Magellan Linux

Contents of /trunk/mkinitrd-magellan/klibc/usr/gzip/inflate.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 815 - (show annotations) (download)
Fri Apr 24 18:32:46 2009 UTC (15 years ago) by niro
File MIME type: text/plain
File size: 31539 byte(s)
-updated to klibc-1.5.15
1 /* inflate.c -- Not copyrighted 1992 by Mark Adler
2 version c10p1, 10 January 1993 */
3
4 /* You can do whatever you like with this source file, though I would
5 prefer that if you modify it and redistribute it that you include
6 comments to that effect with your name and the date. Thank you.
7 [The history has been moved to the file ChangeLog.]
8 */
9
10 /*
11 Inflate deflated (PKZIP's method 8 compressed) data. The compression
12 method searches for as much of the current string of bytes (up to a
13 length of 258) in the previous 32K bytes. If it doesn't find any
14 matches (of at least length 3), it codes the next byte. Otherwise, it
15 codes the length of the matched string and its distance backwards from
16 the current position. There is a single Huffman code that codes both
17 single bytes (called "literals") and match lengths. A second Huffman
18 code codes the distance information, which follows a length code. Each
19 length or distance code actually represents a base value and a number
20 of "extra" (sometimes zero) bits to get to add to the base value. At
21 the end of each deflated block is a special end-of-block (EOB) literal/
22 length code. The decoding process is basically: get a literal/length
23 code; if EOB then done; if a literal, emit the decoded byte; if a
24 length then get the distance and emit the referred-to bytes from the
25 sliding window of previously emitted data.
26
27 There are (currently) three kinds of inflate blocks: stored, fixed, and
28 dynamic. The compressor deals with some chunk of data at a time, and
29 decides which method to use on a chunk-by-chunk basis. A chunk might
30 typically be 32K or 64K. If the chunk is uncompressible, then the
31 "stored" method is used. In this case, the bytes are simply stored as
32 is, eight bits per byte, with none of the above coding. The bytes are
33 preceded by a count, since there is no longer an EOB code.
34
35 If the data is compressible, then either the fixed or dynamic methods
36 are used. In the dynamic method, the compressed data is preceded by
37 an encoding of the literal/length and distance Huffman codes that are
38 to be used to decode this block. The representation is itself Huffman
39 coded, and so is preceded by a description of that code. These code
40 descriptions take up a little space, and so for small blocks, there is
41 a predefined set of codes, called the fixed codes. The fixed method is
42 used if the block codes up smaller that way (usually for quite small
43 chunks), otherwise the dynamic method is used. In the latter case, the
44 codes are customized to the probabilities in the current block, and so
45 can code it much better than the pre-determined fixed codes.
46
47 The Huffman codes themselves are decoded using a mutli-level table
48 lookup, in order to maximize the speed of decoding plus the speed of
49 building the decoding tables. See the comments below that precede the
50 lbits and dbits tuning parameters.
51 */
52
53
54 /*
55 Notes beyond the 1.93a appnote.txt:
56
57 1. Distance pointers never point before the beginning of the output
58 stream.
59 2. Distance pointers can point back across blocks, up to 32k away.
60 3. There is an implied maximum of 7 bits for the bit length table and
61 15 bits for the actual data.
62 4. If only one code exists, then it is encoded using one bit. (Zero
63 would be more efficient, but perhaps a little confusing.) If two
64 codes exist, they are coded using one bit each (0 and 1).
65 5. There is no way of sending zero distance codes--a dummy must be
66 sent if there are none. (History: a pre 2.0 version of PKZIP would
67 store blocks with no distance codes, but this was discovered to be
68 too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
69 zero distance codes, which is sent as one code of zero bits in
70 length.
71 6. There are up to 286 literal/length codes. Code 256 represents the
72 end-of-block. Note however that the static length tree defines
73 288 codes just to fill out the Huffman codes. Codes 286 and 287
74 cannot be used though, since there is no length base or extra bits
75 defined for them. Similarly, there are up to 30 distance codes.
