Magellan Linux

Annotation of /trunk/mkinitrd-magellan/klibc/usr/klibc/zlib/trees.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 815 - (hide annotations) (download)
Fri Apr 24 18:32:46 2009 UTC (15 years, 1 month ago) by niro
File MIME type: text/plain
File size: 44071 byte(s)
-updated to klibc-1.5.15
1 niro 532 /* trees.c -- output deflated data using Huffman coding
2     * Copyright (C) 1995-2005 Jean-loup Gailly
3     * For conditions of distribution and use, see copyright notice in zlib.h
4     */
5    
6     /*
7     * ALGORITHM
8     *
9     * The "deflation" process uses several Huffman trees. The more
10     * common source values are represented by shorter bit sequences.
11     *
12     * Each code tree is stored in a compressed form which is itself
13     * a Huffman encoding of the lengths of all the code strings (in
14     * ascending order by source values). The actual code strings are
15     * reconstructed from the lengths in the inflate process, as described
16     * in the deflate specification.
17     *
18     * REFERENCES
19     *
20     * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21     * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22     *
23     * Storer, James A.
24     * Data Compression: Methods and Theory, pp. 49-50.
25     * Computer Science Press, 1988. ISBN 0-7167-8156-5.
26     *
27     * Sedgewick, R.
28     * Algorithms, p290.
29     * Addison-Wesley, 1983. ISBN 0-201-06672-6.
30     */
31    
32 niro 815 /* @(#) $Id: trees.c,v 1.1 2005/02/27 23:15:39 hpa Exp $ */
33 niro 532
34     /* #define GEN_TREES_H */
35    
36     #include "deflate.h"
37    
38     #ifdef DEBUG
39     # include <ctype.h>
40     #endif
41    
42     /* ===========================================================================
43     * Constants
44     */
45    
46     #define MAX_BL_BITS 7
47     /* Bit length codes must not exceed MAX_BL_BITS bits */
48    
49     #define END_BLOCK 256
50     /* end of block literal code */
51    
52     #define REP_3_6 16
53     /* repeat previous bit length 3-6 times (2 bits of repeat count) */
54    
55     #define REPZ_3_10 17
56     /* repeat a zero length 3-10 times (3 bits of repeat count) */
57    
58     #define REPZ_11_138 18
59     /* repeat a zero length 11-138 times (7 bits of repeat count) */
60    
61     local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
62     = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
63    
64     local const int extra_dbits[D_CODES] /* extra bits for each distance code */
65     = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
66    
67     local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
68     = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
69    
70     local const uch bl_order[BL_CODES]
71     = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
72     /* The lengths of the bit length codes are sent in order of decreasing
73     * probability, to avoid transmitting the lengths for unused bit length codes.
74     */
75    
76     #define Buf_size (8 * 2*sizeof(char))
77     /* Number of bits used within bi_buf. (bi_buf might be implemented on
78     * more than 16 bits on some systems.)
79     */
80    
81     /* ===========================================================================
82     * Local data. These are initialized only once.
83     */
84    
85     #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
86    
87     #if defined(GEN_TREES_H) || !defined(STDC)
88     /* non ANSI compilers may not accept trees.h */
89    
90     local ct_data static_ltree[L_CODES+2];
91     /* The static literal tree. Since the bit lengths are imposed, there is no
92     * need for the L_CODES extra codes used during heap construction. However
93     * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
94     * below).
95     */
96    
97     local ct_data static_dtree[D_CODES];
98     /* The static distance tree. (Actually a trivial tree since all codes use
99     * 5 bits.)
100     */
101    
102     uch _dist_code[DIST_CODE_LEN];
103     /* Distance codes. The first 256 values correspond to the distances
104     * 3 .. 258, the last 256 values correspond to the top 8 bits of
105     * the 15 bit distances.
106     */
107    
108     uch _length_code[MAX_MATCH-MIN_MATCH+1];
109     /* length code for each normalized match length (0 == MIN_MATCH) */
110    
111     local int base_length[LENGTH_CODES];
112     /* First normalized length for each code (0 = MIN_MATCH) */
113    
114     local int base_dist[D_CODES];
115     /* First normalized distance for each code (0 = distance of 1) */
116    
117     #else
118     # include "trees.h"
119     #endif /* GEN_TREES_H */
120    
121     struct static_tree_desc_s {
122     const ct_data *static_tree; /* static tree or NULL */
123     const intf *extra_bits; /* extra bits for each code or NULL */
124     int extra_base; /* base index for extra_bits */
125     int elems; /* max number of elements in the tree */
126     int max_length; /* max bit length for the codes */
127     };
128    
129     local static_tree_desc static_l_desc =
130     {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
131    
132     local static_tree_desc static_d_desc =
133     {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
134    
135     local static_tree_desc static_bl_desc =
136     {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
137    
138     /* ===========================================================================
139     * Local (static) routines in this file.
