Magellan Linux

Annotation of /trunk/mkinitrd-magellan/klibc/usr/gzip/trees.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 815 - (hide annotations) (download)
Fri Apr 24 18:32:46 2009 UTC (15 years ago) by niro
File MIME type: text/plain
File size: 40390 byte(s)
-updated to klibc-1.5.15
1 niro 532 /* trees.c -- output deflated data using Huffman coding
2     * Copyright (C) 1992-1993 Jean-loup Gailly
3     * This is free software; you can redistribute it and/or modify it under the
4     * terms of the GNU General Public License, see the file COPYING.
5     */
6    
7     /*
8     * PURPOSE
9     *
10     * Encode various sets of source values using variable-length
11     * binary code trees.
12     *
13     * DISCUSSION
14     *
15     * The PKZIP "deflation" process uses several Huffman trees. The more
16     * common source values are represented by shorter bit sequences.
17     *
18     * Each code tree is stored in the ZIP file in a compressed form
19     * which is itself a Huffman encoding of the lengths of
20     * all the code strings (in ascending order by source values).
21     * The actual code strings are reconstructed from the lengths in
22     * the UNZIP process, as described in the "application note"
23     * (APPNOTE.TXT) distributed as part of PKWARE's PKZIP program.
24     *
25     * REFERENCES
26     *
27     * Lynch, Thomas J.
28     * Data Compression: Techniques and Applications, pp. 53-55.
29     * Lifetime Learning Publications, 1985. ISBN 0-534-03418-7.
30     *
31     * Storer, James A.
32     * Data Compression: Methods and Theory, pp. 49-50.
33     * Computer Science Press, 1988. ISBN 0-7167-8156-5.
34     *
35     * Sedgewick, R.
36     * Algorithms, p290.
37     * Addison-Wesley, 1983. ISBN 0-201-06672-6.
38     *
39     * INTERFACE
40     *
41     * void ct_init (ush *attr, int *methodp)
42     * Allocate the match buffer, initialize the various tables and save
43     * the location of the internal file attribute (ascii/binary) and
44     * method (DEFLATE/STORE)
45     *
46     * void ct_tally (int dist, int lc);
47     * Save the match info and tally the frequency counts.
48     *
49     * long flush_block (char *buf, ulg stored_len, int eof)
50     * Determine the best encoding for the current block: dynamic trees,
51     * static trees or store, and output the encoded block to the zip
52     * file. Returns the total compressed length for the file so far.
53     *
54     */
55    
56     #include <ctype.h>
57    
58     #include "tailor.h"
59     #include "gzip.h"
60    
61     #ifdef RCSID
62 niro 815 static char rcsid[] = "$Id: trees.c,v 1.1 2002/08/18 00:59:21 hpa Exp $";
63 niro 532 #endif
64    
65     /* ===========================================================================
66     * Constants
67     */
68    
69     #define MAX_BITS 15
70     /* All codes must not exceed MAX_BITS bits */
71    
72     #define MAX_BL_BITS 7
73     /* Bit length codes must not exceed MAX_BL_BITS bits */
74    
75     #define LENGTH_CODES 29
76     /* number of length codes, not counting the special END_BLOCK code */
77    
78     #define LITERALS 256
79     /* number of literal bytes 0..255 */
80    
81     #define END_BLOCK 256
82     /* end of block literal code */
83    
84     #define L_CODES (LITERALS+1+LENGTH_CODES)
85     /* number of Literal or Length codes, including the END_BLOCK code */
86    
87     #define D_CODES 30
88     /* number of distance codes */
89    
90     #define BL_CODES 19
91     /* number of codes used to transfer the bit lengths */
92    
93    
94     local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
95     = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
96    
97     local int extra_dbits[D_CODES] /* extra bits for each distance code */
98     = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
99    
100     local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
101     = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
102    
103     #define STORED_BLOCK 0
104     #define STATIC_TREES 1
105     #define DYN_TREES 2
106     /* The three kinds of block type */
107    
108     #ifndef LIT_BUFSIZE
109     # ifdef SMALL_MEM
110     # define LIT_BUFSIZE 0x2000
111     # else
112     # ifdef MEDIUM_MEM
113     # define LIT_BUFSIZE 0x4000
114     # else
115     # define LIT_BUFSIZE 0x8000
116     # endif
117     # endif
118     #endif
119     #ifndef DIST_BUFSIZE
120     # define DIST_BUFSIZE LIT_BUFSIZE
121     #endif
122     /* Sizes of match buffers for literals/lengths and distances. There are
123     * 4 reasons for limiting LIT_BUFSIZE to 64K:
124     * - frequencies can be kept in 16 bit counters
125     * - if compression is not successful for the first block, all input data is
126     * still in the window so we can still emit a stored block even when input
127     * comes from standard input. (This can also be done for all blocks if
128     * LIT_BUFSIZE is not greater than 32K.)
129     * - if compression is not successful for a file smaller than 64K, we can
130     * even emit a stored file instead of a stored block (saving 5 bytes).