76 However, static trees define 32 codes (all 5 bits) to fill out the
77 Huffman codes, but the last two had better not show up in the data.
78 7. Unzip can check dynamic Huffman blocks for complete code sets.
79 The exception is that a single code would not be complete (see #4).
80 8. The five bits following the block type is really the number of
81 literal codes sent minus 257.
82 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
83 (1+6+6). Therefore, to output three times the length, you output
84 three codes (1+1+1), whereas to output four times the same length,
85 you only need two codes (1+3). Hmm.
86 10. In the tree reconstruction algorithm, Code = Code + Increment
87 only if BitLength(i) is not zero. (Pretty obvious.)
88 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
89 12. Note: length code 284 can represent 227-258, but length code 285
90 really is 258. The last length deserves its own, short code
91 since it gets used a lot in very redundant files. The length
92 258 is special since 258 - 3 (the min match length) is 255.
93 13. The literal/length and distance code bit lengths are read as a
94 single stream of lengths. It is possible (and advantageous) for
95 a repeat code (16, 17, or 18) to go across the boundary between
96 the two sets of lengths.
97 */
98
99 #ifdef RCSID
100 static char rcsid[] = "$Id: inflate.c,v 1.1 2002/08/18 00:59:21 hpa Exp $";
101 #endif
102
103 #include <sys/types.h>
104 #include <stdlib.h>
105
106 #include "tailor.h"
107 #include "gzip.h"
108 #define slide window
109
110 /* Huffman code lookup table entry--this entry is four bytes for machines
111 that have 16-bit pointers (e.g. PC's in the small or medium model).
112 Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
113 means that v is a literal, 16 < e < 32 means that v is a pointer to
114 the next table, which codes e - 16 bits, and lastly e == 99 indicates
115 an unused code. If a code with e == 99 is looked up, this implies an
116 error in the data. */
117 struct huft {
118 uch e; /* number of extra bits or operation */
119 uch b; /* number of bits in this code or subcode */
120 union {
121 ush n; /* literal, length base, or distance base */
122 struct huft *t; /* pointer to next level of table */
123 } v;
124 };
125
126
127 /* Function prototypes */
128 int huft_build OF((unsigned *, unsigned, unsigned, ush *, ush *,
129 struct huft **, int *));
130 int huft_free OF((struct huft *));
131 int inflate_codes OF((struct huft *, struct huft *, int, int));
132 int inflate_stored OF((void));
133 int inflate_fixed OF((void));
134 int inflate_dynamic OF((void));
135 int inflate_block OF((int *));
136 int inflate OF((void));
137
138
139 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
140 stream to find repeated byte strings. This is implemented here as a
141 circular buffer. The index is updated simply by incrementing and then
142 and'ing with 0x7fff (32K-1). */
143 /* It is left to other modules to supply the 32K area. It is assumed
144 to be usable as if it were declared "uch slide[32768];" or as just
145 "uch *slide;" and then malloc'ed in the latter case. The definition
146 must be in unzip.h, included above. */
147 /* unsigned wp; current position in slide */
148 #define wp outcnt
149 #define flush_output(w) (wp=(w),flush_window())
150
151 /* Tables for deflate from PKZIP's appnote.txt. */
152 static unsigned border[] = { /* Order of the bit length code lengths */
153 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
154 static ush cplens[] = { /* Copy lengths for literal codes 257..285 */
155 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
156 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
157 /* note: see note #13 above about the 258 in this list. */
158 static ush cplext[] = { /* Extra bits for literal codes 257..285 */
159 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
160 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
161 static ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
162 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
163 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
164 8193, 12289, 16385, 24577};
165 static ush cpdext[] = { /* Extra bits for distance codes */
166 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
167 7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
168 12, 12, 13, 13};
169
170
171
172 /* Macros for inflate() bit peeking and grabbing.