140     */
141    
142     local void tr_static_init OF((void));
143     local void init_block OF((deflate_state *s));
144     local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
145     local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
146     local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
147     local void build_tree OF((deflate_state *s, tree_desc *desc));
148     local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
149     local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
150     local int build_bl_tree OF((deflate_state *s));
151     local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
152     int blcodes));
153     local void compress_block OF((deflate_state *s, ct_data *ltree,
154     ct_data *dtree));
155     local void set_data_type OF((deflate_state *s));
156     local unsigned bi_reverse OF((unsigned value, int length));
157     local void bi_windup OF((deflate_state *s));
158     local void bi_flush OF((deflate_state *s));
159     local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
160     int header));
161    
162     #ifdef GEN_TREES_H
163     local void gen_trees_header OF((void));
164     #endif
165    
166     #ifndef DEBUG
167     # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
168     /* Send a code of the given tree. c and tree must not have side effects */
169    
170     #else /* DEBUG */
171     # define send_code(s, c, tree) \
172     { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
173     send_bits(s, tree[c].Code, tree[c].Len); }
174     #endif
175    
176     /* ===========================================================================
177     * Output a short LSB first on the stream.
178     * IN assertion: there is enough room in pendingBuf.
179     */
180     #define put_short(s, w) { \
181     put_byte(s, (uch)((w) & 0xff)); \
182     put_byte(s, (uch)((ush)(w) >> 8)); \
183     }
184    
185     /* ===========================================================================
186     * Send a value on a given number of bits.
187     * IN assertion: length <= 16 and value fits in length bits.
188     */
189     #ifdef DEBUG
190     local void send_bits OF((deflate_state *s, int value, int length));
191    
192     local void send_bits(s, value, length)
193     deflate_state *s;
194     int value; /* value to send */
195     int length; /* number of bits */
196     {
197     Tracevv((stderr," l %2d v %4x ", length, value));
198     Assert(length > 0 && length <= 15, "invalid length");
199     s->bits_sent += (ulg)length;
200    
201     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
202     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
203     * unused bits in value.
204     */
205     if (s->bi_valid > (int)Buf_size - length) {
206     s->bi_buf |= (value << s->bi_valid);
207     put_short(s, s->bi_buf);
208     s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
209     s->bi_valid += length - Buf_size;
210     } else {
211     s->bi_buf |= value << s->bi_valid;
212     s->bi_valid += length;
213     }
214     }
215     #else /* !DEBUG */
216    
217     #define send_bits(s, value, length) \
218     { int len = length;\
219     if (s->bi_valid > (int)Buf_size - len) {\
220     int val = value;\
221     s->bi_buf |= (val << s->bi_valid);\
222     put_short(s, s->bi_buf);\
223     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
224     s->bi_valid += len - Buf_size;\
225     } else {\
226     s->bi_buf |= (value) << s->bi_valid;\
227     s->bi_valid += len;\
228     }\
229     }
230     #endif /* DEBUG */
231    
232    
233     /* the arguments must not have side effects */
234    
235     /* ===========================================================================
236     * Initialize the various 'constant' tables.
237     */
238     local void tr_static_init()
239     {
240     #if defined(GEN_TREES_H) || !defined(STDC)
241     static int static_init_done = 0;
242     int n; /* iterates over tree elements */
243     int bits; /* bit counter */
244     int length; /* length value */
245     int code; /* code value */
246     int dist; /* distance index */
247     ush bl_count[MAX_BITS+1];
248     /* number of codes at each bit length for an optimal tree */
249    
250     if (static_init_done) return;
251    
252     /* For some embedded targets, global variables are not initialized: */
253     static_l_desc.static_tree = static_ltree;
254     static_l_desc.extra_bits = extra_lbits;
255     static_d_desc.static_tree = static_dtree;
256     static_d_desc.extra_bits = extra_dbits;
257     static_bl_desc.extra_bits = extra_blbits;
258    
259     /* Initialize the mapping length (0..255) -> length code (0..28) */
260     length = 0;
261     for (code = 0; code < LENGTH_CODES-1; code++) {
262     base_length[code] = length;
263     for (n = 0; n < (1<<extra_lbits[code]); n++) {
264     _length_code[length++] = (uch)code;
265     }
266     }
267     Assert (length == 256, "tr_static_init: length != 256");
268     /* Note that the length 255 (match length 258) can be represented
269     * in two different ways: code 284 + 5 bits or code 285, so we
270     * overwrite length_code[255] to use the best encoding:
271     */
272     _length_code[length-1] = (uch)code;
273    
274     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
275     dist = 0;
276     for (code = 0 ; code < 16; code++) {
277     base_dist[code] = dist;
278     for (n = 0; n < (1<<extra_dbits[code]); n++) {
279     _dist_code[dist++] = (uch)code;
280     }
281     }
282     Assert (dist == 256, "tr_static_init: dist != 256");
283     dist >>= 7; /* from now on, all distances are divided by 128 */
284     for ( ; code < D_CODES; code++) {
285     base_dist[code] = dist << 7;
286     for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
287     _dist_code[256 + dist++] = (uch)code;
288     }
289     }
290     Assert (dist == 256, "tr_static_init: 256+dist != 512");
291    
292     /* Construct the codes of the static literal tree */
293     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
294     n = 0;
295     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
296     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
297     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
298     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
299     /* Codes 286 and 287 do not exist, but we must include them in the
300     * tree construction to get a canonical Huffman tree (longest code
301     * all ones)
302     */
303     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
304    
305     /* The static distance tree is trivial: */
306     for (n = 0; n < D_CODES; n++) {
307     static_dtree[n].Len = 5;
308     static_dtree[n].Code = bi_reverse((unsigned)n, 5);
309     }
310     static_init_done = 1;
311    
312     # ifdef GEN_TREES_H
313     gen_trees_header();
314     # endif
315     #endif /* defined(GEN_TREES_H) || !defined(STDC) */
316     }
317    
318     /* ===========================================================================
319     * Genererate the file trees.h describing the static trees.