131     * - creating new Huffman trees less frequently may not provide fast
132     * adaptation to changes in the input data statistics. (Take for
133     * example a binary file with poorly compressible code followed by
134     * a highly compressible string table.) Smaller buffer sizes give
135     * fast adaptation but have of course the overhead of transmitting trees
136     * more frequently.
137     * - I can't count above 4
138     * The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
139     * memory at the expense of compression). Some optimizations would be possible
140     * if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
141     */
142     #if LIT_BUFSIZE > INBUFSIZ
143     error cannot overlay l_buf and inbuf
144     #endif
145    
146     #define REP_3_6 16
147     /* repeat previous bit length 3-6 times (2 bits of repeat count) */
148    
149     #define REPZ_3_10 17
150     /* repeat a zero length 3-10 times (3 bits of repeat count) */
151    
152     #define REPZ_11_138 18
153     /* repeat a zero length 11-138 times (7 bits of repeat count) */
154    
155     /* ===========================================================================
156     * Local data
157     */
158    
159     /* Data structure describing a single value and its code string. */
160     typedef struct ct_data {
161     union {
162     ush freq; /* frequency count */
163     ush code; /* bit string */
164     } fc;
165     union {
166     ush dad; /* father node in Huffman tree */
167     ush len; /* length of bit string */
168     } dl;
169     } ct_data;
170    
171     #define Freq fc.freq
172     #define Code fc.code
173     #define Dad dl.dad
174     #define Len dl.len
175    
176     #define HEAP_SIZE (2*L_CODES+1)
177     /* maximum heap size */
178    
179     local ct_data dyn_ltree[HEAP_SIZE]; /* literal and length tree */
180     local ct_data dyn_dtree[2*D_CODES+1]; /* distance tree */
181    
182     local ct_data static_ltree[L_CODES+2];
183     /* The static literal tree. Since the bit lengths are imposed, there is no
184     * need for the L_CODES extra codes used during heap construction. However
185     * The codes 286 and 287 are needed to build a canonical tree (see ct_init
186     * below).
187     */
188    
189     local ct_data static_dtree[D_CODES];
190     /* The static distance tree. (Actually a trivial tree since all codes use
191     * 5 bits.)
192     */
193    
194     local ct_data bl_tree[2*BL_CODES+1];
195     /* Huffman tree for the bit lengths */
196    
197     typedef struct tree_desc {
198     ct_data *dyn_tree; /* the dynamic tree */
199     ct_data *static_tree; /* corresponding static tree or NULL */
200     int *extra_bits; /* extra bits for each code or NULL */
201     int extra_base; /* base index for extra_bits */
202     int elems; /* max number of elements in the tree */
203     int max_length; /* max bit length for the codes */
204     int max_code; /* largest code with non zero frequency */
205     } tree_desc;
206    
207     local tree_desc l_desc =
208     {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};
209    
210     local tree_desc d_desc =
211     {dyn_dtree, static_dtree, extra_dbits, 0, D_CODES, MAX_BITS, 0};
212    
213     local tree_desc bl_desc =
214     {bl_tree, (ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS, 0};
215    
216    
217     local ush bl_count[MAX_BITS+1];
218     /* number of codes at each bit length for an optimal tree */
219    
220     local uch bl_order[BL_CODES]
221     = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
222     /* The lengths of the bit length codes are sent in order of decreasing
223     * probability, to avoid transmitting the lengths for unused bit length codes.
224     */
225    
226     local int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */
227     local int heap_len; /* number of elements in the heap */
228     local int heap_max; /* element of largest frequency */
229     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
230     * The same heap array is used to build all trees.
231     */
232    
233     local uch depth[2*L_CODES+1];
234     /* Depth of each subtree used as tie breaker for trees of equal frequency */
235    
236     local uch length_code[MAX_MATCH-MIN_MATCH+1];
237     /* length code for each normalized match length (0 == MIN_MATCH) */
238    
239     local uch dist_code[512];
240     /* distance codes. The first 256 values correspond to the distances
241     * 3 .. 258, the last 256 values correspond to the top 8 bits of
242     * the 15 bit distances.
243     */
244    
245     local int base_length[LENGTH_CODES];
246     /* First normalized length for each code (0 = MIN_MATCH) */
247    
248     local int base_dist[D_CODES];
249     /* First normalized distance for each code (0 = distance of 1) */
250    
251     #define l_buf inbuf
252     /* DECLARE(uch, l_buf, LIT_BUFSIZE); buffer for literals or lengths */
253    
254     /* DECLARE(ush, d_buf, DIST_BUFSIZE); buffer for distances */
255    
256     local uch flag_buf[(LIT_BUFSIZE/8)];
257     /* flag_buf is a bit array distinguishing literals from lengths in
258     * l_buf, thus indicating the presence or absence of a distance.
259     */
260    
261     local unsigned last_lit; /* running index in l_buf */
262     local unsigned last_dist; /* running index in d_buf */
263     local unsigned last_flags; /* running index in flag_buf */
264     local uch flags; /* current flags not yet saved in flag_buf */
265     local uch flag_bit; /* current bit used in flags */
266     /* bits are filled in flags starting at bit 0 (least significant).