173 The usage is:
174
175 NEEDBITS(j)
176 x = b & mask_bits[j];
177 DUMPBITS(j)
178
179 where NEEDBITS makes sure that b has at least j bits in it, and
180 DUMPBITS removes the bits from b. The macros use the variable k
181 for the number of bits in b. Normally, b and k are register
182 variables for speed, and are initialized at the beginning of a
183 routine that uses these macros from a global bit buffer and count.
184
185 If we assume that EOB will be the longest code, then we will never
186 ask for bits with NEEDBITS that are beyond the end of the stream.
187 So, NEEDBITS should not read any more bytes than are needed to
188 meet the request. Then no bytes need to be "returned" to the buffer
189 at the end of the last block.
190
191 However, this assumption is not true for fixed blocks--the EOB code
192 is 7 bits, but the other literal/length codes can be 8 or 9 bits.
193 (The EOB code is shorter than other codes because fixed blocks are
194 generally short. So, while a block always has an EOB, many other
195 literal/length codes have a significantly lower probability of
196 showing up at all.) However, by making the first table have a
197 lookup of seven bits, the EOB code will be found in that first
198 lookup, and so will not require that too many bits be pulled from
199 the stream.
200 */
201
202 ulg bb; /* bit buffer */
203 unsigned bk; /* bits in bit buffer */
204
205 ush mask_bits[] = {
206 0x0000,
207 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
208 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
209 };
210
211 #ifdef CRYPT
212 uch cc;
213 # define NEXTBYTE() \
214 (decrypt ? (cc = get_byte(), cc) : get_byte())
215 #else
216 # define NEXTBYTE() (uch)get_byte()
217 #endif
218 #define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
219 #define DUMPBITS(n) {b>>=(n);k-=(n);}
220
221
222 /*
223 Huffman code decoding is performed using a multi-level table lookup.
224 The fastest way to decode is to simply build a lookup table whose
225 size is determined by the longest code. However, the time it takes
226 to build this table can also be a factor if the data being decoded
227 is not very long. The most common codes are necessarily the
228 shortest codes, so those codes dominate the decoding time, and hence
229 the speed. The idea is you can have a shorter table that decodes the
230 shorter, more probable codes, and then point to subsidiary tables for
231 the longer codes. The time it costs to decode the longer codes is
232 then traded against the time it takes to make longer tables.
233
234 This results of this trade are in the variables lbits and dbits
235 below. lbits is the number of bits the first level table for literal/
236 length codes can decode in one step, and dbits is the same thing for
237 the distance codes. Subsequent tables are also less than or equal to
238 those sizes. These values may be adjusted either when all of the
239 codes are shorter than that, in which case the longest code length in
240 bits is used, or when the shortest code is *longer* than the requested
241 table size, in which case the length of the shortest code in bits is
242 used.
243
244 There are two different values for the two tables, since they code a
245 different number of possibilities each. The literal/length table
246 codes 286 possible values, or in a flat code, a little over eight
247 bits. The distance table codes 30 possible values, or a little less
248 than five bits, flat. The optimum values for speed end up being
249 about one bit more than those, so lbits is 8+1 and dbits is 5+1.
250 The optimum values may differ though from machine to machine, and
251 possibly even between compilers. Your mileage may vary.