320     */
321     #ifdef GEN_TREES_H
322     # ifndef DEBUG
323     # include <stdio.h>
324     # endif
325    
326     # define SEPARATOR(i, last, width) \
327     ((i) == (last)? "\n};\n\n" : \
328     ((i) % (width) == (width)-1 ? ",\n" : ", "))
329    
330     void gen_trees_header()
331     {
332     FILE *header = fopen("trees.h", "w");
333     int i;
334    
335     Assert (header != NULL, "Can't open trees.h");
336     fprintf(header,
337     "/* header created automatically with -DGEN_TREES_H */\n\n");
338    
339     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
340     for (i = 0; i < L_CODES+2; i++) {
341     fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
342     static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
343     }
344    
345     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
346     for (i = 0; i < D_CODES; i++) {
347     fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
348     static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
349     }
350    
351     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
352     for (i = 0; i < DIST_CODE_LEN; i++) {
353     fprintf(header, "%2u%s", _dist_code[i],
354     SEPARATOR(i, DIST_CODE_LEN-1, 20));
355     }
356    
357     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
358     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
359     fprintf(header, "%2u%s", _length_code[i],
360     SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
361     }
362    
363     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
364     for (i = 0; i < LENGTH_CODES; i++) {
365     fprintf(header, "%1u%s", base_length[i],
366     SEPARATOR(i, LENGTH_CODES-1, 20));
367     }
368    
369     fprintf(header, "local const int base_dist[D_CODES] = {\n");
370     for (i = 0; i < D_CODES; i++) {
371     fprintf(header, "%5u%s", base_dist[i],
372     SEPARATOR(i, D_CODES-1, 10));
373     }
374    
375     fclose(header);
376     }
377     #endif /* GEN_TREES_H */
378    
379     /* ===========================================================================
380     * Initialize the tree data structures for a new zlib stream.
381     */
382     void _tr_init(s)
383     deflate_state *s;
384     {
385     tr_static_init();
386    
387     s->l_desc.dyn_tree = s->dyn_ltree;
388     s->l_desc.stat_desc = &static_l_desc;
389    
390     s->d_desc.dyn_tree = s->dyn_dtree;
391     s->d_desc.stat_desc = &static_d_desc;
392    
393     s->bl_desc.dyn_tree = s->bl_tree;
394     s->bl_desc.stat_desc = &static_bl_desc;
395    
396     s->bi_buf = 0;
397     s->bi_valid = 0;
398     s->last_eob_len = 8; /* enough lookahead for inflate */
399     #ifdef DEBUG
400     s->compressed_len = 0L;
401     s->bits_sent = 0L;
402     #endif
403    
404     /* Initialize the first block of the first file: */
405     init_block(s);
406     }
407    
408     /* ===========================================================================
409     * Initialize a new block.
410     */
411     local void init_block(s)
412     deflate_state *s;
413     {
414     int n; /* iterates over tree elements */
415    
416     /* Initialize the trees. */
417     for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
418     for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
419     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
420    
421     s->dyn_ltree[END_BLOCK].Freq = 1;
422     s->opt_len = s->static_len = 0L;
423     s->last_lit = s->matches = 0;
424     }
425    
426     #define SMALLEST 1
427     /* Index within the heap array of least frequent node in the Huffman tree */
428    
429    
430     /* ===========================================================================
431     * Remove the smallest element from the heap and recreate the heap with
432     * one less element. Updates heap and heap_len.
433     */
434     #define pqremove(s, tree, top) \
435     {\
436     top = s->heap[SMALLEST]; \
437     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
438     pqdownheap(s, tree, SMALLEST); \
439     }
440    
441     /* ===========================================================================
442     * Compares to subtrees, using the tree depth as tie breaker when
443     * the subtrees have equal frequency. This minimizes the worst case length.
444     */
445     #define smaller(tree, n, m, depth) \
446     (tree[n].Freq < tree[m].Freq || \
447     (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
448    
449     /* ===========================================================================
450     * Restore the heap property by moving down the tree starting at node k,
451     * exchanging a node with the smallest of its two sons if necessary, stopping
452     * when the heap property is re-established (each father smaller than its
453     * two sons).