267     * Note: these flags are overkill in the current code since we don't
268     * take advantage of DIST_BUFSIZE == LIT_BUFSIZE.
269     */
270    
271     local ulg opt_len; /* bit length of current block with optimal trees */
272     local ulg static_len; /* bit length of current block with static trees */
273    
274     local ulg compressed_len; /* total bit length of compressed file */
275    
276     local ulg input_len; /* total byte length of input file */
277     /* input_len is for debugging only since we can get it by other means. */
278    
279     ush *file_type; /* pointer to UNKNOWN, BINARY or ASCII */
280     int *file_method; /* pointer to DEFLATE or STORE */
281    
282     #ifdef DEBUG
283     extern ulg bits_sent; /* bit length of the compressed data */
284     extern long isize; /* byte length of input file */
285     #endif
286    
287     extern long block_start; /* window offset of current block */
288     extern unsigned strstart; /* window offset of current string */
289    
290     /* ===========================================================================
291     * Local (static) routines in this file.
292     */
293    
294     local void init_block OF((void));
295     local void pqdownheap OF((ct_data *tree, int k));
296     local void gen_bitlen OF((tree_desc *desc));
297     local void gen_codes OF((ct_data *tree, int max_code));
298     local void build_tree OF((tree_desc *desc));
299     local void scan_tree OF((ct_data *tree, int max_code));
300     local void send_tree OF((ct_data *tree, int max_code));
301     local int build_bl_tree OF((void));
302     local void send_all_trees OF((int lcodes, int dcodes, int blcodes));
303     local void compress_block OF((ct_data *ltree, ct_data *dtree));
304     local void set_file_type OF((void));
305    
306    
307     #ifndef DEBUG
308     # define send_code(c, tree) send_bits(tree[c].Code, tree[c].Len)
309     /* Send a code of the given tree. c and tree must not have side effects */
310    
311     #else /* DEBUG */
312     # define send_code(c, tree) \
313     { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
314     send_bits(tree[c].Code, tree[c].Len); }
315     #endif
316    
317     #define d_code(dist) \
318     ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
319     /* Mapping from a distance to a distance code. dist is the distance - 1 and
320     * must not have side effects. dist_code[256] and dist_code[257] are never
321     * used.
322     */
323    
324     #define MAX(a,b) (a >= b ? a : b)
325     /* the arguments must not have side effects */
326    
327     /* ===========================================================================
328     * Allocate the match buffer, initialize the various tables and save the
329     * location of the internal file attribute (ascii/binary) and method
330     * (DEFLATE/STORE).
331     */
332     void ct_init(attr, methodp)
333     ush *attr; /* pointer to internal file attribute */
334     int *methodp; /* pointer to compression method */
335     {
336     int n; /* iterates over tree elements */
337     int bits; /* bit counter */
338     int length; /* length value */
339     int code; /* code value */
340     int dist; /* distance index */
341    
342     file_type = attr;
343     file_method = methodp;
344     compressed_len = input_len = 0L;
345    
346     if (static_dtree[0].Len != 0) return; /* ct_init already called */
347    
348     /* Initialize the mapping length (0..255) -> length code (0..28) */
349     length = 0;
350     for (code = 0; code < LENGTH_CODES-1; code++) {
351     base_length[code] = length;
352     for (n = 0; n < (1<<extra_lbits[code]); n++) {
353     length_code[length++] = (uch)code;
354     }
355     }
356     Assert (length == 256, "ct_init: length != 256");
357     /* Note that the length 255 (match length 258) can be represented
358     * in two different ways: code 284 + 5 bits or code 285, so we
359     * overwrite length_code[255] to use the best encoding:
360     */
361     length_code[length-1] = (uch)code;
362    
363     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
364     dist = 0;
365     for (code = 0 ; code < 16; code++) {
366     base_dist[code] = dist;
367     for (n = 0; n < (1<<extra_dbits[code]); n++) {
368     dist_code[dist++] = (uch)code;
369     }
370     }
371     Assert (dist == 256, "ct_init: dist != 256");
372     dist >>= 7; /* from now on, all distances are divided by 128 */
373     for ( ; code < D_CODES; code++) {
374     base_dist[code] = dist << 7;
375     for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
376     dist_code[256 + dist++] = (uch)code;
377     }
378     }
379     Assert (dist == 256, "ct_init: 256+dist != 512");
380    
381     /* Construct the codes of the static literal tree */
382     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
383     n = 0;
384     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
385     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
386     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
387     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
388     /* Codes 286 and 287 do not exist, but we must include them in the
389     * tree construction to get a canonical Huffman tree (longest code
390     * all ones)
391     */
392     gen_codes((ct_data *)static_ltree, L_CODES+1);
393    
394     /* The static distance tree is trivial: */
395     for (n = 0; n < D_CODES; n++) {
396     static_dtree[n].Len = 5;
397     static_dtree[n].Code = bi_reverse(n, 5);
398     }
399    
400     /* Initialize the first block of the first file: */
401     init_block();
402     }
403    
404     /* ===========================================================================
405     * Initialize a new block.