252 */
253
254
255 int lbits = 9; /* bits in base literal/length lookup table */
256 int dbits = 6; /* bits in base distance lookup table */
257
258
259 /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
260 #define BMAX 16 /* maximum bit length of any code (16 for explode) */
261 #define N_MAX 288 /* maximum number of codes in any set */
262
263
264 unsigned hufts; /* track memory usage */
265
266
267 int huft_build(b, n, s, d, e, t, m)
268 unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
269 unsigned n; /* number of codes (assumed <= N_MAX) */
270 unsigned s; /* number of simple-valued codes (0..s-1) */
271 ush *d; /* list of base values for non-simple codes */
272 ush *e; /* list of extra bits for non-simple codes */
273 struct huft **t; /* result: starting table */
274 int *m; /* maximum lookup bits, returns actual */
275 /* Given a list of code lengths and a maximum table size, make a set of
276 tables to decode that set of codes. Return zero on success, one if
277 the given code set is incomplete (the tables are still built in this
278 case), two if the input is invalid (all zero length codes or an
279 oversubscribed set of lengths), and three if not enough memory. */
280 {
281 unsigned a; /* counter for codes of length k */
282 unsigned c[BMAX+1]; /* bit length count table */
283 unsigned f; /* i repeats in table every f entries */
284 int g; /* maximum code length */
285 int h; /* table level */
286 register unsigned i; /* counter, current code */
287 register unsigned j; /* counter */
288 register int k; /* number of bits in current code */
289 int l; /* bits per table (returned in m) */
290 register unsigned *p; /* pointer into c[], b[], or v[] */
291 register struct huft *q; /* points to current table */
292 struct huft r; /* table entry for structure assignment */
293 struct huft *u[BMAX]; /* table stack */
294 unsigned v[N_MAX]; /* values in order of bit length */
295 register int w; /* bits before this table == (l * h) */
296 unsigned x[BMAX+1]; /* bit offsets, then code stack */
297 unsigned *xp; /* pointer into x */
298 int y; /* number of dummy codes added */
299 unsigned z; /* number of entries in current table */
300
301
302 /* Generate counts for each bit length */
303 memzero(c, sizeof(c));
304 p = b; i = n;
305 do {
306 Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),
307 n-i, *p));
308 c[*p]++; /* assume all entries <= BMAX */
309 p++; /* Can't combine with above line (Solaris bug) */
310 } while (--i);
311 if (c[0] == n) /* null input--all zero length codes */
312 {
313 *t = (struct huft *)NULL;
314 *m = 0;
315 return 0;
316 }
317
318
319 /* Find minimum and maximum length, bound *m by those */
320 l = *m;
321 for (j = 1; j <= BMAX; j++)
322 if (c[j])
323 break;
324 k = j; /* minimum code length */
325 if ((unsigned)l < j)
326 l = j;
327 for (i = BMAX; i; i--)
328 if (c[i])
329 break;
330 g = i; /* maximum code length */
331 if ((unsigned)l > i)
332 l = i;
333 *m = l;
334
335
336 /* Adjust last length count to fill out codes, if needed */
337 for (y = 1 << j; j < i; j++, y <<= 1)
338 if ((y -= c[j]) < 0)
339 return 2; /* bad input: more codes than bits */
340 if ((y -= c[i]) < 0)
341 return 2;
342 c[i] += y;
343
344
345 /* Generate starting offsets into the value table for each length */
346 x[1] = j = 0;
347 p = c + 1; xp = x + 2;
348 while (--i) { /* note that i == g from above */
349 *xp++ = (j += *p++);
350 }
351
352
353 /* Make a table of values in order of bit lengths */
354 p = b; i = 0;
355 do {
356 if ((j = *p++) != 0)
357 v[x[j]++] = i;
358 } while (++i < n);
359
360
361 /* Generate the Huffman codes and for each, make the table entries */