454     */
455     local void pqdownheap(s, tree, k)
456     deflate_state *s;
457     ct_data *tree; /* the tree to restore */
458     int k; /* node to move down */
459     {
460     int v = s->heap[k];
461     int j = k << 1; /* left son of k */
462     while (j <= s->heap_len) {
463     /* Set j to the smallest of the two sons: */
464     if (j < s->heap_len &&
465     smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
466     j++;
467     }
468     /* Exit if v is smaller than both sons */
469     if (smaller(tree, v, s->heap[j], s->depth)) break;
470    
471     /* Exchange v with the smallest son */
472     s->heap[k] = s->heap[j]; k = j;
473    
474     /* And continue down the tree, setting j to the left son of k */
475     j <<= 1;
476     }
477     s->heap[k] = v;
478     }
479    
480     /* ===========================================================================
481     * Compute the optimal bit lengths for a tree and update the total bit length
482     * for the current block.
483     * IN assertion: the fields freq and dad are set, heap[heap_max] and
484     * above are the tree nodes sorted by increasing frequency.
485     * OUT assertions: the field len is set to the optimal bit length, the
486     * array bl_count contains the frequencies for each bit length.
487     * The length opt_len is updated; static_len is also updated if stree is
488     * not null.
489     */
490     local void gen_bitlen(s, desc)
491     deflate_state *s;
492     tree_desc *desc; /* the tree descriptor */
493     {
494     ct_data *tree = desc->dyn_tree;
495     int max_code = desc->max_code;
496     const ct_data *stree = desc->stat_desc->static_tree;
497     const intf *extra = desc->stat_desc->extra_bits;
498     int base = desc->stat_desc->extra_base;
499     int max_length = desc->stat_desc->max_length;
500     int h; /* heap index */
501     int n, m; /* iterate over the tree elements */
502     int bits; /* bit length */
503     int xbits; /* extra bits */
504     ush f; /* frequency */
505     int overflow = 0; /* number of elements with bit length too large */
506    
507     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
508    
509     /* In a first pass, compute the optimal bit lengths (which may
510     * overflow in the case of the bit length tree).
511     */
512     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
513    
514     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
515     n = s->heap[h];
516     bits = tree[tree[n].Dad].Len + 1;
517     if (bits > max_length) bits = max_length, overflow++;
518     tree[n].Len = (ush)bits;
519     /* We overwrite tree[n].Dad which is no longer needed */
520    
521     if (n > max_code) continue; /* not a leaf node */
522    
523     s->bl_count[bits]++;
524     xbits = 0;
525     if (n >= base) xbits = extra[n-base];
526     f = tree[n].Freq;
527     s->opt_len += (ulg)f * (bits + xbits);
528     if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
529     }
530     if (overflow == 0) return;
531    
532     Trace((stderr,"\nbit length overflow\n"));
533     /* This happens for example on obj2 and pic of the Calgary corpus */
534    
535     /* Find the first bit length which could increase: */
536     do {
537     bits = max_length-1;
538     while (s->bl_count[bits] == 0) bits--;
539     s->bl_count[bits]--; /* move one leaf down the tree */
540     s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
541     s->bl_count[max_length]--;
542     /* The brother of the overflow item also moves one step up,
543     * but this does not affect bl_count[max_length]
544     */
545     overflow -= 2;
546     } while (overflow > 0);
547    
548     /* Now recompute all bit lengths, scanning in increasing frequency.
549     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
550     * lengths instead of fixing only the wrong ones. This idea is taken
551     * from 'ar' written by Haruhiko Okumura.)
552     */
553     for (bits = max_length; bits != 0; bits--) {
554     n = s->bl_count[bits];
555     while (n != 0) {
556     m = s->heap[--h];
557     if (m > max_code) continue;
558     if ((unsigned) tree[m].Len != (unsigned) bits) {
559     Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
560     s->opt_len += ((long)bits - (long)tree[m].Len)
561     *(long)tree[m].Freq;
562     tree[m].Len = (ush)bits;
563     }
564     n--;
565     }
566     }
567     }
568    
569     /* ===========================================================================
570     * Generate the codes for a given tree and bit counts (which need not be
571     * optimal).
572     * IN assertion: the array bl_count contains the bit length statistics for
573     * the given tree and the field len is set for all tree elements.
574     * OUT assertion: the field code is set for all tree elements of non
575     * zero code length.
576     */
577     local void gen_codes (tree, max_code, bl_count)
578     ct_data *tree; /* the tree to decorate */
579     int max_code; /* largest code with non zero frequency */
580     ushf *bl_count; /* number of codes at each bit length */
581     {
582     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
583     ush code = 0; /* running code value */
584     int bits; /* bit index */
585     int n; /* code index */
586    
587     /* The distribution counts are first used to generate the code values
588     * without bit reversal.
589     */
590     for (bits = 1; bits <= MAX_BITS; bits++) {
591     next_code[bits] = code = (code + bl_count[bits-1]) << 1;
592     }
593     /* Check that the bit counts in bl_count are consistent. The last code
594     * must be all ones.
595     */
596     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
597     "inconsistent bit counts");
598     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
599    
600     for (n = 0; n <= max_code; n++) {
601     int len = tree[n].Len;
602     if (len == 0) continue;
603     /* Now reverse the bits */
604     tree[n].Code = bi_reverse(next_code[len]++, len);
605    
606     Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
607     n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
608     }
609     }
610    
611     /* ===========================================================================
612     * Construct one Huffman tree and assigns the code bit strings and lengths.