406     */
407     local void init_block()
408     {
409     int n; /* iterates over tree elements */
410    
411     /* Initialize the trees. */
412     for (n = 0; n < L_CODES; n++) dyn_ltree[n].Freq = 0;
413     for (n = 0; n < D_CODES; n++) dyn_dtree[n].Freq = 0;
414     for (n = 0; n < BL_CODES; n++) bl_tree[n].Freq = 0;
415    
416     dyn_ltree[END_BLOCK].Freq = 1;
417     opt_len = static_len = 0L;
418     last_lit = last_dist = last_flags = 0;
419     flags = 0; flag_bit = 1;
420     }
421    
422     #define SMALLEST 1
423     /* Index within the heap array of least frequent node in the Huffman tree */
424    
425    
426     /* ===========================================================================
427     * Remove the smallest element from the heap and recreate the heap with
428     * one less element. Updates heap and heap_len.
429     */
430     #define pqremove(tree, top) \
431     {\
432     top = heap[SMALLEST]; \
433     heap[SMALLEST] = heap[heap_len--]; \
434     pqdownheap(tree, SMALLEST); \
435     }
436    
437     /* ===========================================================================
438     * Compares to subtrees, using the tree depth as tie breaker when
439     * the subtrees have equal frequency. This minimizes the worst case length.
440     */
441     #define smaller(tree, n, m) \
442     (tree[n].Freq < tree[m].Freq || \
443     (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
444    
445     /* ===========================================================================
446     * Restore the heap property by moving down the tree starting at node k,
447     * exchanging a node with the smallest of its two sons if necessary, stopping
448     * when the heap property is re-established (each father smaller than its
449     * two sons).
450     */
451     local void pqdownheap(tree, k)
452     ct_data *tree; /* the tree to restore */
453     int k; /* node to move down */
454     {
455     int v = heap[k];
456     int j = k << 1; /* left son of k */
457     while (j <= heap_len) {
458     /* Set j to the smallest of the two sons: */
459     if (j < heap_len && smaller(tree, heap[j+1], heap[j])) j++;
460    
461     /* Exit if v is smaller than both sons */
462     if (smaller(tree, v, heap[j])) break;
463    
464     /* Exchange v with the smallest son */
465     heap[k] = heap[j]; k = j;
466    
467     /* And continue down the tree, setting j to the left son of k */
468     j <<= 1;
469     }
470     heap[k] = v;
471     }
472    
473     /* ===========================================================================
474     * Compute the optimal bit lengths for a tree and update the total bit length
475     * for the current block.
476     * IN assertion: the fields freq and dad are set, heap[heap_max] and
477     * above are the tree nodes sorted by increasing frequency.
478     * OUT assertions: the field len is set to the optimal bit length, the
479     * array bl_count contains the frequencies for each bit length.
480     * The length opt_len is updated; static_len is also updated if stree is
481     * not null.
482     */
483     local void gen_bitlen(desc)
484     tree_desc *desc; /* the tree descriptor */
485     {
486     ct_data *tree = desc->dyn_tree;
487     int *extra = desc->extra_bits;
488     int base = desc->extra_base;
489     int max_code = desc->max_code;
490     int max_length = desc->max_length;
491     ct_data *stree = desc->static_tree;
492     int h; /* heap index */
493     int n, m; /* iterate over the tree elements */
494     int bits; /* bit length */
495     int xbits; /* extra bits */
496     ush f; /* frequency */
497     int overflow = 0; /* number of elements with bit length too large */
498    
499     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
500    
501     /* In a first pass, compute the optimal bit lengths (which may
502     * overflow in the case of the bit length tree).
503     */
504     tree[heap[heap_max]].Len = 0; /* root of the heap */
505    
506     for (h = heap_max+1; h < HEAP_SIZE; h++) {
507     n = heap[h];
508     bits = tree[tree[n].Dad].Len + 1;
509     if (bits > max_length) bits = max_length, overflow++;
510     tree[n].Len = (ush)bits;
511     /* We overwrite tree[n].Dad which is no longer needed */
512    
513     if (n > max_code) continue; /* not a leaf node */
514    
515     bl_count[bits]++;
516     xbits = 0;
517     if (n >= base) xbits = extra[n-base];
518     f = tree[n].Freq;
519     opt_len += (ulg)f * (bits + xbits);
520     if (stree) static_len += (ulg)f * (stree[n].Len + xbits);
521     }
522     if (overflow == 0) return;
523    
524     Trace((stderr,"\nbit length overflow\n"));
525     /* This happens for example on obj2 and pic of the Calgary corpus */
526    
527     /* Find the first bit length which could increase: */
528     do {
529     bits = max_length-1;
530     while (bl_count[bits] == 0) bits--;
531     bl_count[bits]--; /* move one leaf down the tree */
532     bl_count[bits+1] += 2; /* move one overflow item as its brother */
533     bl_count[max_length]--;
534     /* The brother of the overflow item also moves one step up,
535     * but this does not affect bl_count[max_length]
536     */
537     overflow -= 2;
538     } while (overflow > 0);
539    
540     /* Now recompute all bit lengths, scanning in increasing frequency.