362 x[0] = i = 0; /* first Huffman code is zero */
363 p = v; /* grab values in bit order */
364 h = -1; /* no tables yet--level -1 */
365 w = -l; /* bits decoded == (l * h) */
366 u[0] = (struct huft *)NULL; /* just to keep compilers happy */
367 q = (struct huft *)NULL; /* ditto */
368 z = 0; /* ditto */
369
370 /* go through the bit lengths (k already is bits in shortest code) */
371 for (; k <= g; k++)
372 {
373 a = c[k];
374 while (a--)
375 {
376 /* here i is the Huffman code of length k bits for value *p */
377 /* make tables up to required level */
378 while (k > w + l)
379 {
380 h++;
381 w += l; /* previous table always l bits */
382
383 /* compute minimum size table less than or equal to l bits */
384 z = (z = g - w) > (unsigned)l ? (unsigned)l : z; /* upper limit on table size */
385 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
386 { /* too few codes for k-w bit table */
387 f -= a + 1; /* deduct codes from patterns left */
388 xp = c + k;
389 while (++j < z) /* try smaller tables up to z bits */
390 {
391 if ((f <<= 1) <= *++xp)
392 break; /* enough codes to use up j bits */
393 f -= *xp; /* else deduct codes from patterns */
394 }
395 }
396 z = 1 << j; /* table entries for j-bit table */
397
398 /* allocate and link in new table */
399 if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
400 (struct huft *)NULL)
401 {
402 if (h)
403 huft_free(u[0]);
404 return 3; /* not enough memory */
405 }
406 hufts += z + 1; /* track memory usage */
407 *t = q + 1; /* link to list for huft_free() */
408 *(t = &(q->v.t)) = (struct huft *)NULL;
409 u[h] = ++q; /* table starts after link */
410
411 /* connect to last table, if there is one */
412 if (h)
413 {
414 x[h] = i; /* save pattern for backing up */
415 r.b = (uch)l; /* bits to dump before this table */
416 r.e = (uch)(16 + j); /* bits in this table */
417 r.v.t = q; /* pointer to this table */
418 j = i >> (w - l); /* (get around Turbo C bug) */
419 u[h-1][j] = r; /* connect to last table */
420 }
421 }
422
423 /* set up table entry in r */
424 r.b = (uch)(k - w);
425 if (p >= v + n)
426 r.e = 99; /* out of values--invalid code */
427 else if (*p < s)
428 {
429 r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
430 r.v.n = (ush)(*p); /* simple code is just the value */
431 p++; /* one compiler does not like *p++ */
432 }
433 else
434 {
435 r.e = (uch)e[*p - s]; /* non-simple--look up in lists */
436 r.v.n = d[*p++ - s];
437 }
438
439 /* fill code-like entries with r */
440 f = 1 << (k - w);
441 for (j = i >> w; j < z; j += f)
442 q[j] = r;
443
444 /* backwards increment the k-bit code i */
445 for (j = 1 << (k - 1); i & j; j >>= 1)
446 i ^= j;
447 i ^= j;
448
449 /* backup over finished tables */
450 while ((i & ((1 << w) - 1)) != x[h])
451 {
452 h--; /* don't need to update q */
453 w -= l;
454 }
455 }
456 }
457
458
459 /* Return true (1) if we were given an incomplete table */
460 return y != 0 && g != 1;
461 }
462
463
464
465 int huft_free(t)
466 struct huft *t; /* table to free */
467 /* Free the malloc'ed tables built by huft_build(), which makes a linked
468 list of the tables it made, with the links in a dummy first entry of
469 each table. */
470 {
471 register struct huft *p, *q;
472
473
474 /* Go through linked list, freeing from the malloced (t[-1]) address. */
475 p = t;
476 while (p != (struct huft *)NULL)
477 {
478 q = (--p)->v.t;
479 free((char*)p);
480 p = q;
481 }
482 return 0;
483 }
484
485
486 int inflate_codes(tl, td, bl, bd)
487 struct huft *tl, *td; /* literal/length and distance decoder tables */
488 int bl, bd; /* number of bits decoded by tl[] and td[] */
489 /* inflate (decompress) the codes in a deflated (compressed) block.