613     * Update the total bit length for the current block.
614     * IN assertion: the field freq is set for all tree elements.
615     * OUT assertions: the fields len and code are set to the optimal bit length
616     * and corresponding code. The length opt_len is updated; static_len is
617     * also updated if stree is not null. The field max_code is set.
618     */
619     local void build_tree(s, desc)
620     deflate_state *s;
621     tree_desc *desc; /* the tree descriptor */
622     {
623     ct_data *tree = desc->dyn_tree;
624     const ct_data *stree = desc->stat_desc->static_tree;
625     int elems = desc->stat_desc->elems;
626     int n, m; /* iterate over heap elements */
627     int max_code = -1; /* largest code with non zero frequency */
628     int node; /* new node being created */
629    
630     /* Construct the initial heap, with least frequent element in
631     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
632     * heap[0] is not used.
633     */
634     s->heap_len = 0, s->heap_max = HEAP_SIZE;
635    
636     for (n = 0; n < elems; n++) {
637     if (tree[n].Freq != 0) {
638     s->heap[++(s->heap_len)] = max_code = n;
639     s->depth[n] = 0;
640     } else {
641     tree[n].Len = 0;
642     }
643     }
644    
645     /* The pkzip format requires that at least one distance code exists,
646     * and that at least one bit should be sent even if there is only one
647     * possible code. So to avoid special checks later on we force at least
648     * two codes of non zero frequency.
649     */
650     while (s->heap_len < 2) {
651     node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
652     tree[node].Freq = 1;
653     s->depth[node] = 0;
654     s->opt_len--; if (stree) s->static_len -= stree[node].Len;
655     /* node is 0 or 1 so it does not have extra bits */
656     }
657     desc->max_code = max_code;
658    
659     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
660     * establish sub-heaps of increasing lengths:
661     */
662     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
663    
664     /* Construct the Huffman tree by repeatedly combining the least two
665     * frequent nodes.
666     */
667     node = elems; /* next internal node of the tree */
668     do {
669     pqremove(s, tree, n); /* n = node of least frequency */
670     m = s->heap[SMALLEST]; /* m = node of next least frequency */
671    
672     s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
673     s->heap[--(s->heap_max)] = m;
674    
675     /* Create a new node father of n and m */
676     tree[node].Freq = tree[n].Freq + tree[m].Freq;
677     s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
678     s->depth[n] : s->depth[m]) + 1);
679     tree[n].Dad = tree[m].Dad = (ush)node;
680     #ifdef DUMP_BL_TREE
681     if (tree == s->bl_tree) {
682     fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
683     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
684     }
685     #endif
686     /* and insert the new node in the heap */
687     s->heap[SMALLEST] = node++;
688     pqdownheap(s, tree, SMALLEST);
689    
690     } while (s->heap_len >= 2);
691    
692     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
693    
694     /* At this point, the fields freq and dad are set. We can now
695     * generate the bit lengths.
696     */
697     gen_bitlen(s, (tree_desc *)desc);
698    
699     /* The field len is now set, we can generate the bit codes */
700     gen_codes ((ct_data *)tree, max_code, s->bl_count);
701     }
702    
703     /* ===========================================================================
704     * Scan a literal or distance tree to determine the frequencies of the codes
705     * in the bit length tree.
706     */
707     local void scan_tree (s, tree, max_code)
708     deflate_state *s;
709     ct_data *tree; /* the tree to be scanned */
710     int max_code; /* and its largest code of non zero frequency */
711     {
712     int n; /* iterates over all tree elements */
713     int prevlen = -1; /* last emitted length */
714     int curlen; /* length of current code */
715     int nextlen = tree[0].Len; /* length of next code */
716     int count = 0; /* repeat count of the current code */
717     int max_count = 7; /* max repeat count */
718     int min_count = 4; /* min repeat count */
719    
720     if (nextlen == 0) max_count = 138, min_count = 3;
721     tree[max_code+1].Len = (ush)0xffff; /* guard */
722    
723     for (n = 0; n <= max_code; n++) {
724     curlen = nextlen; nextlen = tree[n+1].Len;
725     if (++count < max_count && curlen == nextlen) {
726     continue;
727     } else if (count < min_count) {
728     s->bl_tree[curlen].Freq += count;
729     } else if (curlen != 0) {
730     if (curlen != prevlen) s->bl_tree[curlen].Freq++;
731     s->bl_tree[REP_3_6].Freq++;
732     } else if (count <= 10) {
733     s->bl_tree[REPZ_3_10].Freq++;
734     } else {
735     s->bl_tree[REPZ_11_138].Freq++;
736     }
737     count = 0; prevlen = curlen;
738     if (nextlen == 0) {
739     max_count = 138, min_count = 3;
740     } else if (curlen == nextlen) {
741     max_count = 6, min_count = 3;
742     } else {
743     max_count = 7, min_count = 4;
744     }
745     }
746     }
747    
748     /* ===========================================================================
749     * Send a literal or distance tree in compressed form, using the codes in
750     * bl_tree.
