if (p.arp.arp_op != htons(ARPOP_REQUEST)
465 && p.arp.arp_op != htons(ARPOP_REPLY))
466 continue;
467
468 if (memcmp(p.arp.arp_spa, &ip.s_addr, sizeof(struct in_addr)) == 0 &&
469 memcmp(&eth_addr, &p.arp.arp_sha, ETH_ALEN) != 0) {
470 source_ip_conflict = 1;
471 }
472 if (memcmp(p.arp.arp_tpa, &ip.s_addr, sizeof(struct in_addr)) == 0 &&
473 p.arp.arp_op == htons(ARPOP_REQUEST) &&
474 memcmp(&eth_addr, &p.arp.arp_tha, ETH_ALEN) != 0) {
475 target_ip_conflict = 1;
476 }
477
478 VDBG("state = %d, source ip conflict = %d, target ip conflict = %d\n",
479 state, source_ip_conflict, target_ip_conflict);
480 switch (state) {
481 case PROBE:
482 case ANNOUNCE:
483 // When probing or announcing, check for source IP conflicts
484 // and other hosts doing ARP probes (target IP conflicts).
485 if (source_ip_conflict || target_ip_conflict) {
486 conflicts++;
487 if (conflicts >= MAX_CONFLICTS) {
488 VDBG("%s ratelimit\n", intf);
489 timeout = RATE_LIMIT_INTERVAL * 1000;
490 state = RATE_LIMIT_PROBE;
491 }
492
493 // restart the whole protocol
494 pick(&ip);
495 timeout = 0;
496 nprobes = 0;
497 nclaims = 0;
498 }
499 break;
500 case MONITOR:
501 // If a conflict, we try to defend with a single ARP probe.
502 if (source_ip_conflict) {
503 VDBG("monitor conflict -- defending\n");
504 state = DEFEND;
505 timeout = DEFEND_INTERVAL * 1000;
506 arp(fd, &saddr,
507 ARPOP_REQUEST,
508 &eth_addr, ip,
509 &eth_addr, ip);
510 }
511 break;
512 case DEFEND:
513 // Well, we tried. Start over (on conflict).
514 if (source_ip_conflict) {
515 state = PROBE;
516 VDBG("defend conflict -- starting over\n");
517 ready = 0;
518 run(script, "deconfig", intf, &ip);
519
520 // restart the whole protocol
521 pick(&ip);
522 timeout = 0;
523 nprobes = 0;
524 nclaims = 0;
525 }
526 break;
527 default:
528 // Invalid, should never happen. Restart the whole protocol.
529 VDBG("invalid state -- starting over\n");
530 state = PROBE;
531 pick(&ip);
532 timeout = 0;
533 nprobes = 0;
534 nclaims = 0;
535 break;
536 } // switch state
537
538 break; // case 1 (packets arriving)
539 default:
540 why = "poll";
541 goto bad;
542 } // switch poll
543 }
544 bad:
545 bb_perror_msg("%s, %s", intf, why);
546 return EXIT_FAILURE;
547 }