490 Return an error code or zero if it all goes ok. */
491 {
492 register unsigned e; /* table entry flag/number of extra bits */
493 unsigned n, d; /* length and index for copy */
494 unsigned w; /* current window position */
495 struct huft *t; /* pointer to table entry */
496 unsigned ml, md; /* masks for bl and bd bits */
497 register ulg b; /* bit buffer */
498 register unsigned k; /* number of bits in bit buffer */
499
500
501 /* make local copies of globals */
502 b = bb; /* initialize bit buffer */
503 k = bk;
504 w = wp; /* initialize window position */
505
506 /* inflate the coded data */
507 ml = mask_bits[bl]; /* precompute masks for speed */
508 md = mask_bits[bd];
509 for (;;) /* do until end of block */
510 {
511 NEEDBITS((unsigned)bl)
512 if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
513 do {
514 if (e == 99)
515 return 1;
516 DUMPBITS(t->b)
517 e -= 16;
518 NEEDBITS(e)
519 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
520 DUMPBITS(t->b)
521 if (e == 16) /* then it's a literal */
522 {
523 slide[w++] = (uch)t->v.n;
524 Tracevv((stderr, "%c", slide[w-1]));
525 if (w == WSIZE)
526 {
527 flush_output(w);
528 w = 0;
529 }
530 }
531 else /* it's an EOB or a length */
532 {
533 /* exit if end of block */
534 if (e == 15)
535 break;
536
537 /* get length of block to copy */
538 NEEDBITS(e)
539 n = t->v.n + ((unsigned)b & mask_bits[e]);
540 DUMPBITS(e);
541
542 /* decode distance of block to copy */
543 NEEDBITS((unsigned)bd)
544 if ((e = (t = td + ((unsigned)b & md))->e) > 16)
545 do {
546 if (e == 99)
547 return 1;
548 DUMPBITS(t->b)
549 e -= 16;
550 NEEDBITS(e)
551 } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
552 DUMPBITS(t->b)
553 NEEDBITS(e)
554 d = w - t->v.n - ((unsigned)b & mask_bits[e]);
555 DUMPBITS(e)
556 Tracevv((stderr,"\\[%d,%d]", w-d, n));
557
558 /* do the copy */
559 do {
560 n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e);
561 #if !defined(NOMEMCPY) && !defined(DEBUG)
562 if (w - d >= e) /* (this test assumes unsigned comparison) */
563 {
564 memcpy(slide + w, slide + d, e);
565 w += e;
566 d += e;
567 }
568 else /* do it slow to avoid memcpy() overlap */
569 #endif /* !NOMEMCPY */
570 do {
571 slide[w++] = slide[d++];
572 Tracevv((stderr, "%c", slide[w-1]));
573 } while (--e);
574 if (w == WSIZE)
575 {
576 flush_output(w);
577 w = 0;
578 }
579 } while (n);
580 }
581 }
582
583
584 /* restore the globals from the locals */
585 wp = w; /* restore global window pointer */
586 bb = b; /* restore global bit buffer */
587 bk = k;
588
589 /* done */
590 return 0;
591 }
592
593
594
595 int inflate_stored()
596 /* "decompress" an inflated type 0 (stored) block. */
597 {
598 unsigned n; /* number of bytes in block */
599 unsigned w; /* current window position */
600 register ulg b; /* bit buffer */
601 register unsigned k; /* number of bits in bit buffer */
602
603
604 /* make local copies of globals */
605 b = bb; /* initialize bit buffer */
606 k = bk;
607 w = wp; /* initialize window position */
608
609
610 /* go to byte boundary */
611 n = k & 7;
612 DUMPBITS(n);
613
614
615 /* get the length and its complement */
616 NEEDBITS(16)
617 n = ((unsigned)b & 0xffff);
618 DUMPBITS(16)
619 NEEDBITS(16)
620 if (n != (unsigned)((~b) & 0xffff))
621 return 1; /* error in compressed data */
622 DUMPBITS(16)
623
624
625 /* read and output the compressed data */
626 while (n--)
627 {
628 NEEDBITS(8)
629 slide[w++] = (uch)b;
630 if (w == WSIZE)
631 {
632 flush_output(w);
633 w = 0;