751     */
752     local void send_tree (s, tree, max_code)
753     deflate_state *s;
754     ct_data *tree; /* the tree to be scanned */
755     int max_code; /* and its largest code of non zero frequency */
756     {
757     int n; /* iterates over all tree elements */
758     int prevlen = -1; /* last emitted length */
759     int curlen; /* length of current code */
760     int nextlen = tree[0].Len; /* length of next code */
761     int count = 0; /* repeat count of the current code */
762     int max_count = 7; /* max repeat count */
763     int min_count = 4; /* min repeat count */
764    
765     /* tree[max_code+1].Len = -1; */ /* guard already set */
766     if (nextlen == 0) max_count = 138, min_count = 3;
767    
768     for (n = 0; n <= max_code; n++) {
769     curlen = nextlen; nextlen = tree[n+1].Len;
770     if (++count < max_count && curlen == nextlen) {
771     continue;
772     } else if (count < min_count) {
773     do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
774    
775     } else if (curlen != 0) {
776     if (curlen != prevlen) {
777     send_code(s, curlen, s->bl_tree); count--;
778     }
779     Assert(count >= 3 && count <= 6, " 3_6?");
780     send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
781    
782     } else if (count <= 10) {
783     send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
784    
785     } else {
786     send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
787     }
788     count = 0; prevlen = curlen;
789     if (nextlen == 0) {
790     max_count = 138, min_count = 3;
791     } else if (curlen == nextlen) {
792     max_count = 6, min_count = 3;
793     } else {
794     max_count = 7, min_count = 4;
795     }
796     }
797     }
798    
799     /* ===========================================================================
800     * Construct the Huffman tree for the bit lengths and return the index in
801     * bl_order of the last bit length code to send.
802     */
803     local int build_bl_tree(s)
804     deflate_state *s;
805     {
806     int max_blindex; /* index of last bit length code of non zero freq */
807    
808     /* Determine the bit length frequencies for literal and distance trees */
809     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
810     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
811    
812     /* Build the bit length tree: */
813     build_tree(s, (tree_desc *)(&(s->bl_desc)));
814     /* opt_len now includes the length of the tree representations, except
815     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
816     */
817    
818     /* Determine the number of bit length codes to send. The pkzip format
819     * requires that at least 4 bit length codes be sent. (appnote.txt says
820     * 3 but the actual value used is 4.)
821     */
822     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
823     if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
824     }
825     /* Update opt_len to include the bit length tree and counts */
826     s->opt_len += 3*(max_blindex+1) + 5+5+4;
827     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
828     s->opt_len, s->static_len));
829    
830     return max_blindex;
831     }
832    
833     /* ===========================================================================
834     * Send the header for a block using dynamic Huffman trees: the counts, the
835     * lengths of the bit length codes, the literal tree and the distance tree.
836     * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
837     */
838     local void send_all_trees(s, lcodes, dcodes, blcodes)
839     deflate_state *s;
840     int lcodes, dcodes, blcodes; /* number of codes for each tree */
841     {
842     int rank; /* index in bl_order */
843    
844     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
845     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
846     "too many codes");
847     Tracev((stderr, "\nbl counts: "));
848     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
849     send_bits(s, dcodes-1, 5);
850     send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
851     for (rank = 0; rank < blcodes; rank++) {
852     Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
853     send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
854     }
855     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
856    
857     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
858     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
859    
860     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
861     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
862     }
863    
864     /* ===========================================================================
865     * Send a stored block
866     */
867     void _tr_stored_block(s, buf, stored_len, eof)
868     deflate_state *s;
869     charf *buf; /* input block */
870     ulg stored_len; /* length of input block */
871     int eof; /* true if this is the last block for a file */
872     {
873     send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
874     #ifdef DEBUG
875     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
876     s->compressed_len += (stored_len + 4) << 3;
877     #endif
878     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
879     }
880    
881     /* ===========================================================================
882     * Send one empty static block to give enough lookahead for inflate.
883     * This takes 10 bits, of which 7 may remain in the bit buffer.
884     * The current inflate code requires 9 bits of lookahead. If the
885     * last two codes for the previous block (real code plus EOB) were coded
886     * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
887     * the last real code. In this case we send two empty static blocks instead
888     * of one. (There are no problems if the previous block is stored or fixed.)
889     * To simplify the code, we assume the worst case of last real code encoded
890     * on one bit only.
891     */
892     void _tr_align(s)
893     deflate_state *s;
894     {
895     send_bits(s, STATIC_TREES<<1, 3);
896     send_code(s, END_BLOCK, static_ltree);
897     #ifdef DEBUG
898     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
899     #endif
900     bi_flush(s);
901     /* Of the 10 bits for the empty block, we have already sent
902     * (10 - bi_valid) bits. The lookahead for the last real code (before
903     * the EOB of the previous block) was thus at least one plus the length
904     * of the EOB plus what we have just sent of the empty static block.
905     */
906     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
907     send_bits(s, STATIC_TREES<<1, 3);
908     send_code(s, END_BLOCK, static_ltree);
909     #ifdef DEBUG
910     s->compressed_len += 10L;
911     #endif
912     bi_flush(s);
913     }
914     s->last_eob_len = 7;
915     }
916    
917     /* ===========================================================================
918     * Determine the best encoding for the current block: dynamic trees, static
919     * trees or store, and output the encoded block to the zip file.