541     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
542     * lengths instead of fixing only the wrong ones. This idea is taken
543     * from 'ar' written by Haruhiko Okumura.)
544     */
545     for (bits = max_length; bits != 0; bits--) {
546     n = bl_count[bits];
547     while (n != 0) {
548     m = heap[--h];
549     if (m > max_code) continue;
550     if (tree[m].Len != (unsigned) bits) {
551     Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
552     opt_len += ((long)bits-(long)tree[m].Len)*(long)tree[m].Freq;
553     tree[m].Len = (ush)bits;
554     }
555     n--;
556     }
557     }
558     }
559    
560     /* ===========================================================================
561     * Generate the codes for a given tree and bit counts (which need not be
562     * optimal).
563     * IN assertion: the array bl_count contains the bit length statistics for
564     * the given tree and the field len is set for all tree elements.
565     * OUT assertion: the field code is set for all tree elements of non
566     * zero code length.
567     */
568     local void gen_codes (tree, max_code)
569     ct_data *tree; /* the tree to decorate */
570     int max_code; /* largest code with non zero frequency */
571     {
572     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
573     ush code = 0; /* running code value */
574     int bits; /* bit index */
575     int n; /* code index */
576    
577     /* The distribution counts are first used to generate the code values
578     * without bit reversal.
579     */
580     for (bits = 1; bits <= MAX_BITS; bits++) {
581     next_code[bits] = code = (code + bl_count[bits-1]) << 1;
582     }
583     /* Check that the bit counts in bl_count are consistent. The last code
584     * must be all ones.
585     */
586     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
587     "inconsistent bit counts");
588     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
589    
590     for (n = 0; n <= max_code; n++) {
591     int len = tree[n].Len;
592     if (len == 0) continue;
593     /* Now reverse the bits */
594     tree[n].Code = bi_reverse(next_code[len]++, len);
595    
596     Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
597     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
598     }
599     }
600    
601     /* ===========================================================================
602     * Construct one Huffman tree and assigns the code bit strings and lengths.
603     * Update the total bit length for the current block.
604     * IN assertion: the field freq is set for all tree elements.
605     * OUT assertions: the fields len and code are set to the optimal bit length
606     * and corresponding code. The length opt_len is updated; static_len is
607     * also updated if stree is not null. The field max_code is set.
608     */
609     local void build_tree(desc)
610     tree_desc *desc; /* the tree descriptor */
611     {
612     ct_data *tree = desc->dyn_tree;
613     ct_data *stree = desc->static_tree;
614     int elems = desc->elems;
615     int n, m; /* iterate over heap elements */
616     int max_code = -1; /* largest code with non zero frequency */
617     int node = elems; /* next internal node of the tree */
618    
619     /* Construct the initial heap, with least frequent element in
620     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
621     * heap[0] is not used.
622     */
623     heap_len = 0, heap_max = HEAP_SIZE;
624    
625     for (n = 0; n < elems; n++) {
626     if (tree[n].Freq != 0) {
627     heap[++heap_len] = max_code = n;
628     depth[n] = 0;
629     } else {
630     tree[n].Len = 0;
631     }
632     }
633    
634     /* The pkzip format requires that at least one distance code exists,
635     * and that at least one bit should be sent even if there is only one
636     * possible code. So to avoid special checks later on we force at least
637     * two codes of non zero frequency.
638     */
639     while (heap_len < 2) {
640     int new = heap[++heap_len] = (max_code < 2 ? ++max_code : 0);
641     tree[new].Freq = 1;
642     depth[new] = 0;
643     opt_len--; if (stree) static_len -= stree[new].Len;
644     /* new is 0 or 1 so it does not have extra bits */
645     }
646     desc->max_code = max_code;
647    
648     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
649     * establish sub-heaps of increasing lengths:
650     */
651     for (n = heap_len/2; n >= 1; n--) pqdownheap(tree, n);
652    
653     /* Construct the Huffman tree by repeatedly combining the least two
654     * frequent nodes.
655     */
656     do {
657     pqremove(tree, n); /* n = node of least frequency */
658     m = heap[SMALLEST]; /* m = node of next least frequency */
659    
660     heap[--heap_max] = n; /* keep the nodes sorted by frequency */
661     heap[--heap_max] = m;
662    
663     /* Create a new node father of n and m */
664     tree[node].Freq = tree[n].Freq + tree[m].Freq;
665     depth[node] = (uch) (MAX(depth[n], depth[m]) + 1);
666     tree[n].Dad = tree[m].Dad = (ush)node;
667     #ifdef DUMP_BL_TREE
668     if (tree == bl_tree) {
669     fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
670     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
671     }
672     #endif
673     /* and insert the new node in the heap */
674     heap[SMALLEST] = node++;
675     pqdownheap(tree, SMALLEST);
676    
677     } while (heap_len >= 2);
678    
679     heap[--heap_max] = heap[SMALLEST];
680    
681     /* At this point, the fields freq and dad are set. We can now
682     * generate the bit lengths.