634 }
635 DUMPBITS(8)
636 }
637
638
639 /* restore the globals from the locals */
640 wp = w; /* restore global window pointer */
641 bb = b; /* restore global bit buffer */
642 bk = k;
643 return 0;
644 }
645
646
647
648 int inflate_fixed()
649 /* decompress an inflated type 1 (fixed Huffman codes) block. We should
650 either replace this with a custom decoder, or at least precompute the
651 Huffman tables. */
652 {
653 int i; /* temporary variable */
654 struct huft *tl; /* literal/length code table */
655 struct huft *td; /* distance code table */
656 int bl; /* lookup bits for tl */
657 int bd; /* lookup bits for td */
658 unsigned l[288]; /* length list for huft_build */
659
660
661 /* set up literal table */
662 for (i = 0; i < 144; i++)
663 l[i] = 8;
664 for (; i < 256; i++)
665 l[i] = 9;
666 for (; i < 280; i++)
667 l[i] = 7;
668 for (; i < 288; i++) /* make a complete, but wrong code set */
669 l[i] = 8;
670 bl = 7;
671 if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
672 return i;
673
674
675 /* set up distance table */
676 for (i = 0; i < 30; i++) /* make an incomplete code set */
677 l[i] = 5;
678 bd = 5;
679 if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
680 {
681 huft_free(tl);
682 return i;
683 }
684
685
686 /* decompress until an end-of-block code */
687 if (inflate_codes(tl, td, bl, bd))
688 return 1;
689
690
691 /* free the decoding tables, return */
692 huft_free(tl);
693 huft_free(td);
694 return 0;
695 }
696
697
698
699 int inflate_dynamic()
700 /* decompress an inflated type 2 (dynamic Huffman codes) block. */
701 {
702 int i; /* temporary variables */
703 unsigned j;
704 unsigned l; /* last length */
705 unsigned m; /* mask for bit lengths table */
706 unsigned n; /* number of lengths to get */
707 struct huft *tl; /* literal/length code table */
708 struct huft *td; /* distance code table */
709 int bl; /* lookup bits for tl */
710 int bd; /* lookup bits for td */
711 unsigned nb; /* number of bit length codes */
712 unsigned nl; /* number of literal/length codes */
713 unsigned nd; /* number of distance codes */
714 #ifdef PKZIP_BUG_WORKAROUND
715 unsigned ll[288+32]; /* literal/length and distance code lengths */
716 #else
717 unsigned ll[286+30]; /* literal/length and distance code lengths */
718 #endif
719 register ulg b; /* bit buffer */
720 register unsigned k; /* number of bits in bit buffer */
721
722
723 /* make local bit buffer */
724 b = bb;
725 k = bk;
726
727
728 /* read in table lengths */
729 NEEDBITS(5)
730 nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */
731 DUMPBITS(5)
732 NEEDBITS(5)
733 nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */
734 DUMPBITS(5)
735 NEEDBITS(4)
736 nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */
737 DUMPBITS(4)
738 #ifdef PKZIP_BUG_WORKAROUND
739 if (nl > 288 || nd > 32)
740 #else
741 if (nl > 286 || nd > 30)
742 #endif
743 return 1; /* bad lengths */
744
745
746 /* read in bit-length-code lengths */
747 for (j = 0; j < nb; j++)
748 {
749 NEEDBITS(3)
750 ll[border[j]] = (unsigned)b & 7;
751 DUMPBITS(3)
752 }
753 for (; j < 19; j++)
754 ll[border[j]] = 0;
755
756
757 /* build decoding table for trees--single level, 7 bit lookup */
758 bl = 7;
759 if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
760 {
761 if (i == 1)
762 huft_free(tl);
763 return i; /* incomplete code set */
764 }
765
766
767 /* read in literal and distance code lengths */
768 n = nl + nd;
769 m = mask_bits[bl];
770 i = l = 0;
771 while ((unsigned)i < n)