920     */
921     void _tr_flush_block(s, buf, stored_len, eof)
922     deflate_state *s;
923     charf *buf; /* input block, or NULL if too old */
924     ulg stored_len; /* length of input block */
925     int eof; /* true if this is the last block for a file */
926     {
927     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
928     int max_blindex = 0; /* index of last bit length code of non zero freq */
929    
930     /* Build the Huffman trees unless a stored block is forced */
931     if (s->level > 0) {
932    
933     /* Check if the file is binary or text */
934     if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
935     set_data_type(s);
936    
937     /* Construct the literal and distance trees */
938     build_tree(s, (tree_desc *)(&(s->l_desc)));
939     Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
940     s->static_len));
941    
942     build_tree(s, (tree_desc *)(&(s->d_desc)));
943     Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
944     s->static_len));
945     /* At this point, opt_len and static_len are the total bit lengths of
946     * the compressed block data, excluding the tree representations.
947     */
948    
949     /* Build the bit length tree for the above two trees, and get the index
950     * in bl_order of the last bit length code to send.
951     */
952     max_blindex = build_bl_tree(s);
953    
954     /* Determine the best encoding. Compute the block lengths in bytes. */
955     opt_lenb = (s->opt_len+3+7)>>3;
956     static_lenb = (s->static_len+3+7)>>3;
957    
958     Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
959     opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
960     s->last_lit));
961    
962     if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
963    
964     } else {
965     Assert(buf != (char*)0, "lost buf");
966     opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
967     }
968    
969     #ifdef FORCE_STORED
970     if (buf != (char*)0) { /* force stored block */
971     #else
972     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
973     /* 4: two words for the lengths */
974     #endif
975     /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
976     * Otherwise we can't have processed more than WSIZE input bytes since
977     * the last block flush, because compression would have been
978     * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
979     * transform a block into a stored block.
980     */
981     _tr_stored_block(s, buf, stored_len, eof);
982    
983     #ifdef FORCE_STATIC
984     } else if (static_lenb >= 0) { /* force static trees */
985     #else
986     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
987     #endif
988     send_bits(s, (STATIC_TREES<<1)+eof, 3);
989     compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
990     #ifdef DEBUG
991     s->compressed_len += 3 + s->static_len;
992     #endif
993     } else {
994     send_bits(s, (DYN_TREES<<1)+eof, 3);
995     send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
996     max_blindex+1);
997     compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
998     #ifdef DEBUG
999     s->compressed_len += 3 + s->opt_len;
1000     #endif
1001     }
1002     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1003     /* The above check is made mod 2^32, for files larger than 512 MB
1004     * and uLong implemented on 32 bits.
1005     */
1006     init_block(s);
1007    
1008     if (eof) {
1009     bi_windup(s);
1010     #ifdef DEBUG
1011     s->compressed_len += 7; /* align on byte boundary */
1012     #endif
1013     }
1014     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1015     s->compressed_len-7*eof));
1016     }
1017    
1018     /* ===========================================================================
1019     * Save the match info and tally the frequency counts. Return true if
1020     * the current block must be flushed.
1021     */
1022     int _tr_tally (s, dist, lc)
1023     deflate_state *s;
1024     unsigned dist; /* distance of matched string */
1025     unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1026     {
1027     s->d_buf[s->last_lit] = (ush)dist;
1028     s->l_buf[s->last_lit++] = (uch)lc;
1029     if (dist == 0) {
1030     /* lc is the unmatched char */
1031     s->dyn_ltree[lc].Freq++;
1032     } else {
1033     s->matches++;
1034     /* Here, lc is the match length - MIN_MATCH */
1035     dist--; /* dist = match distance - 1 */
1036     Assert((ush)dist < (ush)MAX_DIST(s) &&
1037     (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1038     (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1039    
1040     s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1041     s->dyn_dtree[d_code(dist)].Freq++;
1042     }
1043    
1044     #ifdef TRUNCATE_BLOCK
1045     /* Try to guess if it is profitable to stop the current block here */
1046     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1047     /* Compute an upper bound for the compressed length */
1048     ulg out_length = (ulg)s->last_lit*8L;
1049     ulg in_length = (ulg)((long)s->strstart - s->block_start);
1050     int dcode;
1051     for (dcode = 0; dcode < D_CODES; dcode++) {
1052     out_length += (ulg)s->dyn_dtree[dcode].Freq *
1053     (5L+extra_dbits[dcode]);
1054     }
1055     out_length >>= 3;
1056     Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1057     s->last_lit, in_length, out_length,
1058     100L - out_length*100L/in_length));
1059     if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1060     }
1061     #endif
1062     return (s->last_lit == s->lit_bufsize-1);
1063     /* We avoid equality with lit_bufsize because of wraparound at 64K
1064     * on 16 bit machines and because stored blocks are restricted to
1065     * 64K-1 bytes.