683     */
684     gen_bitlen((tree_desc *)desc);
685    
686     /* The field len is now set, we can generate the bit codes */
687     gen_codes ((ct_data *)tree, max_code);
688     }
689    
690     /* ===========================================================================
691     * Scan a literal or distance tree to determine the frequencies of the codes
692     * in the bit length tree. Updates opt_len to take into account the repeat
693     * counts. (The contribution of the bit length codes will be added later
694     * during the construction of bl_tree.)
695     */
696     local void scan_tree (tree, max_code)
697     ct_data *tree; /* the tree to be scanned */
698     int max_code; /* and its largest code of non zero frequency */
699     {
700     int n; /* iterates over all tree elements */
701     int prevlen = -1; /* last emitted length */
702     int curlen; /* length of current code */
703     int nextlen = tree[0].Len; /* length of next code */
704     int count = 0; /* repeat count of the current code */
705     int max_count = 7; /* max repeat count */
706     int min_count = 4; /* min repeat count */
707    
708     if (nextlen == 0) max_count = 138, min_count = 3;
709     tree[max_code+1].Len = (ush)0xffff; /* guard */
710    
711     for (n = 0; n <= max_code; n++) {
712     curlen = nextlen; nextlen = tree[n+1].Len;
713     if (++count < max_count && curlen == nextlen) {
714     continue;
715     } else if (count < min_count) {
716     bl_tree[curlen].Freq += count;
717     } else if (curlen != 0) {
718     if (curlen != prevlen) bl_tree[curlen].Freq++;
719     bl_tree[REP_3_6].Freq++;
720     } else if (count <= 10) {
721     bl_tree[REPZ_3_10].Freq++;
722     } else {
723     bl_tree[REPZ_11_138].Freq++;
724     }
725     count = 0; prevlen = curlen;
726     if (nextlen == 0) {
727     max_count = 138, min_count = 3;
728     } else if (curlen == nextlen) {
729     max_count = 6, min_count = 3;
730     } else {
731     max_count = 7, min_count = 4;
732     }
733     }
734     }
735    
736     /* ===========================================================================
737     * Send a literal or distance tree in compressed form, using the codes in
738     * bl_tree.
739     */
740     local void send_tree (tree, max_code)
741     ct_data *tree; /* the tree to be scanned */
742     int max_code; /* and its largest code of non zero frequency */
743     {
744     int n; /* iterates over all tree elements */
745     int prevlen = -1; /* last emitted length */
746     int curlen; /* length of current code */
747     int nextlen = tree[0].Len; /* length of next code */
748     int count = 0; /* repeat count of the current code */
749     int max_count = 7; /* max repeat count */
750     int min_count = 4; /* min repeat count */
751    
752     /* tree[max_code+1].Len = -1; */ /* guard already set */
753     if (nextlen == 0) max_count = 138, min_count = 3;
754    
755     for (n = 0; n <= max_code; n++) {
756     curlen = nextlen; nextlen = tree[n+1].Len;
757     if (++count < max_count && curlen == nextlen) {
758     continue;
759     } else if (count < min_count) {
760     do { send_code(curlen, bl_tree); } while (--count != 0);
761    
762     } else if (curlen != 0) {
763     if (curlen != prevlen) {
764     send_code(curlen, bl_tree); count--;
765     }
766     Assert(count >= 3 && count <= 6, " 3_6?");
767     send_code(REP_3_6, bl_tree); send_bits(count-3, 2);
768    
769     } else if (count <= 10) {
770     send_code(REPZ_3_10, bl_tree); send_bits(count-3, 3);
771    
772     } else {
773     send_code(REPZ_11_138, bl_tree); send_bits(count-11, 7);
774     }
775     count = 0; prevlen = curlen;
776     if (nextlen == 0) {
777     max_count = 138, min_count = 3;
778     } else if (curlen == nextlen) {
779     max_count = 6, min_count = 3;
780     } else {
781     max_count = 7, min_count = 4;
782     }
783     }
784     }
785    
786     /* ===========================================================================
787     * Construct the Huffman tree for the bit lengths and return the index in
788     * bl_order of the last bit length code to send.
789     */
790     local int build_bl_tree()
791     {
792     int max_blindex; /* index of last bit length code of non zero freq */
793    
794     /* Determine the bit length frequencies for literal and distance trees */
795     scan_tree((ct_data *)dyn_ltree, l_desc.max_code);
796     scan_tree((ct_data *)dyn_dtree, d_desc.max_code);
797    
798     /* Build the bit length tree: */
799     build_tree((tree_desc *)(&bl_desc));
800     /* opt_len now includes the length of the tree representations, except
801     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
802     */
803    
804     /* Determine the number of bit length codes to send. The pkzip format
805     * requires that at least 4 bit length codes be sent. (appnote.txt says
806     * 3 but the actual value used is 4.)
807     */
808     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
809     if (bl_tree[bl_order[max_blindex]].Len != 0) break;
810     }
811     /* Update opt_len to include the bit length tree and counts */
812     opt_len += 3*(max_blindex+1) + 5+5+4;
813     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", opt_len, static_len));
814    
815     return max_blindex;
816     }
817    
818     /* ===========================================================================
819     * Send the header for a block using dynamic Huffman trees: the counts, the
820     * lengths of the bit length codes, the literal tree and the distance tree.