772 {
773 NEEDBITS((unsigned)bl)
774 j = (td = tl + ((unsigned)b & m))->b;
775 DUMPBITS(j)
776 j = td->v.n;
777 if (j < 16) /* length of code in bits (0..15) */
778 ll[i++] = l = j; /* save last length in l */
779 else if (j == 16) /* repeat last length 3 to 6 times */
780 {
781 NEEDBITS(2)
782 j = 3 + ((unsigned)b & 3);
783 DUMPBITS(2)
784 if ((unsigned)i + j > n)
785 return 1;
786 while (j--)
787 ll[i++] = l;
788 }
789 else if (j == 17) /* 3 to 10 zero length codes */
790 {
791 NEEDBITS(3)
792 j = 3 + ((unsigned)b & 7);
793 DUMPBITS(3)
794 if ((unsigned)i + j > n)
795 return 1;
796 while (j--)
797 ll[i++] = 0;
798 l = 0;
799 }
800 else /* j == 18: 11 to 138 zero length codes */
801 {
802 NEEDBITS(7)
803 j = 11 + ((unsigned)b & 0x7f);
804 DUMPBITS(7)
805 if ((unsigned)i + j > n)
806 return 1;
807 while (j--)
808 ll[i++] = 0;
809 l = 0;
810 }
811 }
812
813
814 /* free decoding table for trees */
815 huft_free(tl);
816
817
818 /* restore the global bit buffer */
819 bb = b;
820 bk = k;
821
822
823 /* build the decoding tables for literal/length and distance codes */
824 bl = lbits;
825 if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
826 {
827 if (i == 1) {
828 fprintf(stderr, " incomplete literal tree\n");
829 huft_free(tl);
830 }
831 return i; /* incomplete code set */
832 }
833 bd = dbits;
834 if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
835 {
836 if (i == 1) {
837 fprintf(stderr, " incomplete distance tree\n");
838 #ifdef PKZIP_BUG_WORKAROUND
839 i = 0;
840 }
841 #else
842 huft_free(td);
843 }
844 huft_free(tl);
845 return i; /* incomplete code set */
846 #endif
847 }
848
849
850 /* decompress until an end-of-block code */
851 if (inflate_codes(tl, td, bl, bd))
852 return 1;
853
854
855 /* free the decoding tables, return */
856 huft_free(tl);
857 huft_free(td);
858 return 0;
859 }
860
861
862
863 int inflate_block(e)
864 int *e; /* last block flag */
865 /* decompress an inflated block */
866 {
867 unsigned t; /* block type */
868 register ulg b; /* bit buffer */
869 register unsigned k; /* number of bits in bit buffer */
870
871
872 /* make local bit buffer */
873 b = bb;
874 k = bk;
875
876
877 /* read in last block bit */
878 NEEDBITS(1)
879 *e = (int)b & 1;
880 DUMPBITS(1)
881
882
883 /* read in block type */
884 NEEDBITS(2)
885 t = (unsigned)b & 3;
886 DUMPBITS(2)
887
888
889 /* restore the global bit buffer */
890 bb = b;
891 bk = k;
892
893
894 /* inflate that block type */
895 if (t == 2)
896 return inflate_dynamic();
897 if (t == 0)
898 return inflate_stored();
899 if (t == 1)
900 return inflate_fixed();
901
902
903 /* bad block type */
904 return 2;
905 }
906
907
908
909 int inflate()
910 /* decompress an inflated entry */
911 {
912 int e; /* last block flag */
913 int r; /* result code */
914 unsigned h; /* maximum struct huft's malloc'ed */
915
916
917 /* initialize window, bit buffer */
918 wp = 0;
919 bk = 0;
920 bb = 0;
921
922
923 /* decompress until the last block */
924 h = 0;
925 do {
926 hufts = 0;
927 if ((r = inflate_block(&e)) != 0)
928 return r;
929 if (hufts > h)
930 h = hufts;
931 } while (!e);
932
933 /* Undo too much lookahead. The next read will be byte aligned so we
934 * can discard unused bits in the last meaningful byte.
935 */
936 while (bk >= 8) {
937 bk -= 8;
938 inptr--;
939 }
940
941 /* flush out slide */
942 flush_output(wp);
943
944
945 /* return success */
946 #ifdef DEBUG
947 fprintf(stderr, "<%u> ", h);
948 #endif /* DEBUG */
949 return 0;
950 }