1066     */
1067     }
1068    
1069     /* ===========================================================================
1070     * Send the block data compressed using the given Huffman trees
1071     */
1072     local void compress_block(s, ltree, dtree)
1073     deflate_state *s;
1074     ct_data *ltree; /* literal tree */
1075     ct_data *dtree; /* distance tree */
1076     {
1077     unsigned dist; /* distance of matched string */
1078     int lc; /* match length or unmatched char (if dist == 0) */
1079     unsigned lx = 0; /* running index in l_buf */
1080     unsigned code; /* the code to send */
1081     int extra; /* number of extra bits to send */
1082    
1083     if (s->last_lit != 0) do {
1084     dist = s->d_buf[lx];
1085     lc = s->l_buf[lx++];
1086     if (dist == 0) {
1087     send_code(s, lc, ltree); /* send a literal byte */
1088     Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1089     } else {
1090     /* Here, lc is the match length - MIN_MATCH */
1091     code = _length_code[lc];
1092     send_code(s, code+LITERALS+1, ltree); /* send the length code */
1093     extra = extra_lbits[code];
1094     if (extra != 0) {
1095     lc -= base_length[code];
1096     send_bits(s, lc, extra); /* send the extra length bits */
1097     }
1098     dist--; /* dist is now the match distance - 1 */
1099     code = d_code(dist);
1100     Assert (code < D_CODES, "bad d_code");
1101    
1102     send_code(s, code, dtree); /* send the distance code */
1103     extra = extra_dbits[code];
1104     if (extra != 0) {
1105     dist -= base_dist[code];
1106     send_bits(s, dist, extra); /* send the extra distance bits */
1107     }
1108     } /* literal or match pair ? */
1109    
1110     /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1111     Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1112     "pendingBuf overflow");
1113    
1114     } while (lx < s->last_lit);
1115    
1116     send_code(s, END_BLOCK, ltree);
1117     s->last_eob_len = ltree[END_BLOCK].Len;
1118     }
1119    
1120     /* ===========================================================================
1121     * Set the data type to BINARY or TEXT, using a crude approximation:
1122     * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1123     * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1124     * IN assertion: the fields Freq of dyn_ltree are set.
1125     */
1126     local void set_data_type(s)
1127     deflate_state *s;
1128     {
1129     int n;
1130    
1131     for (n = 0; n < 9; n++)
1132     if (s->dyn_ltree[n].Freq != 0)
1133     break;
1134     if (n == 9)
1135     for (n = 14; n < 32; n++)
1136     if (s->dyn_ltree[n].Freq != 0)
1137     break;
1138     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1139     }
1140    
1141     /* ===========================================================================
1142     * Reverse the first len bits of a code, using straightforward code (a faster
1143     * method would use a table)
1144     * IN assertion: 1 <= len <= 15
1145     */
1146     local unsigned bi_reverse(code, len)
1147     unsigned code; /* the value to invert */
1148     int len; /* its bit length */
1149     {
1150     register unsigned res = 0;
1151     do {
1152     res |= code & 1;
1153     code >>= 1, res <<= 1;
1154     } while (--len > 0);
1155     return res >> 1;
1156     }
1157    
1158     /* ===========================================================================
1159     * Flush the bit buffer, keeping at most 7 bits in it.
1160     */
1161     local void bi_flush(s)
1162     deflate_state *s;
1163     {
1164     if (s->bi_valid == 16) {
1165     put_short(s, s->bi_buf);
1166     s->bi_buf = 0;
1167     s->bi_valid = 0;
1168     } else if (s->bi_valid >= 8) {
1169     put_byte(s, (Byte)s->bi_buf);
1170     s->bi_buf >>= 8;
1171     s->bi_valid -= 8;
1172     }
1173     }
1174    
1175     /* ===========================================================================
1176     * Flush the bit buffer and align the output on a byte boundary
1177     */
1178     local void bi_windup(s)
1179     deflate_state *s;
1180     {
1181     if (s->bi_valid > 8) {
1182     put_short(s, s->bi_buf);
1183     } else if (s->bi_valid > 0) {
1184     put_byte(s, (Byte)s->bi_buf);
1185     }
1186     s->bi_buf = 0;
1187     s->bi_valid = 0;
1188     #ifdef DEBUG
1189     s->bits_sent = (s->bits_sent+7) & ~7;
1190     #endif
1191     }
1192    
1193     /* ===========================================================================
1194     * Copy a stored block, storing first the length and its
1195     * one's complement if requested.
1196     */
1197     local void copy_block(s, buf, len, header)
1198     deflate_state *s;
1199     charf *buf; /* the input data */
1200     unsigned len; /* its length */
1201     int header; /* true if block header must be written */
1202     {
1203     bi_windup(s); /* align on byte boundary */
1204     s->last_eob_len = 8; /* enough lookahead for inflate */
1205    
1206     if (header) {
1207     put_short(s, (ush)len);
1208     put_short(s, (ush)~len);
1209     #ifdef DEBUG
1210     s->bits_sent += 2*16;
1211     #endif
1212     }
1213     #ifdef DEBUG
1214     s->bits_sent += (ulg)len<<3;
1215     #endif
1216     while (len--) {
1217     put_byte(s, *buf++);
1218     }
1219     }