821     * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
822     */
823     local void send_all_trees(lcodes, dcodes, blcodes)
824     int lcodes, dcodes, blcodes; /* number of codes for each tree */
825     {
826     int rank; /* index in bl_order */
827    
828     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
829     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
830     "too many codes");
831     Tracev((stderr, "\nbl counts: "));
832     send_bits(lcodes-257, 5); /* not +255 as stated in appnote.txt */
833     send_bits(dcodes-1, 5);
834     send_bits(blcodes-4, 4); /* not -3 as stated in appnote.txt */
835     for (rank = 0; rank < blcodes; rank++) {
836     Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
837     send_bits(bl_tree[bl_order[rank]].Len, 3);
838     }
839     Tracev((stderr, "\nbl tree: sent %ld", bits_sent));
840    
841     send_tree((ct_data *)dyn_ltree, lcodes-1); /* send the literal tree */
842     Tracev((stderr, "\nlit tree: sent %ld", bits_sent));
843    
844     send_tree((ct_data *)dyn_dtree, dcodes-1); /* send the distance tree */
845     Tracev((stderr, "\ndist tree: sent %ld", bits_sent));
846     }
847    
848     /* ===========================================================================
849     * Determine the best encoding for the current block: dynamic trees, static
850     * trees or store, and output the encoded block to the zip file. This function
851     * returns the total compressed length for the file so far.
852     */
853     ulg flush_block(buf, stored_len, eof)
854     char *buf; /* input block, or NULL if too old */
855     ulg stored_len; /* length of input block */
856     int eof; /* true if this is the last block for a file */
857     {
858     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
859     int max_blindex; /* index of last bit length code of non zero freq */
860    
861     flag_buf[last_flags] = flags; /* Save the flags for the last 8 items */
862    
863     /* Check if the file is ascii or binary */
864     if (*file_type == (ush)UNKNOWN) set_file_type();
865    
866     /* Construct the literal and distance trees */
867     build_tree((tree_desc *)(&l_desc));
868     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", opt_len, static_len));
869    
870     build_tree((tree_desc *)(&d_desc));
871     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", opt_len, static_len));
872     /* At this point, opt_len and static_len are the total bit lengths of
873     * the compressed block data, excluding the tree representations.
874     */
875    
876     /* Build the bit length tree for the above two trees, and get the index
877     * in bl_order of the last bit length code to send.
878     */
879     max_blindex = build_bl_tree();
880    
881     /* Determine the best encoding. Compute first the block length in bytes */
882     opt_lenb = (opt_len+3+7)>>3;
883     static_lenb = (static_len+3+7)>>3;
884     input_len += stored_len; /* for debugging only */
885    
886     Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
887     opt_lenb, opt_len, static_lenb, static_len, stored_len,
888     last_lit, last_dist));
889    
890     if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
891    
892     /* If compression failed and this is the first and last block,
893     * and if the zip file can be seeked (to rewrite the local header),
894     * the whole file is transformed into a stored file:
895     */
896     #ifdef FORCE_METHOD
897     if (level == 1 && eof && compressed_len == 0L) { /* force stored file */
898     #else
899     if (stored_len <= opt_lenb && eof && compressed_len == 0L && seekable()) {
900     #endif
901     /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
902     if (buf == (char*)0) error ("block vanished");
903    
904     copy_block(buf, (unsigned)stored_len, 0); /* without header */
905     compressed_len = stored_len << 3;
906     *file_method = STORED;
907    
908     #ifdef FORCE_METHOD
909     } else if (level == 2 && buf != (char*)0) { /* force stored block */
910     #else
911     } else if (stored_len+4 <= opt_lenb && buf != (char*)0) {
912     /* 4: two words for the lengths */
913     #endif
914     /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
915     * Otherwise we can't have processed more than WSIZE input bytes since
916     * the last block flush, because compression would have been
917     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
918     * transform a block into a stored block.
919     */
920     send_bits((STORED_BLOCK<<1)+eof, 3); /* send block type */
921     compressed_len = (compressed_len + 3 + 7) & ~7L;
922     compressed_len += (stored_len + 4) << 3;
923    
924     copy_block(buf, (unsigned)stored_len, 1); /* with header */
925    
926     #ifdef FORCE_METHOD
927     } else if (level == 3) { /* force static trees */
928     #else
929     } else if (static_lenb == opt_lenb) {
930     #endif
931     send_bits((STATIC_TREES<<1)+eof, 3);
932     compress_block((ct_data *)static_ltree, (ct_data *)static_dtree);
933     compressed_len += 3 + static_len;
934     } else {
935     send_bits((DYN_TREES<<1)+eof, 3);
936     send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
937     compress_block((ct_data *)dyn_ltree, (ct_data *)dyn_dtree);
938     compressed_len += 3 + opt_len;
939     }
940     Assert (compressed_len == bits_sent, "bad compressed size");
941     init_block();
942    
943     if (eof) {
944     Assert (input_len == isize, "bad input size");
945     bi_windup();
946     compressed_len += 7; /* align on byte boundary */
947     }
948     Tracev((stderr,"\ncomprlen %lu(%lu) ", compressed_len>>3,
949     compressed_len-7*eof));
950    
951     return compressed_len >> 3;
952     }
953    
954     /* ===========================================================================
955     * Save the match info and tally the frequency counts. Return true if
956     * the current block must be flushed.
957     */
958     int ct_tally (dist, lc)
959     int dist; /* distance of matched string */
960     int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
961     {
962     l_buf[last_lit++] = (uch)lc;
963     if (dist == 0) {
964     /* lc is the unmatched char */
965     dyn_ltree[lc].Freq++;
966     } else {
967     /* Here, lc is the match length - MIN_MATCH */
968     dist--; /* dist = match distance - 1 */
969     Assert((ush)dist < (ush)MAX_DIST &&
970     (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
971     (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
972    
973     dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
974     dyn_dtree[d_code(dist)].Freq++;
975    
976     d_buf[last_dist++] = (ush)dist;
977     flags |= flag_bit;
978     }
979     flag_bit <<= 1;
980    
981     /* Output the flags if they fill a byte: */
982     if ((last_lit & 7) == 0) {
983     flag_buf[last_flags++] = flags;
984     flags = 0, flag_bit = 1;
985     }
986     /* Try to guess if it is profitable to stop the current block here */
987     if (level > 2 && (last_lit & 0xfff) == 0) {
988     /* Compute an upper bound for the compressed length */
989     ulg out_length = (ulg)last_lit*8L;
990     ulg in_length = (ulg)strstart-block_start;
991     int dcode;
992     for (dcode = 0; dcode < D_CODES; dcode++) {
993     out_length += (ulg)dyn_dtree[dcode].Freq*(5L+extra_dbits[dcode]);
994     }
995     out_length >>= 3;
996     Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
997     last_lit, last_dist, in_length, out_length,
998     100L - out_length*100L/in_length));
999     if (last_dist < last_lit/2 && out_length < in_length/2) return 1;
1000     }
1001     return (last_lit == LIT_BUFSIZE-1 || last_dist == DIST_BUFSIZE);
1002     /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
1003     * on 16 bit machines and because stored blocks are restricted to
1004     * 64K-1 bytes.
1005     */
1006     }
1007    
1008     /* ===========================================================================
1009     * Send the block data compressed using the given Huffman trees
1010     */
1011     local void compress_block(ltree, dtree)
1012     ct_data *ltree; /* literal tree */
1013     ct_data *dtree; /* distance tree */
1014     {
1015     unsigned dist; /* distance of matched string */
1016     int lc; /* match length or unmatched char (if dist == 0) */
1017     unsigned lx = 0; /* running index in l_buf */
1018     unsigned dx = 0; /* running index in d_buf */
1019     unsigned fx = 0; /* running index in flag_buf */
1020     uch flag = 0; /* current flags */
1021     unsigned code; /* the code to send */
1022     int extra; /* number of extra bits to send */
1023    
1024     if (last_lit != 0) do {
1025     if ((lx & 7) == 0) flag = flag_buf[fx++];
1026     lc = l_buf[lx++];
1027     if ((flag & 1) == 0) {
1028     send_code(lc, ltree); /* send a literal byte */
1029     Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1030     } else {
1031     /* Here, lc is the match length - MIN_MATCH */
1032     code = length_code[lc];
1033     send_code(code+LITERALS+1, ltree); /* send the length code */
1034     extra = extra_lbits[code];
1035     if (extra != 0) {
1036     lc -= base_length[code];
1037     send_bits(lc, extra); /* send the extra length bits */
1038     }
1039     dist = d_buf[dx++];
1040     /* Here, dist is the match distance - 1 */
1041     code = d_code(dist);
1042     Assert (code < D_CODES, "bad d_code");
1043    
1044     send_code(code, dtree); /* send the distance code */
1045     extra = extra_dbits[code];
1046     if (extra != 0) {
1047     dist -= base_dist[code];
1048     send_bits(dist, extra); /* send the extra distance bits */
1049     }
1050     } /* literal or match pair ? */
1051     flag >>= 1;
1052     } while (lx < last_lit);
1053    
1054     send_code(END_BLOCK, ltree);
1055     }
1056    
1057     /* ===========================================================================
1058     * Set the file type to ASCII or BINARY, using a crude approximation:
1059     * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1060     * IN assertion: the fields freq of dyn_ltree are set and the total of all
1061     * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1062     */
1063     local void set_file_type()
1064     {
1065     int n = 0;
1066     unsigned ascii_freq = 0;
1067     unsigned bin_freq = 0;
1068     while (n < 7) bin_freq += dyn_ltree[n++].Freq;
1069     while (n < 128) ascii_freq += dyn_ltree[n++].Freq;
1070     while (n < LITERALS) bin_freq += dyn_ltree[n++].Freq;
1071     *file_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII;
1072     if (*file_type == BINARY && translate_eol) {
1073     warn("-l used on binary file", "");
1074     }
1075     }